

NED University of Engineering & Technology

Department of Electrical Engineering

LAB MANUAL

EMBEDDED SYSTEMS

(EE-354) For T.E.(EE)

Instructor name:

Student name:

Roll # Batch:

Semester: Year:

LAB MANUAL

For the course

EMBEDDED SYSTEMS

(EE-354) For T.E.(EE)

Developed by:

Mr. Hassan-ul-Haq, Mr. Hafiz Muhammad Furqan & Ms. Aiman

Approved By

The Board of Studies of Department of Electrical Engineering

____________________ ____________________

____________________ ___________________

____________________ ____________________

R
=

S
=

A
=

P
=

T
=

Z
=

F
=

E
x
te

n
t

o
f

ac
h

ie
v
em

en
t

E
x
te

n
t

o
f

ac
h

ie
v
em

en
t

E
x
te

n
t

o
f

ac
h

ie
v
em

en
t

F
o
r

en
tr

y
 o

n
 N

E
D

 e
x
am

 p
o
rt

al
 T

o
ta

l
F

in
al

 L
ab

 M
ar

k
s

sc
al

ed
 t

o
 2

0
 m

ar
k

s
(Z

/6
4

)*
2

0

F
o
r

en
tr

y
 o

n
 N

E
D

 e
x
am

 p
o
rt

al
 T

o
ta

l
la

b
 s

es
si

o
n

al
s

o
u

t
o
f

3
0

:
S

 +
 P

P
B

L
/O

E
L

F
in

al

A
d

d
 t

w
o
 t

o
ta

l
sc

o
re

s
fr

o
m

 a
b

o
v
e

to
 g

et
 t

o
ta

l
fi

n
al

 R
u

b
ri

c
S

co
re

 O
u

t
o
f

6
4

E
x
te

n
t

o
f

ac
h

ie
v
em

en
t

E
x
te

n
t

o
f

ac
h

ie
v
em

en
t

T
o
ta

l
o
u

t
o
f

3
2

T
o
ta

l
o
u

t
o
f

3
2

S
u

m
m

ar
y
 o

f
R

u
b

ri
c

S
h

ee
ts

 f
o
r

D
at

a
E

n
tr

y
 i

n
 O

B
E

 M
IS

 S
y
st

em
 [

to
 b

e
en

te
re

d
 a

s
th

ey
 a

re
 o

n
 O

B
E

 p
o
rt

al
 w

it
h

 n
o
 s

ca
li

n
g
]

A
d

d
 s

ix
 t

o
ta

l
sc

o
re

s
fr

o
m

 a
b

o
v
e

to
 g

et
 t

o
ta

l
R

u
b

ri
c

sc
o
re

 O
u

t
o
f

1
9

2

S
ca

le
d

 t
o
 2

5
 m

ar
k

s
(R

/1
9

2
)*

2
5

L
ab

 A
tt

en
d

an
ce

 p
er

ce
n

ta
g
e

fr
o
m

 p
o
rt

al
:

A
tt

en
d

an
ce

 s
ca

le
d

 t
o
 5

 m
ar

k
s:

 (
A

/1
0

0
)*

5

T
o
ta

l
o
u

t
o
f

3
2

L
ab

 #

T
o
ta

l
o
u

t
o
f

3
2

L
ab

 #

T
o
ta

l
o
u

t
o
f

3
2

T
o
ta

l
o
u

t
o
f

3
2

L
ab

 #

T
o
ta

l
o
u

t
o
f

3
2

L
ab

 #

L
ab

 #

T
o
ta

l
o
u

t
o
f

3
2

L
ab

 #

E
x
te

n
t

o
f

ac
h

ie
v
em

en
t

E
x
te

n
t

o
f

ac
h

ie
v
em

en
t

E
x
te

n
t

o
f

ac
h

ie
v
em

en
t

CONTENTS
Psychomotor: P3

CLO: Duplicate wiring connections for given circuit design while manipulating the embedded software with

C/Assembly IDE in order to change system behavior.

PLO: Lifelong Learning- PLO 12

S. No. Date Title of Experiment Total Marks Signature

1
To set-up the Code::Blocks IDE with AVR toolchain

and test an AVR project on the ATmega328P

microcontroller

2*
To program the AVR ATmega328P I/O (Input/Output)

ports for digital input and output

3*
To program the ATmega328P for reading analog input

through its Analog-to-Digital Converter ADC module

4*

To utilize the USART (Universal Synchronous /

Asynchronous Receiver /Transmitter) of ATmega328P

for transmitting and receiving data though

asynchronous serial communication with PC

5*
To interface an LCD (Liquid Crystal Display) screen

with ATmega328P by sending required commands and

data

6*

To utilize SPI (Serial Peripheral Interface) protocol for

interfacing the max6675 module with ATmega328P

and develop temperature measurement system based on

the K-type thermocouple

7*
To configure the Timer/Counter registers of AVR

ATmega328P for generation of PWM (Pulse-Width

Modulation) signals

8*

To interface analog voltage sensor ZMPT101B for

measurement of phase voltage and display its true RMS

(Root Mean Square) value on LCD (Liquid Crystal

Display) screen

9

To set up Inter-Integrated Circuit (I2C)

communication on Atmega328P micro-controller for

controlling a 16x2 LCD screen through PCF8574 I2C

I/O (Input/Output) expander

* RUBRIC based assessment

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

1

LAB SESSION 01

OBJECTIVE:

To set-up the Code::Blocks IDE with AVR toolchain and test an AVR project on the ATmega328P

microcontroller

LAB OUTCOMES:

By the end of the lab, you would be able to:

1) Install the Code::Blocks IDE with an AVR toolchain using (WinAVR)

2) Create an AVR project with the required compiler settings

3) Test the created project on ATmega328P microcontroller using AVRDUDE

BACKGROUND:

The ATmega328P is an 8-bit microcontroller based on the AVR RISC architecture. It is produced by

Microchip Technology. The ATmega328P has 32 KB of flash memory, 2 KB of RAM, and 1 KB of

EEPROM. It has 23 general-purpose I/O pins, a 16-bit timer/counter, a 8-bit timer/counter, a real-time

clock, a pulse-width modulation (PWM) unit, a serial communication interface (USART), a two-wire

interface (TWI), and an analog-to-digital converter (ADC).

The ATmega328P is a popular microcontroller for a variety of projects, including robotics, home

automation, and wearables. It is also used in the Arduino Uno, Arduino Pro Mini, and Arduino Nano

microcontroller development boards. The ATmega328P is a powerful and versatile microcontroller that can

be used in a wide variety of applications. It is a popular choice for hobbyists and professionals alike.

We will be utilizing ATmega328P (Arduino UNO DIP R3) throughout Embedded Systems Lab work and

will program it in C-language. To program the microcontroller, we will use the following:

• Avrdude is a command-line utility for programming AVR microcontrollers. It can be used to write

firmware to the microcontroller's flash memory, erase the flash memory, and read the contents of the

flash memory.

• WinAVR is a software package that includes avrdude, as well as a compiler, assembler, and a number

of other tools for developing applications for AVR microcontrollers.

• Code::Blocks is an integrated development environment (IDE) that can be used to develop applications

for AVR microcontrollers. It includes a graphical user interface for editing and compiling code, as well

as a debugger for stepping through and debugging code.

Avrdude and Winavr are essential tools for developing applications for AVR microcontrollers.

Code::Blocks is a powerful IDE that can make the development process easier.

LAB TASKS

The first two lab tasks guide you to installation of the required IDE and toolchain. The setup files can be

easily found and downloaded from the internet. However, these setup files are available on this shared

folder too.

TASK 1: To install Code::Blocks IDE with AVR Toolchain

Follow the given step-by-step procedure to first install the Code::Blocks IDE on your system.

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

2

1) To download the required setup files from the internet, search CodeBlocks and go to

https://www.codeblocks.org/downloads/. Select Download the binary releases. Select the setup

package depending upon your platform like Microsoft Windows in our case. From the given setup files,

select codeblocks-20.03-setup.exe as shown in Figure 1. Click on one of the Download From options

for example Sourceforge.net. For a 32-bit operating system type, you can select codeblocks-20.03-

32bit-setup.exe.

2) Once the setup file is downloaded, click on it to begin the installation process. Select the default option

and follow the installation steps as suggested by the wizard. After a few minutes of decompressing and

install files, click YES when prompted to start Code::Blocks. This should yield the IDE shown in

Figure. For now, select OK if it fails to auto-detect the compiler.

Figure 1: Download Code::Blocks

Figure 2: Select Source and File Type

Figure 3: Downlod Source

Figure 4: Starting Installation Wizard

https://www.codeblocks.org/downloads/

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

3

Figure 5: License Agreement

Figure 6: Plug-in Selection

Figure 7: Destination Folder for Installation

Figure 8: Installation Completion

Figure 9: Code::Blocks IDE

Figure 10: Ignore Compiler Status

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

4

3) The Code::Blocks IDE is now ready and would allow you to create projects. Since our aim is to develop

AVR Projects, therefore, we first need to install AVR Toolchain. For this we will make use of WinAVR.

4) Search for WinAVR and go to https://sourceforge.net/projects/winavr/files/latest/download. Click on

Download. It will start downloading the latest WinAVR package.

5) Click on the downloaded file to start the setup wizard. Follow the steps shown in figures and select the

correct features to be installed. The WinAVR package has the required avrdude as well as GNU GCC

Compilers.

Figure 11: Source to Download WinAVR

Figure 12: Run Dwonloaded Application File

Figure 13: Setup Wizard

Figure 14: License Argeement

Figure 15: Destination Folder

Figure 16: Choose Components for Installation

https://sourceforge.net/projects/winavr/files/latest/download

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

5

Figure 17: Finish Installation

6) Before you create and start working on a project, verify that directories are correctly added to the system

path. To do this, open the command prompt by searching cmd in the Windows search option. In the

command prompt, simply write avrdude. You will see the message shown in Figure if it is correctly

added else you will see the error message shown in Figure.

Figure 18: Testing avrdude through Command Prompt

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

6

Figure 19: Error-avrdude is not recognized as internal command

7) After this write path to verify that the required directories shown in the figure are added to the system

path.

Figure 20: Verifying Directories Added in System Path

TASK 2: To create an AVR Project with the required compiler settings

Now you are ready to create and build an AVR project through the Code::Blocks IDE. The following steps

guide you to create the project and set the compiler settings required to build the project. Follow the steps

given below.

a) Creating AVR Project:

1) Open the Code::Blocks. Go to File> Create >Project…. Select AVR Project and click Go. Select

Next.

2) At this step, you are asked to give project title and select folder to create project files. Give any

suitable name to your project for example here, we have called it Project1. A new folder ES Labs is

created on the desktop and is chosen as project folder. After this, click Next.

3) Now, make sure the selected compiler is GNU GCC for AVR and keep the remaining settings as

shown in the figure. Then click Next.

4) The processor we have selected for ES labs is ATmega328P. Select it from the dropdown menu

carefully and keep the rest of the settings as shown in the Figure. Then click Finish

5) You will see your created project Project1 folder created in the Projects tab workspace. Click on the

Project Name > Sources. This folder will show 2 files; main.c and fuse.c, double click on the main.c

file to open it. It is a blank file template created for the AVR project. This is where you will write a

code.

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

7

Figure 21: Creating AVR Project

Figure 22: AVR Project Wizard

Figure 23: Project Details

Figure 24: Compiler Selection

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

8

Figure 25: Choosing Processor for AVR Project

Figure 26: Created Empty Project with main.c

and fuse.c files

b) Compiler Settings:

Before we write instructions for our first test project, let’s first complete the required compiler settings

that will be needed for all AVR projects.

6) Now, go to Settings > Compiler.

Figure 27: Accessing Compiler Settings Option

7) Under the Selected Compiler dropdown menu, select GNU GCC Compiler for AVR and click Set

as default. From the different tabs right below this, select Toolchain executables. For Compiler’s

installation directory, click Auto detect. It should show the auto detected installation path as the one

where WinAVR destination folder was selected earlier. If it fails to do so, you can manually select the

folder by browsing through … option beside Auto-detect. Click OK.

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

9

 Figure 28: Specifying the Compiler and Installation Directory in Toolchain Executables

This will update a number of things for these settings. Verify each as shown in the following figures.

Figure 29: Specifying the Program Files in the Compiler’s Installation Directory

The Program Files and Additional Paths tabs under the Toolchain executables will be updated as

shown.

Figure 30: Additional Paths in Toolchain Executables

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

10

Go to Search directories tab and check that C:WinAVR\avr\include is added in the Compiler tab.

Figure 31: Verifying the Search Directories

Select Compiler settings tab at the left-most. Check the Optimize generated code (for size) [-Os]

option.

Figure 32: Optimization Settings for Compiler

8) Click OK to close the window. The GNU GCC Compiler is set as default with the required compiler

settings needed for now.

c) Add Code and Build Project:

1) Update the main.c file opened in the Editor window with the code given in Figure and save the file

(Ctrl+S). This is a test code that causes the LED on board blink with a delay of 1000msec (1sec).

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

11

Figure 33: Test Code - LED Blink

Figure 34: Updating main.c File with Test Code

2) Now select Build > Build. For a successful build, the Build Log below will show the following

message with 0 errors and 0 warnings.

#include <avr/io.h>

#define BLINK_DELAY_MS 1000

#include <util/delay.h>

int main (void)

{

 // Arduino digital pin 13 (pin 5 of PORTB) for output

 DDRB |= 0B100000; // PORTB5

 while(1) {

 // turn LED on

 PORTB |= 0B100000; // PORTB5

 _delay_ms(BLINK_DELAY_MS);
 // turn LED off
 PORTB &= ~ 0B100000; // PORTB5

 _delay_ms(BLINK_DELAY_MS);
 }

}

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

12

Figure 35: Build Log (Successful Build)

3) Upon successful build, you will see some new folders and files added to the project folder. Go to bin

and verify the addition of .hex file as shown in the figure.

Figure 36: Project Folder Updated after Building the Project

Figure 37: Generated Files

Congratulations! You have generated the output file for our code written in the C language. This .hex

file is the one that will be uploaded to the flash memory of microcontroller ATmega328P for

execution of the code.

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

13

TASK 3: To test the project on ATmega328P microcontroller

Arduino UNO R3 DIP uses ATmega328P microcontroller IC. Therefore, we will be using the Arduino

UNO board to program the ATmega328P.

1) Connect Arduino UNO USB cable with your system port. The LEDs on your board should light-up to

verify that connection is made. The system might start installing the required drivers. To verify the

correct connection, go to Device Manager of your system, and check Ports (COM & LPT). If the

device is detected as Arduino UNO or USB Serial Device, note the port it is connected to. Here, we

can see Arduino UNO (COM3) so COM3 is the port. In case the system fails to identify the device,

you need to install Arduino Drivers. For this download the drivers from the internet or access through

the shared drive. Extract the folder contents. Then, right click on the device under Ports in the Device

Manager, and select Update Driver Software… and follow the Wizard. You will have to specify the

path of downloaded driver files.

Figure 38: Arduino UNO R3 DIP

(ATmega328P)

Figure 39: Arduino UNO Connection Port

There are 2 approaches to upload the generated code on ATmega328P flash memory. First we will

use AVRDUDE through Command Prompt instructions. Through this, you will be able to understand

the working of AVRDUDE for uploading the file to our microcontroller. Later, we will integrate this tool

to our Code::Blocks to eliminate the manual Command Prompt steps for our ease. Let’s begin the

interesting part of this lab.

a) Uploading code to ATmega328P microcontroller using AVRDUDE through Command

Prompt

1) Open the Command Prompt by typing cmd in the Windows search.

2) First change the current directory to the folder path where Project1.hex file is saved.

For example: C:\Users\Aiman\Desktop\ES Labs\Project1\bin\Debug

To do this, use cd command

cd C:\Users\Aiman\Desktop\ES Labs\Project1\bin\Debug

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

14

3) Now, type avrdude to verify that it is recognized (as has already been done). It display a list

of options available for usage with avrdude command. Read the description written with

each.

4) For now, we will use only the required ones and the details of which are given below. Note

that these are case sensitive.

Table 1: avrdude Usage Options and Description

Options Description Example as applicable to the test case

-p Part No. (To specify the AVR device) In our case, it is m328p (Atmega 328p)

-P Port (To specify the Connection port) In our case, it is COM3

-c Programmer (To specify Programmer

Type)

In our case, it is Arduino

-U Memory operation specification.

Required format is:

<memory type>:w:<file name>
Where, w shows

 read the specified file and write it to the

specified device memory

In our case, flash is the memory type where

we want to write the code saved in the

generated Project1.hex file

5) Based on the above, write (type, don’t copy-paste) the following command in the Command

Prompt.

It will display some messages shown in Figure below. For successful upload of the hex file,

you will see the LED blinking at the specified rate.

Figure 40: Uploading the .hex File to ATmega328P through Command Prompt avrdude

b) Uploading code to ATmega328P microcontroller using Code::Blocks tool

avrdude –p m328p –P com3 –c arduino –U flash:w:Project1.hex

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

15

To avoid the time-consuming and intimidating Command Prompt interface, we will now add the

AVRDUDE tool to Code::Blocks. Follow the following steps:

1) In your Code:Blocks IDE, click on Tools > Configure Tools > Add. In the Edit Tool

window, set the Name, Executable, Parameters and Working Directory as shown in Figure.

To set the executable browse the specified path of WinAVR folder, and select avrdude.exe.

Note, that in the parameters option, we have written the same avrdude command used earlier.

The working directory is set to be the one containing the .hex file. Click OK and close the

Tools Window.

Figure 41: Required Tool Settings

Figure 42: Added Tool avrdude

2) Now, select Tools from the top menu bar once again. The name of tool just added for

example: avrdude will be available now above the Configure Tools option. Click the

avrdude and that’s it. The Log Window below will show the execution. Once the code is

uploaded to ATmega328P, you will observe the blinking LED.

3) To make it more generalized, we will now add a tool using macros. Here, instead of

specifying the exact file and project names and path, we will use macros that will do the

job and you won’t have to type it again and again for each of your projects.

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

16

4) Go to Tools> Configure Tools. Either Edit the previous tool or use Add to add another

one. This time set the Parameters and Working Directory in terms of macros replacing

project name and path. Click OK.

Figure 43:Adding avrdude with Generic Parameters and Working Directory

5) Now, modify the delay in your main.c file by replacing 1000 to 5000 for 5sec delay. Save it and

Rebuild the file using the Build> Rebuild option. The new file will replace the previously generated

.hex file.

6) Now, upload this one by selecting the newly added Tool through Tools>avrdudedirect. Verify the

successful upload by blinking of LED at 5msec delays.

Congratulations! You have successfully created, built and tested your first AVR project on

ATmega328P using Code::Blocks with AVR Toolchain.

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

17

LAB SESSION 02

OBJECTIVE:

To program the AVR ATmega328P I/O (Input/Output) ports for digital input and output

LAB OUTCOMES:

By the end of the lab, you would be able to:

1) Identify the AVR ATmega328P I/O ports

2) Utilize DDR (Direct Data Registers) for setting direction of ports

3) Take digital input and set digital output through I/O ports

4) Build required logics for digital inputs and outputs in pure C-language codes and test them on

ATmega328P microcontroller

5) Utilize logical operations for bit-wise manipulation of ports

“There are exactly 10 types of people in the world.

 Those who understand binary numbers and those who don’t.”

If this doesn’t make sense to you, you need to brush up your number system’s knowledge which

is a pre-requisite to the course.

BACKGROUND:

ATmega328P Pin Diagram and I/O Ports

Figure 1 shows ATmega328P pin diagram. Here, we can see total 28 pins (14 at each side). Throughout the

labs, we will be exploring functions of these pins and their utilization. Most port pins are multiplexed with

alternate functions for the peripheral features on the device i.e. they have dual roles. Note that enabling the

alternate function of some of the port pins does not affect the use of the other pins in the port as general

digital I/O. However, in this lab, we will focus on the pins that can be utilized for digital input and

output i.e. simple I/O function, so don’t get intimidated by the pin diagram shown in Figure 1.

Figure 1: Pin Diagram of ATmega328P

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

18

Ports as General Digital I/O Pins

Digital I/O pins on the AVR microcontroller are grouped into ports. Each port has up to eight pins assigned

to it. However, each pin can be individually configured. So, you can have a mix of input and output pins

on the same port.

The ATmega328P has 23 General Purpose Digital I/O Pins assigned to 3 GPIO Ports (8-bit Ports B, D and

7-bit Port C).

Ports are designated by a letter and pins are numbered starting at 0. For example, the first pin on port B is

named PB0 and the third pin on port D is named PD2. The ports are bi-directional I/O ports. The pin driver

is strong enough (20mA) to drive LED displays directly.

Let’s consider Figure 2 which shows the names and locations of the pins on the ATmega328P for the DIP

package, as well as the corresponding locations on the Arduino Uno board. For those coming from an

Arduino background, there are a couple things to take note. Firstly, you may notice that not all the digital

I/O pins are available for use on the Arduino Uno board. This is because these pins are being used for

alternate functions. PC6 is being used for device reset and PB6 and PB7 are connected to the crystal on the

board. Secondly, even though the analog pins A0 - A5 can be used with the Analog-to-Digital converter,

they may also be used for digital I/O.

Now that we know the names of the pins and where they are located, we will learn how to configure them

using pure C-programming.

Figure 2: Pins on the ATmega328P with the corresponding locations on the Arduino Uno board.

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

19

Configuring the Pin

Each port has three I/O registers associated with it, one each for the Data Register – PORTx, Data Direction

Register – DDRx, and the Port Input Pins – PINx. Also notice that each of the I/O registers is 8 bits wide,

and each port has a maximum of 8 pins; therefore each bit of the I/O registers affects one of the pins.

Consequently, each port pin consists of three register bits: DDxn, PORTxn, and PINxn.

The Port Input Pins I/O location is read only, while the Data Register and the Data Direction Register are

read/write.

All registers and bit references in this section are written in general form. A lower case “x” represents the

numbering letter for the port, and a lower case “n” represents the bit number. However, when using the

register or bit defines in a program, the precise form must be used. For example, PORTB3 for bit no. 3 in

Port B, here documented generally as PORTxn.

Figure 3: Relations between the Registers and the Pins of AVR

1) Role of DDRx (Data-Direct Register)

The DDRx I/O register is used solely for the purpose of making a given port an input or output port. To

make any pin of the port an output pin, we write 1 to the corresponding bit of DDRx register. It must be

noted that unless we set the DDRx bits to one, the data will not go from the port register to the pins of the

AVR.

To output data to all of the pins of the Port B, we first put 0b11111111 (0xFF) into the DDRB register to

make all of the pins output. To make a port an input port, we must first put 0s into the DDRx register for

that port, and then bring in (read) the data present at the pins.

Notice that upon reset, all ports have the value 0x00 in their DDR registers. This means that all ports are

configured as input.

Figure 4: The I/O Port in AVR

Figure 5: Buffer (DDRx.n is used an Enable pin in

Figure 4)

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

20

2) Role of PINx (Pin-Register)

To read the data present at the pins, we use PIN register. It must be noted that to bring data into CPU from

pins we read the contents of the PINx register.

3) Role of PORTx (Data-Register)

The PORTx register is used to send data out to pins.

Why program the AVR in C?

Compilers produce hex files that we download into the Flash of the micro-controller. The size of the hex

file produced by the compiler is one of the main concerns because microcontrollers have limited on-chip

Flash.

While Assembly language produces a hex file that is much smaller than C, programming in Assembly

language is often tedious and time consuming. On the other hand, C programming is less time consuming

and much easier to write, but the hex file size produced is much larger than if we used Assembly language.

The following are some of the major reasons for writing programs in C instead of Assembly:

1) It is easier and less time consuming to write in C than in Assembly.

2) C is easier to modify and update.

3) You can use code available in function libraries.

4) C code is portable to other microcontrollers with little or no modification.

As seen in the last lab, we have used WinAVR GNU GCC Compiler for AVR.

Starting AVR Programming in C

This section provides a revision of basic syntax of C language, its data types, and functions which we will

be needing to build our logic for AVR programming.

When we create an AVR project in Code::Blocks, we get an empty main.c file with a basic template shown

in Figure 6.

Figure 6: main.c Template Code

Comments:

//Single line comment

/* Multiple line

Comment */

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

21

Header files:

The #include is a preprocessor directive that instructs the compiler to find the file in the < > brackets and

tack it on at the head of the file you are about to compile. The io.h provides appropriate I/O definitions for

the device we are using, and the delay.h provides the definitions for the delay function.

Statements control the program flow and consist of keywords, expressions, and other statements. A

semicolon ends a statement.

main (): All C programs contain the main() function that contains the code and is first run when the

program begins. main (void) means the function doesn’t take any input. ‘int main’ means that the function

needs to return some integer at the end of the execution and we do so by returning 0 at the end of the

program.

While Loop: It is a control flow statement that allows code to be executed repeatedly based on a given

Boolean condition. The while loop can be thought of as a repeating if statement. The while(1) will run the

loop forever because ‘1’ is the definition of true (false is defined as 0).

Data Types: A good understanding of C data types for the AVR can help programmers to create smaller

hex files. In declaring variables, we must pay careful attention to the size of the data type and data range,

refer to the Table 1.

Remember that C compilers use the signed char as the default unless we put the keyword unsigned in front

of the char. In many situations, such as setting a counter value, where there is no need for signed data, we

should use the unsigned char instead of the signed char. Using the int instead of the unsigned char leads to

the need for more memory space.

Table 1: Data types widely used by C compilers

Declaring (Creating) Variables: type variableName = value;

Where type is one of C types (such as int), and variableName is the name of the variable (such as x or

myName). The equal sign is used to assign a value to the variable.

Delay functions: One way of generating time delay is to use predefined functions such as _delay_ms()

and _delay_us() defined in delay.h in WinAVR For this, we need to include the header file delay.h For

example: #include <utils/delay.h>

Constants: Data that cannot be changed by the program. By convention, constants are named in capital

letters. These are defined at the start or in header files, then can be used anywhere in the code.

define PI 3.1415926

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

22

AVR I/O Programming in C

All port registers of the AVR are both byte accessible and bit accessible. Let’s first discuss and practice the

byte-size I/O.

Byte size I/O

To access a PORT register as a byte, we use the PORTx label where x indicates the name of the port. The

data direction registers are accessed using DDRx to indicate the data direction of port x. To access a PIN

register as a byte, we use the PINx label where x indicates the name of the port.

Writing C-Code for Giving Output from ATmega328P Pins

Considering the above discussion, let’s check how we can output digital high or low signal from

ATmega328P I/O pins.

Example 1-Output through I/O Port to drive LEDs:

Consider the port D which has 8 I/O pins. Let’s set the first 4 pins (D0, D1, D2 and D3) as output pins. This

is done by first setting the DDR register of port D as 0b00001111.

DDRD= 0b00001111 (or, DDRD = 0X0F)

Once the port pins are set as output pins, now we can output logic high or low at these pins. Here, we will

set the Port register’s corresponding last 4-bits high.

PORTD= 0b00001111

Similarly, to set the alternate bits (D0 and D2) low, we can use;

PORTD = 0b00001010 (or, PORTD = 0X0A in Hex)

The complete code is shown in Figure with corresponding connections. Note that, the DDR registers are

set outside the while loop in the main function once.

Figure 7: Code and Connections for Example 1

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

23

Writing C-Code for Taking Input to ATmega328P Pins

Considering the port B which has 8 pins. Let’s set the pin PB0, PB1, PB2 and PB3 of port B as input pins.

To take input, we need to set the DDRB port first and then we can use the PINB for reading from the port

B pins.

DDRB= 0X00 // Setting all pins as input pins

temp = PINB //reading from PINB and saving it in temp variable

Example 2 – Taking Input through I/O Ports from Switches:

Figure 8: Code and Connections for Example 2

Bit-wise Logic Operations in C for I/O Bit Manipulation

One of the most important and powerful features of the C language is its ability to perform bit manipulation.

You might be familiar with the logical operators AND (&&), OR (||), and NOT (!), but might be less familiar

with the bit-wise operators AND (&), OR (|), EX-OR (^), inverter (~), shift right (>>), and shift left (<<).

These bit-wise operators are widely used in software engineering for embedded systems and

microcontroller-based system design and interfacing.

Masking for Bit Size I/O

We use these bit-wise logical operations to access a single bit of a given register without disturbing the rest

of the byte. In this section you will see how to mask a bit of a byte.

Initially, the output port PORTD is set as;

PORTD = 0b 00000 0000; // All bits are clear

To set the 5th bit high without disturbing the other bits, we can perform bit-wise OR | operation of PORTD

register’s previous value with 0b00010000.

PORTD = PORTD | 0b00010000; // To set the 5th bit (bit # 4) only

Similarly, if PORTD is initially set as 0b11111111, and we just want to clear the 4th bit (Bit #3) then we

can perform a bit-wise AND operation.

PORTD= PORTD & 0b111110111;

Irrespective of the value of a bit, the AND operation of the bit with 1 results in the previous value of the bit

i.e. it remains unchanged. Whereas, AND operation of a bit with 0 clears the bit.

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

24

Similarly, the OR operation of a bit with 1, results in setting the bit high. However, OR operation with 0

leaves the bit unchanged.

Table 2: Bit-wise Logical Operators in C

To invert all bits, the bit-wise NOT (~) operator can be used.

PORTD = ~PORTD;

Example 3 – Using logical operators for bit-wise I/O from ATmega328P ports

The following examples get the status of bit 3 of Port D and send it to the bit 0 of port D continuously.

Figure 9: Code and Connections for Example 3

Compound Assignment Operators

To reduce coding (typing) we can use compound statements for bit-wise operators in C.

Table 3: Compound Assignment Operators

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

25

Example 4 – Using compound assignment operators for bit-wise I/O from ATmega328P ports

The Example 3 is re-written using the compound bit-wise operators. Observe the difference. Note that the

compound assignment operators ‘|=’ don’t have a space ‘| =’ in between.

Figure 10: Code and Connections for Example 4

Shift Operation for Bit-Manipulation:

To do bit-wise I/O operation in C, we need numbers like 0b00100000 in which there are seven 0s and one

1. Only the position of the one varies in different programs. To leave the generation of ones and zeros to

the compiler and improve the code clarity, we use shift operations. For example, instead of writing

“0b00100000” we can write “0b00000001 << 5” or we can write simply “1<<5”. Sometimes we need

numbers like 0b11101111. To generate such a number, we do the shifting first and then invert it. For

example, to generate 0b11101111 we can write ~(1<<4).

LAB TASKS

From Task 2 to 5, create AVR projects and test them on ATmega328P. Feel free to use different conditional

statements, loops, switch-case structure to complete the C-programming related tasks.

TASK 1: Explain what makes the Blinky.c blink?

The code we tested in Lab 01 is given below. Explain what makes this Blinky.c blink?

//Blinky.c from Lab01

#include <avr/io.h>

#define BLINK_DELAY_MS 1000

#include <util/delay.h>

int main (void)

{

 DDRB |= 0B100000;
 while(1) {

 PORTB |= 0B100000;
 _delay_ms(BLINK_DELAY_MS);
 PORTB &= ~ 0B100000;
 _delay_ms(BLINK_DELAY_MS); }

}

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output

NED University of Engineering & Technology Electrical Engineering Department

26

TASK 2: To check and indicate the status of a sensor using the specified ports and bits of

ATmega328P

A door sensor (here, assume the switch) is connected to pin 1 of Port B, and an LED is connected to pin 5

of Port C. Write an AVR C program to monitor the door sensor and, when it opens, turn on the LED.

TASK 3: To use the general I/O pins of ATmega328P as input or output pin based on the

given condition

Write an AVR C program to monitor bit 7 of Port B. If it is 1, make bit 4 of Port B input; otherwise, change

pin 4 of Port B to output.

TASK 4: To control the specified pins of a given port without disturbing the rest of the pins

Write an AVR C program to control a set of 8 LEDs connected to port D such that the first 4 LED glow

when input from a switch is high, and remain off when the input from switch is low. The remaining 4 LED

toggle continuously without disturbing the rest of the pins of port D.

TASK 5: To control the output based on combination of 2 input pins

Write an AVR C program to read pins 0 and 1 of Port B and update the LEDs at pin 0, 1 & 2 of Port D

according to the following logic. You can use switch-case structure.

Input Port B [1:0] Status Output Port D [2:0] Status

0b 00 0b 000

0b 01 0b 011

0b 10 0b 101

0b 11 0b 111

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-354 Course Title: Embedded Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation and
configuration steps

Completely
unable to
recognise
initialisation
and
configuration

Able to recognise
initialisation but
could not
configure

Able to recognise
initialisation but
configuration is
erroneous

Able to recognise
initialisation and
configuration
with minimal
errors

Able to recognise
initialisation and
configuration with
complete success

Equipment Identification
and Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

Completely
unable to
identify
equipment and
components
and no regard
to safe handling

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent equipment
handling capacity

__

Ability to identify
equipment and
recognises all
components,
practices careful
and safe handling

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and establish
connectivity with
software

Unable to
perform
hardware and
software
connection
verification

__

Able to verify
hardware
connection but
unable to establish
software
connection
verification

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with software
to complete the provided
sequence of steps

Inability to
recognise and
perform given
lab procedures

Able to recognise
given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

Able to recognise
given lab
procedures and
perform them by
following
prescribed order of
steps, with
frequent mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Embedded System
Problem:
Imitate and practice given
embedded C instructions
for implementing specific
control strategy and store
required variables

Incorrect
selection and
use of
programming
constructs and
instructions

Correct selection
of programming
constructs and
instructions but
their use is
incorrect

Correct selection
and use of
programming
constructs and
instructions with
many syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
little to no
syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
no syntax/logical
errors

Software Menu
Identification and Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand and
use software
menu

Little ability and
understanding of
software menu
operation, makes
many mistake

Moderate ability
and understanding
of software menu
operation, makes
lesser mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
occasional use of
advance menu
options

Detecting and Removing
Errors/Exceptions in
Hardware and Software:
Detect Errors/Exceptions
and manipulate, under
supervision, to rectify the
embedded C program

Unable to check
and detect
error messages
in software and
hardware

Able to find error
messages in
software but no
sense of
hardware error
identification

Able to find error
messages in
software and
recognise them on
hardware. Still
unable to
understand the
error type and
possible causes

Able to find error
messages in
software and
recognise them
on hardware.
Moderately able
in understanding
error type and
possible causes

Able to find error
messages in
software and
recognise them on
hardware.
Reasonably able in
understanding
error type and
possible causes

Visualisation,
Comparison and analysis
of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to compute
standard indices from
result

Unable to
understand and
utilise
visualisation,
plotting and
analysis
software

Ability to
understand and
utilise
visualisation and
plotting
instructions with
errors. Unable to
compute
standard indices

Ability to
understand and
utilise visualisation
and plotting
instructions with
occasional errors.
Able to partially
compute standard
indices

Ability to
understand and
utilise
visualisation and
plotting
instructions with
no errors. Able to
partially compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

27

LAB SESSION 03

OBJECTIVE:

To program the ATmega328P for reading analog input through its Analog-to-Digital Converter ADC

module

LAB OUTCOMES:

By the end of the lab, you would be able to:

1) Identify the AVR ATmega328P pins associated with the ADC module

2) Identify the purpose of different bits of ADC registers and utilize them for their set purposes like

setting reference voltage, selecting source of analog input, and indicating start / end of conversion

3) Take analog input through the ADC pins and indicate its digital equivalent

4) Build required logics for reading analog input in pure C-language codes and test them on

ATmega328P microcontroller

5) Verify the analog to digital conversion ADC of microcontroller pins by testing the digital output

through external DAC (digital-to-analog) R-2R circuit / DAC0808 IC

BACKGROUND:
Digital computers use binary (discrete) values, but in the physical world the signals are analog (continuous).

Most physical variables are analog in nature and can take on any value within a continuous range of values.

Temperature, pressure, humidity, and velocity are a few examples of physical quantities that we deal with

every day. For acquisition of analog signals, we need Analog-to-Digital (ADC) module for conversion.

Microcontrollers are therefore generally featured with ADC module. In this lab, we will explore

ATmega328P ADC input channels that enable us to capture analog signals.

Basics of Analog-to-Digital Conversion (ADC)
An analog-to-digital converter takes an analog input voltage and after a certain amount of time produces a

digital output code which represents the analog input. ADC involves the following steps:

● Sampling: Sampling is the processes of converting

continuous- time analog signal into a discrete-time

signal by taking the “samples” at discrete-time

intervals. Sampling analog signals makes them

discrete in time but still continuous valued.

Sampling frequency determines the intervals at

which samples are taken. Nyquist criterion requires

that the sampling frequency be at least twice the

highest frequency contained in the signal.

● Quantization: Quantization is the process of

mapping continuous infinite values to a smaller set

of discrete finite values. The quantization step size

is the smallest possible difference in amplitude

between samples.

● Encoding: After quantization, each quantization

level is assigned a unique binary code.

Figure 1: Analog-to-Digital Conversion

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

28

Relation between the Number of Bits, Resolution and Reference Voltage

The quantization levels are dependent on the number of bits available or required for representing the digital

output. ‘n’ is the number of bits, then the quantization levels are 2𝑛 (0 to 2𝑛−1). Consequently, the ADC

has n-bit resolution. Higher-resolution ADCs provide a smaller step size, where step size is the smallest

change that can be discerned by an ADC. The resolution is dependent on reference voltage as well. The

number of bits and reference voltage decide the step-size. This is related as:

𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 =
𝑉𝑟𝑒𝑓

2𝑛

Table 1: Reference Voltage Relation with Resolution for 8-bit and 10-bit ADC

Reference Voltage Step-size for 8-bit ADC Step-size for 10-bit ADC

5V 5/256 = 19.53 mV 5/1024= 4.88 mV

3.3 V 3.3/256 = 12.89 mV 3.3/ 1024 = 3.22 mV

1.1 V 1.1/256 = 4.297 mV 1.1/1024 = 1.074 mV

● Range of analog input voltage for ADC: 0 to Vref.

In an 8-bit ADC we have an 8-bit digital data output of

D0–D7, while in the 10-bit ADC the data output is D0–

D9.

The obtained digital output 𝐷𝑜𝑢𝑡 is related to the input

analog voltage 𝑉𝑖𝑛 as:

𝐷𝑜𝑢𝑡 =
𝑉𝑖𝑛

𝑆𝑡𝑒𝑝 − 𝑠𝑖𝑧𝑒

𝐷𝑜𝑢𝑡 is the decimal equivalent of n-bit binary result.

Figure 2: 8-bit ADC Representation

ADC (Analog-to-Digital Conversion) Module of ATmega328P

ATmega328P microcontroller ADC module capable of converting an analog voltage into a 10-bit number

from 0 to 1023 or an 8-bit number from 0 to 255. There are 6 ADC input channels on the chip as shown in

Figure 3 (pin # 23 to 28 = ADC0 to ADC5). The input to the module can be selected from any one of the 6

inputs on the chip i.e., one channel can be converted at a time. The inputs to the ADC module appear on

the Arduino board as connections A0 through A5.

In Figure 3, you can see a few pins, other than ADC0 to ADC5, marked with Green color, representing

their connection with analog related circuitry.

The function of different pins for utilization of the ADC module is explained with their associated registers

in the following sections.

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

29

Figure 3: ATmega328P pin diagram

Pins for ATmega328P ADC

Table 2: ATmega328P pins related to the analog circuitry

Pin # Port
ADC Module –

Pin Names
Function

23 PC0 ADC0 ADC Input Channel 0

24 PC1 ADC1 ADC Input Channel 1

25 PC2 ADC2 ADC Input Channel 2

26 PC3 ADC3 ADC Input Channel 3

27 PC4 ADC4 ADC Input Channel 4

28 PC5 ADC5 ADC Input Channel 5

21 - AREF External voltage supply for setting reference voltage.

By connecting a capacitor between the AREF pin and

GND, reference voltage becomes more stable and

increases the precision of ADC

20 - AVCC Provides the supply for analog ADC circuitry.

12 PD6 AIN0 Analog Comparator Positive & Negative Input- AIN0 &

AIN1. These pins are associated with analog comparator

module. These are not necessarily needed for ADC.

13 PD7 AIN1

Registers for AVR ADC Programming
Five major registers are associated with the ADC module for interfacing it. Let’s examine each one-by-

one. The description given here is quite brief. You can refer to the datasheet for further details.

● ADCH (high data)

● ADCL (low data)

● ADCSRA and ADCSRB (ADC Control and Status Registers A & B)

● ADMUX (ADC multiplexer selection register)

● DIDR0

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

30

The name of register is written in capital letters. Each register is 8-bit wide. Indexing is done to show

different bits, for example XYZ [2:0] means the least significant 3 bits of the register XYZ (XYZ2, XYZ1

& XYZ0). XYZ[2:0] = 5 would mean (XYZ2 =1, XYZ1= 0 and XYZ0 =1 since 5 = 0b101).

1) ADC Data Register Low and High Byte
After the A/D conversion is complete, the result is stored in registers ADCL (A/D Result Low Byte) and

ACDH (A/D Result High Byte). For 10-bit ADC result, the eight bits sit in one 8-bit register and the

remaining two bits are provided in the other register, with six bits being unused. The result can be left or

right adjusted as shown below. If only eight bits of resolution are needed, the ADC value is left-justified

and the high-order byte are read through ADCH.

Figure 4: 10-bit ADC result adjustment in ADCH and ADCL

2) ADMUX (ADC Multiplexer Selection Register)

It is an 8-bit register with bits illustrated below.

● Reference Selector Bits (REFS [1:0]) The ADMUX [7:6] bits select the voltage reference for the

ADC.

Table 3: Function of the reference selector bits
ADMUX[7:6]

= REFS[1:0]

Reference High

Voltage Selection
Description

00 AREF Voltage provided at AREF pin externally (Internal Vref turned OFF)

01 AVCC
AVCC with external capacitor at AREF pin. Note: Arduino already has

capacitor placed on line

11 Internal 1.1V
Internal 1.1 V reference fixed regardless of VCC. Note: Arduino already

has capacitor placed on line

Figure 5: Reference voltage selection

● ADC Left Adjust Result (ADLAR) ADMUX [5] is called ADLAR. The ADLAR bit affects the

presentation of the ADC conversion result in the ADC data register.

Table 4: ADLAR bit values for result adjustment
ADLAR Conversion Result

0 Right adjusted for 10-bit result

1 Left adjusted for 8-bit result

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

31

● Analog Channel Selection (MUX[3:0]) The 4 bits ADMUX[3:0] serve as selector for the

multiplexer that selects one of the 6 analog input channels to be connected to ADC.

Table 5: Input Channel Selection for ADC

MUX [3:0] Input Channel

0000 ADC0

0001 ADC1

0010 ADC2

0011 ADC3

0100 ADC4

0101 ADC5

1000 Temperature Measurement

Interesting Fact: The Atmega328P has an internal temperature sensor. Refer to the datasheet and read

about it. The output of the temperature sensor can be selected as one of the inputs for ADC module as

shown in the description of ADMUX Channel Selection bits.

3) ADCSRA (ADC Control and Status Register A)

Table 6: Function of ADCSRA Register Bits

Fields Full-Form ADSCRA Bit No. Function for Different Values

ADEN ADC Enable ADSCRA[7]
1: ADC is enabled

0: ADC is turned off

ADSC
ADC Start

Conversion
ADSCRA[6]

1: To start each conversion in Single Conversion

mode

Returns to 0 when conversion is complete.

ADATE

ADC Auto

Trigger

Enable

ADSCRA[5]

It is set to 1 for enabling auto-triggering of ADC

through the selected trigger signal. The ADC tested in

this lab is not external interrupt-driven. It is set 0 for

single-conversion mode.

ADIF

ADC

Interrupt

Flag

ADSCRA[4]

This bit is set when an ADC conversion completes

and the data registers are updated. It is used to

identify completion of conversion.

ADIE

ADC

Interrupt

Enable

ADSCRA[3]
Not needed for now. It is used to activate ADC

conversion complete interrupt.

ADPS
ADC Pre-

scalar Select
ADSCRA[2:0]

These bits determine the division factor between the

system clock frequency and the input clock to the

ADC. 50kHz to 200kHz is acceptable for ADC

circuitry

System clock frequency for Arduino UNO is 16MHz

(Crystal oscillator connected with UNO).

ADPS[2:0]- Factor ADPS[2:0]- Factor

000 – 1 100 – 16

001 – 2 101 – 32

010 – 4 110 – 64

011 – 8 111 – 128

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

32

4) DIDR0 (Digital Input Disable Register 0)

When an analog signal is applied to the ADC5...0 pin and the digital input from this pin is not needed, this

bit should be written logic one to reduce power consumption in the digital input buffer. DIDR0 = 0x3F

5) ADCSRB

 This is not needed for now. It has 2 important fields: (ACME-Analog Comparator Multiplexer Enable

and ADTS[2:0]- Auto Trigger Source Selection).

Steps for ATmega328P ADC Programming and C-Code

To program the A/D converter of the AVR, the following

steps must be taken:
Relevant Register Values or C-Code

1. Make the pin for the selected ADC channel an input pin. DDRC=0b00000000//assume PortC

2. Turn on the ADC module of the AVR because it is

disabled upon power-on reset to save power.

3. Select the conversion speed. We use registers ADPS2:0

to select the conversion speed.

ADCSRA =0b10000111

4. Select voltage reference and ADC input channels.

ADMUX = 0b01100000

Vref is AVCC (REFS = 01)
Left Adjusted (ADLAR=1)
ADC0 Input Channel (MUX=0000)

5. Activate the start conversion bit by writing a one to the

ADSC bit of ADCSRA.
ADCSRA | = (1<<6)

Or, 1<< ADSC

6. Wait for the conversion to be completed by checking the

ADIF bit in the ADCSRA register.

(ADSCRA & (0b00010000))

Equal to 0 as long as conversion takes place
due to ADIF bit (0)

7. After the ADIF bit has gone HIGH, read the ADCL and

ADCH registers to get the digital data output.

Notice that you have to read ADCL before ADCH;

otherwise, the result will not be valid.

(ADSCRA & (0b00010000))

NOT equal to 0 when conversion is
complete due to ADIF bit (1)
Read:
For 8-bit result only, x=ADCH;
Where, x is unsigned char
Or to forward at output, PORTB=ADCH
For 10-bit result, x=ADC
Where, x is unsigned int
Or, PORTB=ADCL; PORTD=ADCH

8. If you want to read the selected channel again, go back to step 5.

If you want to select another Vref source or input channel, go back to step 4

NOTE: The ADC has two different operating modes. In single conversion mode, each conversion will

be initiated by the user. In free running mode, the ADC is constantly sampling and updating the ADC

Data Registers. When a conversion is complete, the result is written to the ADC data registers, and ADIF

is set. In single conversion mode, ADSC is cleared simultaneously. The software may then set ADSC

again to start a new conversion. In free running mode, a new conversion will be started immediately after

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

33

the conversion completes while ADSC remains high. For further description, refer to the ATmega328P

datasheet section Analog to Digital Converter.

Example # 1: Reading an Analog Voltage Set by a Potentiometer
In this example, we are taking analog input through a potentiometer. The analog input voltage can vary

from 0 to 5V. This is given at ADC0 input channel. The digital 8-bit output is taken through PORTD pins

by reading the ADCH register. An LED is used to indicate each bit of the digital output. For a reference

voltage of 5V, using 8-bit ADC, each level corresponds to 19.53 mV.

Figure 6: Code for Example 1- Reading Analog Input from ADC0 Channel

Figure 7: Connections and Output Representation for Example 1

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

34

LAB TASKS

TASK 1: To test the Example 1 on ATmega328P and verify working of ADC using an

external D/A Converter

1. Create a new AVR project and build the code given in the Example 1. Test the obtained digital output

by varying the output from potentiometer. Observe the on / off status of LEDs (used as indicators for

digital output) and verify the digital voltage by calculation for 8-bit ADC at given reference voltage.

Note that the ATmega328P has an ADC module but not a built-in DAC module so it cannot provide an

analog output through any of its pins.

2. Now, remove the LEDs and provide the 8-bit digital output to an external DAC circuit i.e., convert

the digital output to analog for verification. You can use a simple R-2R circuit of Figure 8 or use

DAC0808 IC. For DAC0808 IC, refer to its datasheet for more information. The pin diagram and

DAC circuit using this is shown in Figure 9 and 10.

Figure 8: Layout of 8-bit R-2R Ladder Circuit-DAC

Figure 9: DAC0808 (8-bit R-2R based

D/A Converter)

Figure 10: Sample Circuit for Digital to Analog Converter

Circuit using DAC0808

3. Measure the analog input given through potentiometer and the analog output reproduced by the DAC.

Compare both and verify the ADC and DAC. This is shown in Figure 11 using R-2R circuit.

https://www.ti.com/lit/ds/symlink/dac0808.pdf?ts=1681455485903

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

35

Figure 11: Sample Representation of Task 1 with R-2R DAC

TASK 2: To control the status of an LED based on the value of input analog voltage

Modify the previous task or, example to read 10-bit ADC value of voltage across potentiometer instead of

8-bit result. Map the obtained 10-bit result with voltage level using the step-size. Connect an LED to

indicate the voltage level. Use some conditions to build the following logic for controlling the LED status.

- If voltage is above 2.5V, the LED turns ON

- If voltage is below 2.5V, the LED red turns OFF

Note: Pay attention to the data type of variables when you calculate the input analog voltage using

the step-size and ADC result.

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-354 Course Title: Embedded Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation and
configuration steps

Completely
unable to
recognise
initialisation
and
configuration

Able to recognise
initialisation but
could not
configure

Able to recognise
initialisation but
configuration is
erroneous

Able to recognise
initialisation and
configuration
with minimal
errors

Able to recognise
initialisation and
configuration with
complete success

Equipment Identification
and Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

Completely
unable to
identify
equipment and
components
and no regard
to safe handling

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent equipment
handling capacity

__

Ability to identify
equipment and
recognises all
components,
practices careful
and safe handling

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and establish
connectivity with
software

Unable to
perform
hardware and
software
connection
verification

__

Able to verify
hardware
connection but
unable to establish
software
connection
verification

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with software
to complete the provided
sequence of steps

Inability to
recognise and
perform given
lab procedures

Able to recognise
given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

Able to recognise
given lab
procedures and
perform them by
following
prescribed order of
steps, with
frequent mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Embedded System
Problem:
Imitate and practice given
embedded C instructions
for implementing specific
control strategy and store
required variables

Incorrect
selection and
use of
programming
constructs and
instructions

Correct selection
of programming
constructs and
instructions but
their use is
incorrect

Correct selection
and use of
programming
constructs and
instructions with
many syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
little to no
syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
no syntax/logical
errors

Software Menu
Identification and Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand and
use software
menu

Little ability and
understanding of
software menu
operation, makes
many mistake

Moderate ability
and understanding
of software menu
operation, makes
lesser mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
occasional use of
advance menu
options

Detecting and Removing
Errors/Exceptions in
Hardware and Software:
Detect Errors/Exceptions
and manipulate, under
supervision, to rectify the
embedded C program

Unable to check
and detect
error messages
in software and
hardware

Able to find error
messages in
software but no
sense of
hardware error
identification

Able to find error
messages in
software and
recognise them on
hardware. Still
unable to
understand the
error type and
possible causes

Able to find error
messages in
software and
recognise them
on hardware.
Moderately able
in understanding
error type and
possible causes

Able to find error
messages in
software and
recognise them on
hardware.
Reasonably able in
understanding
error type and
possible causes

Visualisation,
Comparison and analysis
of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to compute
standard indices from
result

Unable to
understand and
utilise
visualisation,
plotting and
analysis
software

Ability to
understand and
utilise
visualisation and
plotting
instructions with
errors. Unable to
compute
standard indices

Ability to
understand and
utilise visualisation
and plotting
instructions with
occasional errors.
Able to partially
compute standard
indices

Ability to
understand and
utilise
visualisation and
plotting
instructions with
no errors. Able to
partially compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

36

LAB SESSION 04

OBJECTIVE:

To utilize the USART (Universal Synchronous / Asynchronous Receiver /Transmitter) of ATmega328P for

transmitting and receiving data though asynchronous serial communication with PC

LAB OUTCOMES:

By the end of this lab, you should be able to:

1) Recognize the basics of serial communication protocol; baud-rate, stop bit, data bits, parity etc. and

the importance of required connectors (RS-232)

2) Identify the AVR ATmega328P pins associated with the USART

3) Identify the purpose of different fields of USART registers

4) Program ATmega328P for initializing the USART with given baud-rate

5) Program ATmega328P in C-language to establish serial communication with PC

6) Test and verify data (character, string, integer and float) transmission and reception for given

conditions using a Serial Terminal Emulator like TeraTerm

“The single biggest problem in communication is the illusion that it has taken place.”

– George Bernard Shaw

BACKGROUND:

Microcontrollers are provided with ability to communicate with external devices like computer, other

micro-controllers and peripherals. This communication is done through different protocols to allow

microcontrollers to send and receive data. ATmega328P is provided with USART (Universal

Synchronous/Asynchronous Transmitter/Receiver). In this lab, we will be exploring Asynchronous

Transmitter and Receiver (UART). It is not only used as a communications link to external device but

also as a debugging port to send status messages. This is one of the 3 communication options that can be

established with ATmga328P. The other two are SPI and I2C which will be explored later. Before

discussing the working of relevant pins and registers, we first need to understand the different types and

basics of communication protocols.

Figure 1: Serial Communication of Microcontroller with PC for Troubleshooting

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

37

Basics of Serial Communication

Parallel Vs Serial Data Transfer: Computers transfer data in two ways: parallel and serial.

Figure 2: Serial and Parallel Data Transfer Representation

In parallel data transfer, the data is sent one byte (or multiple bits) at a time. For this multiple wires are

needed and this is suitable for a short-distance like printers. In serial communication, the data is sent one

bit at a time. It needs lesser number of wires. It is suitable for longer distance communication and is cheaper.

Synchronous vs Asynchronous Communication: Serial data communication can be, asynchronous or

synchronous. The synchronous method transfers a block of data (characters) at a time, whereas the

asynchronous method transfers a single byte at a time. In Synchronous transmission a common clock is

shared by the transmitter and receiver to achieve synchronization while data transmission. In asynchronous

interface, it does not have any separate clock signal. Only the data is sent on the lines and the transmitter

must send the data at an agreed upon rate and in a defined manner.

Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a configurable

peripheral of ATmega328p which supports both Synchronous (SPI) and Asynchronous (Serial)

communication protocols. In our case we will be dealing only with the asynchronous communication.

Asynchronous Communication Protocol
Baud Rate – Data Transfer Rate: The rate of data transfer in serial data communication is stated in bps

(bits per second). Another widely used terminology for bps is baud rate. In the context of microcontroller

USART programming, we will be using the terms bps and baud interchangeably. The maximum data

transfer rate is limited by the hardware ports but the transmitter and receiver must agree on the same baud

rate.

Data Framing: In data framing for asynchronous communications, the data, such as ASCII characters,

are packed between a start bit and a stop bit. The start bit is always one bit, but the stop bit can be one or

two bits. In modern PCs, however, the use of one stop bit is standard. The start bit is always a 0 (low),

and the stop bit(s) is 1 (high). For example, look at Figure in which the ASCII character “A” (8-bit

binary 0100 0001) is framed between the start bit and a single stop bit. Notice that the LSB is sent out

first. There are a total of 10 bits for the character: 8 data bits for the ASCII code, and 1 bit each for the

start and stop bits.

Figure 3: Framing ASCII ‘A’ (41H) with a stop-bit (1) and a start bit (0)

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

38

Parity Bit: UART chips allow programming of the parity bit for odd-, even-, and no-parity options. It is a

single bit added to the data frame to maintain data integrity.

ATmega328P Serial Port Pins and Connection with PC

ATmega328P has one serial port. Pin 2 and pin 3 of ATmega328P serve as USART0 transmitter (TxD)

and receiver (RxD) pins. Arduino UNO pin 0 and 1 are therefore marked as TX and RX. These are the

same pins on the chip as I/O ports PD1 and PD0. This means that applications that use the USART0 cannot

also use these two bits in Port D. It is not necessary to set any bits in the DDRD register in order to use the

USART0.

If LEDs placed on the RX and TX pins will flash, they indicate the transmission of data.

Figure 4: Connection of ATmega328P RXD and TXD pins with Arduino UNO for UART

Figure 5: Placement of RX and TX pins and corresponding LEDs with ATmega328P and ATmega16 on

Arduino UNO board

To establish communication between microcontroller (USART pins) with PC, the PC must have a

communication port to support serial data transfer. These are called COM ports. A COM port is simply an

I/O interface that enables the connection of a serial device to a computer. COM ports are also referred to as

serial ports. They are asynchronous interfaces that can transmit one bit of data at a time when connected to

a serial device.

Figure 6: RS-232 Serial Port (DB9)

The AVR serial port can be connected to the COM port of a PC for serial communication. However, USB

interfaces have largely replaced the RS232 serial ports seen in the past as a faster way of performing serial

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

39

data transmission. In the absence of a COM port, a COM-to-USB converter module is needed. You can

read more about it here.

Luckily, the Atmega16U2 incorporated on the UNO (R3) board acts as a USB-to-serial converter for serial

communication using USB com drivers. On PC, a software applications is used with it to send data to or

display the received data from the board.

ATmega328P Serial Port Registers

1) UDR0 – USART Data I/O Register

This register is used to hold data to be sent or received.

● The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same

I/O address referred to as USART Data Register or UDR0.

● For data transmission, TXB will be the destination for data written to the UDR0 Register location.

● For data reception, reading the UDR0 Register location will return the contents of RXB.

2) UCSR0A – USART0 Control and Status Register A

UCSR0

A

[7] [6] [5] [4] [3] [2] [1] [0]

RXC0 TXC0 UDRE0 FE0 DOR0 PE0 U2X0 MPCM0

Bits Function

RXC0 USART Receive Complete

Indicates receive buffer register (RXB) status.

1: Unread data present in receive buffer

0: Receive buffer is empty

TXC0 USART Transmit Complete

1: Entire frame in transmit shift register has been transmitted, no new data

available in transmit data buffer register (TXB)

UDRE0 USART Data Register Empty

1: Transmit data buffer register is ready to receive new data

0: TXB is not empty. Don’t write to UDR if UDRE0 is 0

FE0 Frame Error

1: Frame error occurred in receiving next character in receive buffer

Frame error is detected if first stop bit of character in RXB is 0

DOR0 Data Over-Run

1: Indicates data over-run

Data over-run occurs if RXB and receive shift-register are full and new start bit is detected.

PE0 USART Parity Error

1: Indicates parity error in the receive buffer if Parity Checking UPM01 is enabled.

U2X0 Double the USART Transmission Speed

1: It doubles the transfer rate for asynchronous operation (baud rate divisor

becomes 8 instead of 16)

MPCM0 Multi-processor Communication Mode

Enables the Multi-processor Communication mode. Transmitter is unaffected by it.

The default value of UCSR0A to 0x20 = 0b 0010 0000

https://www.serial-over-ethernet.com/serial-to-ethernet-guide/what-is-com-port/

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

40

3) UCSR0B – USART0 Control and Status Register B

UCSR0B
[7] [6] [5] [4] [3] [2] [1] [0]

RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80

Bits Function

RXCIE0 RX Complete Interrupt Enable

1: Set 1 to enable the interrupt on the RXC flag in UCSR0A

TXCIE0 TX Complete Interrupt Enable

1: Set to enable the interrupt on the TXC flag in UCSR0A

UDRIE0 USART Data Register Empty Interrupt Enable

1: Set to one enables interrupt on the UDRE0

RXEN0 Receiver Enable

1: Enables the USART Receiver

0: Disables the Receiver. Flushes the RXB.

TXEN0 Transmitter Enable

1: Enables the USART Transmitter

0: Disables the Transmitter; effective once transmission is complete.

UCSZ02 Character Size

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSR0C sets the number of data

bits (Character SiZe) in a frame the Receiver and Transmitter use.

RXB80 Receive Data Bit 8

It is the ninth data bit of the received character when operating with serial frames with nine

data bits. Must be read before reading the low bits from UDR0.

TXB80 Transmit Data Bit 8

It is the ninth data bit in the character to be transmitted when operating with serial frames

with nine data bits. Must be written before writing the low bits to UDR0.

RXEN0, TXEN0 and UCSZ02 are most important here for enabling the receiver, and transmitted and to

set the character size. The interrupt related bits are not needed now. Its default value is 0x00.

4) UCSR0C – USART0 Control and Status Register C

UCSR0C
[7] [6] [5] [4] [3] [2] [1] [0]

UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0

Bits Function

UMSEL0

1

USART Mode Select Bits (UMSEL01-00)

00: Asynchronous USART

01: Synchronous USART UMSEL0

0

UPM01 USART Parity Mode (UPM01-00)

These enable and set type of parity generation and check. If enabled, the Transmitter will

automatically generate and send the parity of the transmitted data bits within each frame.

The Receiver will generate a parity value for the incoming data and compare it to the UPM0

setting. If a mismatch is detected, the UPE0 Flag in UCSR0A will be set.

00: Disabled

10: Enabled, Even Parity

11: Enabled, Odd Parity

UPM00

USBS0 USART Stop Select Bit

Selects number of stop bits to be inserted by the Transmitter.

0: 1-bit Stop bit

1: 2-bit Stop bits

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

41

UCSZ01 Character Size (UCSZ01:00)

The UCSZ01:00 bits combined with the UCSZ02 bit in UCSR0B sets the number of data

bits (Character SiZe) in a frame the Receiver and Transmitter use.

[UCSZ02,USCZ01,UCSZ00] Character Size

000 5-bit

001 6-bit

010 7-bit

011 8-bit

111 9-bit

UCSZ00

UCPOL0 Clock Polarity

0: The bit is cleared when asynchronous mode is used.

In synchronous mode, it is useful for setting relation between data and clock.

Correct initialization of all the UCSR0C bits is important in setting communication protocols. Its default

value is 0x06 = 0b000 0110.

5) UBRR0 – USART0 Baud Rate Register

It is used to set baud-rate by specifying the pre-scalar in its 12 bits.

UBRR[15:12] The 4 bits, reserved, are set to 0. The remaining 12 bits UBRR[11:0] contain the USART0

baud rate (pre-scalar). The UBRR0H contains the four most significant bits, and the UBRR0L contains the

eight least significant bits of the USART0 baud rate.

For required baud rate ‘BAUD’, and oscillator frequency fosc, the value for UBRR0 is calculated by;

𝑈𝐵𝑅𝑅0 =
𝑓𝑂𝑆𝐶

16 × 𝐵𝐴𝑈𝐷
− 1

For a 16MHz clock, the required values of UBRR0 register are given in the Table below for different baud-

rates. Note: U2X0 is set 0 here. The baud-rates can be doubled by setting U2X0 high for same UBRR0

values. The formula can be applied for verification.

Table 1: UBRR0 Values for Different Baud Rates

Baud Rate (bps) UBRR0

2400 416 = 0x01A0

4800 207 = 0x00CF

9600 103= 0x0067

14400 68 = 0x0044

19200 51 =0x0033

Serial Terminal Emulator – TeraTerm

COM Port (communication port) is the original, yet still common, name of the serial port interface on PC-

compatible computers. It can refer not only to physical ports, but also to emulated ports.

Serial terminal emulators are software applications that replicate physical COM ports. The virtual serial

ports are fully compatible with operating systems and applications and are treated in the same way as a real

port. These are used for the serial communication between the host computer and an embedded system

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

42

(Target). It is mainly used as a user interface for debugging embedded system. It is also used for sending

commands, displaying result, loading firmware, logging result, etc.

Tera Term and PuTTY are famous terminal emulator applications. In this lab, we can use Tera Term. It is

an open-source, free, software implemented terminal emulator (communications) program.

1) Download Tera-Term using: https://filehippo.com/download_tera-term/

2) Type Tera Term in Windows search to open it. You will be able to select Serial once you connect

your device to PC USB port (connect Arduino UNO). The Serial and Port options will be enabled.

Figure 7: Tera Term Connection

3) Go to Setup >> Serial port… It allows you to select Baud Rate, Stop Bit, Data Bits, and Parity etc.

Figure 8: Tera Term Serial Port Settings

4) For writing to Serial Terminal window (send character from PC to Microcontroller), turn on echo. Go

to Setup >> Terminal and select Local echo.

Figure 9: Tera Term Terminal Setup

5) Save the settings for later use. Select Setup > Save setup.

https://filehippo.com/download_tera-term/

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

43

ATmega328P Serial Port Programming in C

Programming for USART Initialization

The USART has to be initialized before any communication can take place.

The initialization process consists of the following steps. Relevant Register Values (example) & C-Code

1. Setting-up as Transmitter and / or Receiver

Enable the TxD and (or) RxD pins using TXEN0

and (or) RXEN0 bits of UCSR0B.

UCSR0B=0b00011000 or,

UCSR0B =(1<<TXEN)| (1<<RXEN)

2. Setting-up Frame Rate

Load UCSR0C to indicate asynchronous mode with

8-bit data frame, no parity, and one stop bit

UCSR0C=0x06 or,

UCSR0C=0b00000110

3. Set the baud-rate using UBRR.
UBRR0 = 0x67

For baud-rate of 9600 bps at 16MHz crystal
frequency at U2X0 =0.

➢ Subroutine for USART initialization

For ease, we create a subroutine for USART initialization to avoid repeating these lines of code again and

again.

Programming for Data Transmission

To program the USART as Transmitter, follow the steps: Relevant Register Values or C-Code

1. Initialize the USART. Call usart_init();

2. Monitor the UDRE bit of UCSR0A to make sure

UDR is ready to accept byte to transmit.

while (!(UCSR0A & (1<<UDRE0)))

{ };

An empty while loop that waits to check UDR is
empty (indicated by UDRE bit).

3. Write the character to be transmitted to the UDR. UDR0=ch;

Where, ch is an unsigned char for example ‘A’.

4. Wait for complete frame transmission. while(!(UCSR0A &(1 << TXC0))){};

5. To transmit the next character, go to Step 2.

➢ Subroutine for transmitting character

void usart_init (void)

{

 UBRR0=0x67; //set pre-scalar to configure baud rate (9600)

 UCSR0A &= ~ (1 << U2X0); //Single Speed U2X - 0 (can be set to 1)

 UCSR0B = (1 << RXEN0) | (1 << TXEN0); // enable transmitter and receiver

// Async mode, parity mode = disabled, 1 stop bit, character size = 8 bit
clock polarity = 0 for async communication

 UCSR0C = (0<<USBS0) | (1 << UCSZ01) | (1 << UCSZ00);

}

void usart_putChar(unsigned char data)

{

 while (!(UCSR0A & (1 << UDRE0))) {}; //wait for data register to be empty

 UDR0 = data; //write data

 while (!(UCSR0A & (1 << TXC0))) {}; //wait for complete frame transmission

}

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

44

Programming for Data Reception

To program the USART as Receiver, follow the steps: Relevant Register Values or C-Code

1. Initialize the USART. Call usart_init();

2. Monitor the RXC flag bit of the UCSR0A register to

see if an entire character has been received yet.

While (! (UCSR0A & (1<<RXC0))) ;

An empty while loop that waits for data to be
received. Loop ends when RXC bit turns high as
the given condition is not equal to 0.

3. When RXC is high, read the UDR as it has received

the byte.

ch=UDR;

Where, ch is an unsigned char type variable to
store the received character.

4. To receive the next character, go to Step 4.

➢ Function for receiving character

EXAMPLES

The tested asynchronous communication is polling based and not interrupt based.

Example # 1: Transmitting a Character from ATmega328P to PC through UART

The following code transmits ‘A’ repeatedly with a delay of 1 sec. Note that only one character is sent at a

time. The following example uses usart_init() and usart_putChar() from the listed 3 sub-routines therefore,

these sub-routines must be defined in the main.c file.

Figure 10: Code for Example#1

See the character ‘A’ is written in quotes. You can write its ASCII code (65). In that case, don’t use ‘ ’ as

we want to transmit a single character ‘A’ through the ASCII code and not the integer 65 (which are 2

characters).

Now, you are able to do Task 1 and Task 2.

char usart_getChar()

{

 char data;

 while (!(UCSR0A & (1 << RXC0))) {}; // wait for data to receive

 data = UDR0;

 return data;

}

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

45

Example # 2: Transmitting and Receiving Strings, Integers and Floats

For transmitting a string of characters (instead of a single character), we can write a C subroutine that

transmits one character at a time using the previously described usart_putChar(). Similarly, to receive a

string of characters, we can makes use of a buffer to hold the received characters in the form of a string.

Look at the following subroutines.

➢ Subroutines for receiving and transmitting strings

Type Casting

Converting one datatype into another is known as type casting or, type-conversion. To transmit integer or

float data through USART, we first need to convert them into string. There are different approaches to do

so, one simple technique is shown here.

➢ Integer to String:

The itoa(num,buffer,10) function coverts the integer num into a null-terminated character string. The

string is placed in the buffer passed, which must be large enough to hold the output. The last input shows

number format 10 for decimal. Include <stdlib.h> for itoa().

➢ Float to String:

The dtostrf (val,width,prec,s) function converts the double value passed in val into an ASCII

representation that will be stored under s. Conversion is done in the format '[-]d.ddd'. The minimum field

width of the output string (including the possible '.' and the possible sign for negative values) is given in

width, and prec determines the number of digits after the decimal sign. The dtostrf() function returns the

pointer to the converted string s.

The example code given here shows transmission of strings, float and integers by utilizing the subroutines

and functions discussed above. You can observe that a string is received from PC to AVR too.

//subroutine for transmitting a character string

void usart_putString(char* StringPtr)

{

 while(*StringPtr != 0x00)

 {

 usart_putChar((unsigned char)*StringPtr);

 StringPtr++;

 }

}

//subroutine for receiving a character string

void usart_getString(volatile char buffer[], uint8_t len)

{

 uint8_t i =0;

 for(i = 0; i < len; i++)

 {

 buffer[i] = usart_getChar();//save the received character

 }

 buffer[i]=0; //making the received string null terminated, last byte 0

}

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

46

Figure 11: Code for Example 2-Transmitting Strings, Float and Integer Data Types

Header File usart.h

For ease, you can include the header and source files (usart.h and usart.c) provided with the manual. Utilize

its simple functions for transmitting and receiving data or use the sub-routines discussed above in your code

to complete the given lab tasks.

LAB TASKS

TASK 1: To test Example 1 for transmitting a character serially at baud-rate of 9600 with 1

stop bit using ATmega328P USART
Test the Example 1 code using Arduino UNO. After building the given code, program the ATmega328P.

Now, disconnect and reconnect Arduino UNO with PC port. Open Serial Terminal Emulator (Tera Term).

Make connection with the required settings and observe the serial terminal. You should see the data

transmitted by AVR (received by the PC) on serial terminal.

• Is there any impact if you select a different baud rate in Tera Term without changing the baud rate

initialized in the ATmega328P code? Are you able to correctly transmit the characters when

microcontroller and PC work at different baud rate?

__

• Add two more lines to the code and comment on the result.

usart_putChar(65)

usart_putChar(‘65’)

Embedded Systems Lab Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department

47

TASK 2: To program ATmega328P for controlling the status of LED based on the received

character

Modify the previous code to make the microcontroller receive a character sent by PC. If the received

character is ‘A’, turn on the on board LED otherwise turn it off. The data should be received at baud-rate

of 14400 with 1 stop bit.

TASK 3: To transmit the analog voltage across a potentiometer read by the ATmega328P

ADC to PC

Extend the Task 2 of Lab 03 where you used ADC module to measure the voltage across potentiometer.

Send (transmit) the following through USART of the microcontroller to the PC serial terminal.

1) The 10-bit ADC output (in range of 0 to 1023)

2) The analog voltage across potentiometer in Volts

 Pay attention to the data-type. You may use any suitable baud rate of your choice.

Vary the voltage and observe the values. Verify the analog voltage reading by ADC module and

transmission through the USART by comparing voltmeter reading and values displayed by Tera Term.

Sample Output:

**********10-bit ADC************

**********5V Reference Voltage****

*****Voltage across Potentiometer***

ADC Value: 307

Output Voltage: 1.5 Volts

ADC Value: 205

Output Voltage: 1.01 Volts

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-354 Course Title: Embedded Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation and
configuration steps

Completely
unable to
recognise
initialisation
and
configuration

Able to recognise
initialisation but
could not
configure

Able to recognise
initialisation but
configuration is
erroneous

Able to recognise
initialisation and
configuration
with minimal
errors

Able to recognise
initialisation and
configuration with
complete success

Equipment Identification
and Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

Completely
unable to
identify
equipment and
components
and no regard
to safe handling

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent equipment
handling capacity

__

Ability to identify
equipment and
recognises all
components,
practices careful
and safe handling

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and establish
connectivity with
software

Unable to
perform
hardware and
software
connection
verification

__

Able to verify
hardware
connection but
unable to establish
software
connection
verification

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with software
to complete the provided
sequence of steps

Inability to
recognise and
perform given
lab procedures

Able to recognise
given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

Able to recognise
given lab
procedures and
perform them by
following
prescribed order of
steps, with
frequent mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Embedded System
Problem:
Imitate and practice given
embedded C instructions
for implementing specific
control strategy and store
required variables

Incorrect
selection and
use of
programming
constructs and
instructions

Correct selection
of programming
constructs and
instructions but
their use is
incorrect

Correct selection
and use of
programming
constructs and
instructions with
many syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
little to no
syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
no syntax/logical
errors

Software Menu
Identification and Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand and
use software
menu

Little ability and
understanding of
software menu
operation, makes
many mistake

Moderate ability
and understanding
of software menu
operation, makes
lesser mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
occasional use of
advance menu
options

Detecting and Removing
Errors/Exceptions in
Hardware and Software:
Detect Errors/Exceptions
and manipulate, under
supervision, to rectify the
embedded C program

Unable to check
and detect
error messages
in software and
hardware

Able to find error
messages in
software but no
sense of
hardware error
identification

Able to find error
messages in
software and
recognise them on
hardware. Still
unable to
understand the
error type and
possible causes

Able to find error
messages in
software and
recognise them
on hardware.
Moderately able
in understanding
error type and
possible causes

Able to find error
messages in
software and
recognise them on
hardware.
Reasonably able in
understanding
error type and
possible causes

Visualisation,
Comparison and analysis
of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to compute
standard indices from
result

Unable to
understand and
utilise
visualisation,
plotting and
analysis
software

Ability to
understand and
utilise
visualisation and
plotting
instructions with
errors. Unable to
compute
standard indices

Ability to
understand and
utilise visualisation
and plotting
instructions with
occasional errors.
Able to partially
compute standard
indices

Ability to
understand and
utilise
visualisation and
plotting
instructions with
no errors. Able to
partially compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Embedded Systems Lab Lab 05 LCD Interfacing

NED University of Engineering & Technology Electrical Engineering Department

48

LAB SESSION 05

OBJECTIVE:

To interface an LCD (Liquid Crystal Display) screen with ATmega328P by sending required commands

and data

LAB OUTCOMES:

By the end of this lab, you would be able to:

1) Identify the pins and commands for controlling a 16x2 LCD

2) Interface a 16x2 LCD screen with ATmega328P and display different messages

“I don't care what it is, when it has an LCD screen, it makes it better.” — Kevin Rose

INTRODUCTION:

Display units like LEDs, 7-segment LED displays, LCD screens etc. play an important part in establishing

a good communication between the users and machines, and therefore, are vital for embedded systems.

Through display screens, the user gets a feeling of knowing the system’s working status. Consider the

examples of ATM machine, automatic washing machine or microwave ovens. They allow us to give input

through keypad or knobs or touch screens, and display useful messages on screens which guide us or show

the status of process. LCD screens are now seen everywhere due to their declining prices, ease of

programming due to an internal controller, and ability to display characters and graphics.

For learning purpose, we are interfacing our ATmega32P microcontroller with a standard 16x2 LCD screen.

16×2 LCD is named so because; it has 16 Columns and 2 Rows. Such dot-matrix LCDs are available in

different packages like 8x1, 8x2, 16x1, and 20x4.

16x2 LCD (Liquid Crystal Display)

Features

• The operating voltage of this LCD is 4.7V-5.3V

• It includes two rows where each row can produce 16-characters.

• The utilization of current is 1mA with no backlight

• Every character can be built with a 5×8 pixel box

• It can display alphabets, numbers and a few custom generated characters

• It can work on two modes (4-bit and 8-bit): In 4-bit mode we send the 4 bits (out of the total 8-

bits) at a time and in the 8-bit mode, we can send all 8-bits in one stroke.

• These are obtainable in Blue & Green Backlight

The LCD can display 32 characters in total and each character will be made of 5*8 (40) pixel dots. The

standard LCDs have HD44780 dot-matrix liquid crystal display controller / driver that is mounted on LCD

module itself. The function of this interface IC is to get the commands and data (sent over parallel data

lines) from the MCU and process them to display meaningful information onto our LCD Screen. Hence,
the MCU doesn’t directly have to deal with the 1280 pixels of LCD and their positions.

[Datasheet HD44780.]

https://circuitdigest.com/sites/default/files/HD44780U.pdf

Embedded Systems Lab Lab 05 LCD Interfacing

NED University of Engineering & Technology Electrical Engineering Department

49

LCD Pinout

Figure 1 shows the 16 pins of a 16x2 LCD and their names. Most of the LCDs have these 16 pins that are

used for connection according to their functionality. Let’s discuss the function of each pin one-by-one.

Figure 1: 16x2 LCD Pinout

Pin

Name
Description / Function Type Connection

1
VSS Pin for LCD ground.

Source

Pin

Connected to the ground of the MCU/

Power source.

2
VDD Pin for LCD supply voltage.

Connected to the supply pin of power

source / +5V of MCU.

3
V0

Contrast Control: Adjusts the

contrast of the LCD.

Control

Pins

Connected to a variable potentiometer

that can source 0-5V.

4

RS
Register Select: Selects either

command register or data register

Connected to a digital output pin of

MCU.

0: Command Mode

1: Data Mode

5

RW

Read/Write: Toggles the LCD

between Read/Write operations.
Read operation is rarely needed for

information like cursor position etc.

Connected to a digital output pin of

MCU.

0: Write Operation

1: Read Operation

6

E
Enable: Must be held high to

perform Read/Write Operation

The enable pin is used by the LCD to

latch information presented to its data

pins. When data is supplied to data pins,

a high-to-low pulse must be applied to

this pin in order for the LCD to latch in

the data present at the data pins.

7-

14 D0 to

D7

Data Bits (0-7): Pins used to send

command or data bits to the LCD.

Data/

Comman

d Pins

In 4-bit mode, only 4 pins (D0-D3) are

connected to MCU digital output pins.

In 8-bit mode, all 8 pins (D0-D7) are

connected to MCU digital output pins.

15
A

LED + Anode of backlight LED

is given positive voltage.
Backlight

LED Pins

LED+ and LED- are connected to 5V

and Ground pins of MCU with a current

limiting resistor in series. 16

K

LED - Cathode is connected to

ground to illuminate backlight

LED.

Embedded Systems Lab Lab 05 LCD Interfacing

NED University of Engineering & Technology Electrical Engineering Department

50

In this lab, we are interfacing the LCD with ATmega328P directly (parallel interface) and sending data

in 8-bit mode. Note that the 8-bit data interfacing is easier to program but uses 4 more pins.

LCD Commands
The following table hex code for the commands that are sent to LCD instruction register for the specified

functions.

Table 1: Hex code for Commands

Hex Code for

Command to LCD
Function

0E Display on, cursor on

01 Clear display screen

02 Return home

04 Decrement cursor (shift cursor to left

06 Increment cursor (shift cursor to right)

05 Shift display right

07 Shift display left

0F Display on, cursor blinking

80 Force cursor to beginning of first line

C0 Force cursor to beginning of 2nd line

38 Function Set: 2 lines and 5 × 8 matrix (D0–D7, 8-bit mode)

08 Display off, cursor off

18 Shift the entire display to the left

1C Shift the entire display to the right

Interfacing LCD with ATmega328P and C-Programming
The Figure 2 shows required connections for LCD 16 pins with ATmega328P in 8-bit data mode. The

R/W pin can be directly connected to ground instead of utilizing an I/O pin (as we are performing write

operation only).

Figure 2: LCD Connections with ATmega328P for 8-bit Mode

Embedded Systems Lab Lab 05 LCD Interfacing

NED University of Engineering & Technology Electrical Engineering Department

51

For controlling the LCD and sending commands and data, the following steps are needed. Remember, the

digital I/O pins connected with the LCD must be configured as output pins using DDRx registers as per

your connections.

Initializing or Configuring the LCD:

To initialize the LCD for 2-line and 8-bit operation, the following sequence of commands should be sent

to the LCD. Next we will show how to send a command to the LCD. After power-up you should wait

about 15ms before sending initializing commands to the LCD. If the LCD initializer function is not the

first function in your code you can omit this delay.

1) Function Set: 2 lines and 5 × 8 matrix (D0–D7, 8-bit mode) - 0x38

2) Display on, cursor blinking - 0x0E

3) Clear display screen - 0x01

After initialization, wait for 2msec.

Sending Command:

To send any of the commands from Table 1 to the LCD,

1) Make pin RS low for selecting command register. (R/W should be made low if not already grounded).

2) Put the command number on the data pins (D0–D7) i.e., use relevant PORTx register.

3) Send a high-to-low pulse to the E pin to enable the internal latch of the LCD.

Notice that after each command you should wait for some time (100us generally or for 2msec in some

cases like clear screen and return home) to let the LCD module run the command.

Sending Data:

To send data to the LCD

1) Make pins RS = 1 (for data register) and R/W = 0.

2) Put the data on the data pins (D0–D7) i.e., use relevant PORTx register.

3) Send a high-to-low pulse to the E pin to enable the internal latch of the LCD.

Notice that after sending data you should wait about 100 μs to let the LCD module write the data on the

screen.

Example Code and Subroutines

See the sample code for Example 1. It is written in in terms of LCD_DPRT, LCD_DDDR, LCD_DPIN.

These will be replaced by the PORT, DDR and PIN register of the port with which D0-D7 are connected.

In our example, it is port D. This is done to make the code more generalize, and to achieve this we have

used #define directive (#define causes the compiler to substitute token-string for each occurrence of

identifier in the source file). Similarly, LCD_CPRT, LCD_CDDR, LCD_CPIN are used to show the

relevant registers of port with which we have connected control pins (RS and E). Here, it is port B. For the

position of these pins is indicated by LCD_RS and LCD_E which is 0 and 1. If you change the hardware

connections, you have to update the relevant registers only once (i.e., at the start with the #define directive)

without changing the rest of the code or subroutines.

Based on the steps described earlier, 4 useful subroutines are defined before the main function.

Embedded Systems Lab Lab 05 LCD Interfacing

NED University of Engineering & Technology Electrical Engineering Department

52

1) lcdCommand: It takes hex code of command as input.

2) lcdData: It takes the data character to be displayed.

3) lcd_init: This performs initialization steps.

4) lcd_print: This takes a complete string to be printed and passes one character at a time by lcdData.

Figure 3: Connections for LCD Interfacing (8-bit Mode) with ATmega328P

Note that RW is connected with GND for writing.

Embedded Systems Lab Lab 05 LCD Interfacing

NED University of Engineering & Technology Electrical Engineering Department

53

#include <avr/io.h>
#include <util/delay.h>
#define LCD_DPRT PORTD //LCD DATA PORT
#define LCD_DDDR DDRD //LCD DATA DDR
#define LCD_DPIN PIND //LCD DATA PIN
#define LCD_CPRT PORTB //PORT for LCD Control Pins
#define LCD_CDDR DDRB //DDR for LCD Control Pins
#define LCD_CPIN PINB //PIN Reg for LCD Control Pins
#define LCD_RS 0 //LCD RS (RS is connected at PB0)
#define LCD_EN 1 //LCD EN (EN is connected at PB1)

void lcdCommand(unsigned char cmnd)
{
 LCD_DPRT = cmnd; //send cmnd to data port
 LCD_CPRT &= ~ (1<<LCD_RS); //RS = 0 for command
 LCD_CPRT |= (1<<LCD_EN); //EN = 1 for H-to-L pulse
 _delay_us(1); //wait to make enable wide
 LCD_CPRT &= ~ (1<<LCD_EN); //EN = 0 for H-to-L pulse
 _delay_us(100); //wait to make enable wide
}

void lcdData(unsigned char data)
{
 LCD_DPRT = data; //send data to data port
 LCD_CPRT |= (1<<LCD_RS); //RS = 1 for data
 LCD_CPRT |= (1<<LCD_EN); //EN = 1 for H-to-L pulse
 _delay_us(1); //wait to make enable wide
 LCD_CPRT &= ~ (1<<LCD_EN);
 //EN = 0 for H-to-L pulse
 _delay_us(100); //wait to make enable wide
}

void lcd_init()
{
 LCD_DDDR = 0xFF;//making data port (output)
 LCD_CDDR |= (1<<LCD_RS)|(1<<LCD_EN);
 //making control pins output pins
 LCD_CPRT &=~(1<<LCD_EN); //LCD_EN = 0
 _delay_ms(20); //wait for init.
 lcdCommand(0x38); //init. LCD 2-line, 8-bit mode
 lcdCommand(0x0F); //display on blinking
 lcdCommand(0x01); //clear LCD
 _delay_us(2000); //wait
 lcdCommand(0x06); //shift cursor right
}

void lcd_print(char * str)
{
unsigned char i = 0;
while(str[i]!=0)
 {
 lcdData(str[i]);
 i++ ;
 // _delay_ms(100); //for typing effect
 }

}

int main(void)
{
 lcd_init(); //initialize
 _delay_ms(1000);
 lcd_print("Congratulations!!");
 lcdCommand(0xC0); //Cursor at the start of 2nd line
 lcd_print(" LCD works ");
 return 0;
}

Figure 4: Sample Code for Example 1 - LCD Interfacing (8-bit Mode) with ATmega328P

LAB TASKS

TASK 1: To test Example 1 using ATmega328P and 16x2 LCD

Program ATmega328P with the given code. Make connections to interface the LCD and test the results.

TASK 2: To test different commands for modifying LCD display

Modify the code and test different commands to make the display interesting.

• On line 1, display: <Your Name> (You can have more than 16 characters in the string).

• On line 2, display: <Roll # …… >

• Make the text moving (scrolling) continuously from left to right by using shift display commands.

Embedded Systems Lab Lab 05 LCD Interfacing

NED University of Engineering & Technology Electrical Engineering Department

54

Go-to Subroutine

Following is an interesting subroutine that allows you to move cursor at any specified location (y, x).

Where x is the line number (1 or 2) and y is character position (1 to 16).

If you are interested, you can try this too!

void lcd_gotoxy(unsigned char x, unsigned char y)

{

char firstCharAdr[]={0x80,0xC0,0x94,0xD4}; //Table

lcdCommand(firstCharAdr[y-1] + x - 1);

_delay_us(100);

}

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-354 Course Title: Embedded Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation and
configuration steps

Completely
unable to
recognise
initialisation
and
configuration

Able to recognise
initialisation but
could not
configure

Able to recognise
initialisation but
configuration is
erroneous

Able to recognise
initialisation and
configuration
with minimal
errors

Able to recognise
initialisation and
configuration with
complete success

Equipment Identification
and Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

Completely
unable to
identify
equipment and
components
and no regard
to safe handling

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent equipment
handling capacity

__

Ability to identify
equipment and
recognises all
components,
practices careful
and safe handling

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and establish
connectivity with
software

Unable to
perform
hardware and
software
connection
verification

__

Able to verify
hardware
connection but
unable to establish
software
connection
verification

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with software
to complete the provided
sequence of steps

Inability to
recognise and
perform given
lab procedures

Able to recognise
given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

Able to recognise
given lab
procedures and
perform them by
following
prescribed order of
steps, with
frequent mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Embedded System
Problem:
Imitate and practice given
embedded C instructions
for implementing specific
control strategy and store
required variables

Incorrect
selection and
use of
programming
constructs and
instructions

Correct selection
of programming
constructs and
instructions but
their use is
incorrect

Correct selection
and use of
programming
constructs and
instructions with
many syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
little to no
syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
no syntax/logical
errors

Software Menu
Identification and Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand and
use software
menu

Little ability and
understanding of
software menu
operation, makes
many mistake

Moderate ability
and understanding
of software menu
operation, makes
lesser mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
occasional use of
advance menu
options

Detecting and Removing
Errors/Exceptions in
Hardware and Software:
Detect Errors/Exceptions
and manipulate, under
supervision, to rectify the
embedded C program

Unable to check
and detect
error messages
in software and
hardware

Able to find error
messages in
software but no
sense of
hardware error
identification

Able to find error
messages in
software and
recognise them on
hardware. Still
unable to
understand the
error type and
possible causes

Able to find error
messages in
software and
recognise them
on hardware.
Moderately able
in understanding
error type and
possible causes

Able to find error
messages in
software and
recognise them on
hardware.
Reasonably able in
understanding
error type and
possible causes

Visualisation,
Comparison and analysis
of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to compute
standard indices from
result

Unable to
understand and
utilise
visualisation,
plotting and
analysis
software

Ability to
understand and
utilise
visualisation and
plotting
instructions with
errors. Unable to
compute
standard indices

Ability to
understand and
utilise visualisation
and plotting
instructions with
occasional errors.
Able to partially
compute standard
indices

Ability to
understand and
utilise
visualisation and
plotting
instructions with
no errors. Able to
partially compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

55

LAB SESSION 06

OBJECTIVE:

To utilize SPI (Serial Peripheral Interface) protocol for interfacing the max6675 module with ATmega328P

and develop temperature measurement system based on the K-type thermocouple

LAB OUTCOMES:

By the end of this lab, you will be able to:

1) Recognize the difference between synchronous and asynchronous transmission

2) Identify the AVR ATmega328P pins associated with SPI communication

3) Identify the purpose of different fields of SPI registers

4) Program ATmega328P for SPI communication in master and slave modes for single-byte and

multiple-byte burst read/write

5) Interface SPI protocol-based module (Max6675) as slave with ATmega328P in master mode

6) Develop the complete system for temperature measurement and transmit result through USART to

PC

“Don’t expect what you don’t communicate clearly.” — Anonymous

INTRODUCTION:

In Lab 04, we discussed briefly about serial and parallel data transmission. USART was utilized for

asynchronous transmission and reception, which is one of the types of serial communication. In this lab,

we will explore Serial Peripheral Interface communication protocol which is synchronous. The SPI (serial

peripheral interface) is a bus interface connection incorporated into many devices. The SPI bus was

originally started by Motorola Corp. (now Freescale), but in recent years has become a widely used standard

adapted by many semiconductor chip companies as it’s faster, compact and results in reduced power

consumption. Let’s first understand the features of Serial Peripheral Protocol.

Serial Peripheral Interface Bus Protocol

SPI has a Master/Slave configuration. It has only one master device but can have multiple slaves. A master,

that initiates communication, is usually a microcontroller and the slaves can be a microcontroller, sensors,

ADC, DAC, LCD etc.

SPI is 4-wire protocol.

• SPI devices use only 2 pins for data transfer that are; SDI and SDO,

also called MISO (Master-In Slave-Out) and MOSI (Master-Out

Slave-In).

• The SPI bus has the SCLK or SCK (shift clock) pin to synchronize the

data transfer between two chips.

• The last pin is CE chip enable, also called SS Slave Select, which is

used to initiate and terminate the data transfer. It determines which

device the master is currently communicating with.

Figure 1: 4-wire SPI Bus

Representation

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

56

Working of SPI

The system consists of two 8-bit wide shift registers, and a master clock generator. The SPI master initiates

the communication cycle when pulling low the slave select 𝑆𝑆̅̅ ̅. Master and slave prepare the data to be sent

in their respective shift registers, and the master generates the required clock pulses on the SCK line to

interchange data (one-bit at a time in each clock cycle). In SPI, the shift registers are 8 bits long. It means

that after 8 clock pulses, the contents of the two shift registers are interchanged. Data is always shifted from

master to slave on the MOSI, line, and from slave to master on the master MISO, line. After each data

packet, the master will synchronize the Slave by pulling high the slave select, 𝑆𝑆̅̅ ̅ line. It must be noted that

SPI is full duplex, meaning that it sends and receives data at the same time.

Figure 2: SPI Architecture and Master/Slave Interconnection

In connecting a device with an SPI bus to a microcontroller, we use the microcontroller as the master while

the SPI device acts as a slave.

Figure 3: SPI Interface of 1-master and 2-slave devices

Serial Peripheral Interface of AVR ATmega328P Microcontroller

The serial peripheral interface (SPI) of AVR allows high-speed synchronous data transfer between the

ATmega328P and peripheral devices or between several AVR devices. It can operate in master and slave

modes and allows LSB first or MSB first transfer options. Figure 3 shows the pins associated with

ATmega328 SPI and their connection pins on Arduino UNO board. Pin 11 or ICSP-4 is used as MOSI, Pin

12 or ICSP-1 is used as MISO, Pin 13 or ICSP-3 is connected with SCK and Pin 10 for SS.

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

57

Figure 4: Pin Configuration of ATmega328P for SPI Interface and Associated Arduino UNO

pinout

Figure 5: In-Circuit Serial Programming (ICSP) Header for SPI Communication

Table 1:

Pins Use Pin Configuration

Slave

Select

SS Used by Master device to enable and disable specific

devices to communicate with. The SS pin is useful for

packet/byte synchronization to keep the slave bit

counter synchronous with the master clock generator.

When the SS pin is driven high, the SPI slave will

immediately reset the send and receive logic, and drop

any partially received data in the shift register.

Input – For Slave

Output – For Master

(usually)

Master-In

Slave-Out

MISO For sending data from Slave devices to Master device. Input – For Master

Output – For Slave

Master-Out

Slave-In

MOSI For sending data from Master device to Slave devices. Input – For Slave

Output – For Master

Serial

Clock

SCK For clock pulses to synchronize data transmission from

Master devices.

Input – For Slave

Output – For Master

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

58

SPI Data Modes and Clock Phase with Polarity

As we mentioned before in USART communication, transmitter and receiver must agree on a clock

frequency. In SPI communication, the master and slave(s) must agree on the CPOL (clock polarity) and

CPHA (clock phase), with respect to the data.

CPOL 0: The base value of the clock is zero. 1: The base value of the clock is one.

CPHA 0: Sample (Read) on the first clock edge. 1: Sample (Read) on the second clock edge.

Figure 6: Transfer Format as per SPI Clock Polarity and Phase

Based on this, 4 different modes of SPI are available.

Table 2: SPI Modes

CPOL CPHA Data Read and Change Time SPI Mode

0 0 Sample or read at rising edge. Setup or change data at falling edge. 0

0 1 Setup at rising edge. Sample at falling edge. 1

1 0 Sample at falling edge. Setup at rising edge. 2

1 1 Setup at falling edge. Sample at rising edge. 3

ATmega328P SPI Registers

In AVR three registers are associated with SPI. They are SPSR (SPI Status Register), SPCR (SPI Control

Register), and SPDR (SPI Data Register).

1) SPDR (SPI Data Register)

The SPI Data Register is a read/write register. To write into SPI shift register, data must be written to SPDR.

To read from the SPI shift register, you should read from SPDR. Writing to the SPDR register initiates data

transmission.

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

59

2) SPCR (SPI Control Register)

SPIE SPI Interrupt Enable

Setting this bit to one enables the SPI interrupt.

SPE SPI Enable

Setting this bit to one enables the SPI

DORD Data Order

The LSB is transmitted first if DORD is one; otherwise, the MSB is transmitted first.

MSTR Master/Slave Select

1: Selects master mode

0: Selects slave mode

CPOL Clock Polarity

0: The base value of the clock is zero.

1: The base value of the clock is one.

CPHA Clock Phase

0: Sample (Read) on the first clock edge.

1: Sample (Read) on the second clock edge.

SPR1,

SPR0

SPI Clock Rate Select 1 and 0

SPI2X, SPR1, and SPR0 are combined to make different clock frequencies for master.

3) SPSR (SPI Status Register)

SPIF SPI Interrupt Flag

This bit is set when a serial transfer is completed (in master mode if SS is configured as an

output pin).

WCOL Write COLlision Flag

The WCOL bit is set if you write on SPDR during a data transfer

SPI2X Double SPI Speed

When the SPI is in master mode, setting this bit to one doubles the SPI speed.

Steps of Programming ATmega328P SPI

In accessing SPI devices, we have two modes of operation: single-byte and multiple-byte burst. To

program ATmega328P SPI, the following steps are needed depending upon master or slave modes. The

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

60

codes or subroutines are given here as sample for reference. In this lab, we will be operating our

microcontroller in the master mode only.

Single-Byte Reading and Writing in Master and Slave Mode

➢ ATmega328P SPI Master Initialization

To initialize ATmega328P as Master, do the following steps

1) Make MOSI, SCK, and SS pins directions as output.

2) Make MISO pin direction as input.

3) Make SS pin High.

4) Enable SPI in Master mode by setting SPE and MSTR bits in the SPCR register.

5) Set SPI Clock Rate Bits combination to define SCK frequency and clock polarity and phase.

➢ SPI Master Write (Single-Byte)

Master writes data byte in SPDR. Writing to SPDR starts data transmission. 8-bit data starts shifting out

towards slave and after the complete byte is shifted, SPI clock generator stops, and SPIF bit gets set.

Follow the steps below:

Make SS low to select slave.

1. Load the 1 byte of data in the SPI shift register.

#include <avr/io.h> //macros

#include <util/delay.h>

#define MOSI 3

#define MISO 4

#define SCK 5

#define SS 2

void spi_init_master()

{

 // configuring SPI pins

 DDRB = (1<<MOSI) | (1<<SCK) | (1<<SS); //MOSI and SCK are output

 DDRB &= ~ (1 << MISO_BIT); // input

 // SPI Interrupt disabled

 // SPI enabled

 // Data order = MSB transmitted first

 // Master mode enabled

 // Clock polarity = Leading edge is rising

 // Clock phase = Data is sampled on trailing edge

 // SPI frequency = 16 Mhz / 16 = 1 Mhz

 SPCR = (1 << 0); // SPI clock rate select 0 (SPR0)

 SPCR |= (1 << 4); // Master/Slave select (MSTR)

 SPCR |= (1 << 2); // Clock phase (CPHA)

 SPCR |= (1 << 6); // SPI Enable (SPE) // SPI clock rate bit for SPI clock to be 1 Mhz

 SPSR &= ~ (1 << 0); // Double SPI speed bit (SPI2X)

}

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

61

2. Wait till transmission is complete i.e., poll SPIF flag to become high.

3. Make SS high to deselect slave.

➢ SPI Master Read (Single-Byte)

1) Since writing to SPDR generates SCK for transmission, write dummy data in the SPDR register

even if you don’t want to send any data from master to slave.

2) Wait until the transmission is completed i.e. poll SPIF flag till it becomes high.

3) When the SPIF flag gets set, read requested received data in SPDR.

➢ ATmega328P SPI Slave Initialization and Read/Write Operation

1) In slave mode there is no need to set SCK frequency because the SCK is generated by the master,

but you must select the SPI mode (Clock Phase and Clock Polarity) and Data Order to match with

SPI mode and Data Order of the other side (master device).

2) Make MOSI, SCK, and SS pins direction of the device as input.

3) Make MISO pin direction of the device as output.

4) Enable SPI in slave mode by setting SPE bit and clearing MSTR bit.

The Slave SPI interface remains in sleep as long as the SS pin is held high by the master. It activates only

when the SS pin is driven low. Data is shifted out with incoming SCK clock from master during a write

operation. SPIF is set after the complete shifting of a byte.

For the read and write operations in slave mode, almost the same steps are followed as in master mode.

PORTB &= ~ (1 << SS);

void spi_write(char data) /* SPI write data function */

{

 SPDR = data; /* Write data to SPI data register */

 while (!(SPSR & (1<<SPIF))); /* Wait till transmission complete */

}

PORTB |= (1 << SS);

char spi_read() /* SPI read data function */

{

 SPDR = 0xFF;

 while (!(SPSR & (1<<SPIF))); /* Wait till reception complete */

 return (SPDR); /* Return received data */

}

void spi_init_slave() /* SPI Initialize function */

{

 DDRB &= ~ ((1<<MOSI)|(1<<SCK)|(1<<SS)); /* Make MOSI, SCK, SS as input pins */

 DDRB |= (1<<MISO); /* Make MISO pin as output pin */

 SPCR = (1<<SPE); /* Enable SPI in slave mode */

}

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

62

Multiple-Byte Burst Reading and Writing in Master and Slave Modes

Burst mode reading or writing is an effective way to share multiple bytes from master / slave at once. To

do this,

1) Make SS low to select slave device.

2) Load the 1 byte of data in the SPI shift register.

3) Wait till transmission is complete.

4) Repeat step 2 and 3 till all bytes are transferred.

5) Make SS high to deselect slave.

We will practice this for interfacing our required module for this lab.

Max6675 Module with K-Type Thermocouple

The MAX6675 is a sophisticated thermocouple-to-digital converter with a built-in 12-bit analog-to-digital

converter (ADC). The MAX6675 also contains cold-junction compensation sensing and correction, a digital

controller, an SPI-compatible interface, and associated control logic.

Features

• Direct Digital Conversion of Type -K Thermocouple Output

• Cold-Junction Compensation: Simple SPI-Compatible Serial Interface

• 12-Bit, 0.25°C Resolution

• Open Thermocouple Detection

Datasheet: Max6675

The function of the thermocouple is to sense a difference in temperature between two ends of the

thermocouple wires. The thermocouple’s hot junction can be read from 0°C to +1023.75°C. The cold end

(ambient temperature of the board on which the MAX6675 is mounted) can only range from -20°C to

+85°C. While the temperature at the cold end fluctuates, the MAX6675 continues to accurately sense the

temperature difference at the opposite end. The MAX6675 senses and corrects for the changes in the

ambient temperature with cold-junction compensation. The device converts the ambient temperature

reading into a voltage using a temperature-sensing diode. To make the actual thermocouple temperature

measurement, the MAX6675 measures the voltage from the thermocouple’s output and from the sensing

diode. The device’s internal circuitry passes the diode’s voltage (sensing ambient temperature) and

thermocouple voltage (sensing remote temperature minus ambient temperature) to the conversion function

stored in the ADC to calculate the thermocouple’s hot-junction temperature. The ADC adds the cold-

char spi_receive() /* SPI Receive data function */

{

 while(!(SPSR & (1<<SPIF))); /* Wait till reception complete */

 return(SPDR); /* Return received data */

}

void spi_write(char data) /* SPI write data function */

{

 SPDR = data; /* Write data to SPI data register */

 while (!(SPSR & (1<<SPIF))); /* Wait till transmission complete */

}

https://www.analog.com/media/en/technical-documentation/data-sheets/MAX6675.pdf

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

63

junction diode measurement with the amplified thermocouple voltage and reads out the 12-bit result onto

the SO pin. A sequence of all zeros means the thermocouple reading is 0°C. A sequence of all ones means

the thermocouple reading is +1023.75°C.

Figure 7: Typical connections of max6675 with microcontroller

As per the datasheet, following sequence of operation generates results from the max6675 module.

Force CS low to output the first bit on the SO pin. A complete serial interface read requires 16 clock cycles.

Read the 16 output bits on the falling edge of the clock. The first bit, D15, is a dummy sign bit and is always

zero. Bits D14–D3 contain the converted temperature in the order of MSB to LSB. Bit D2 is normally low

and goes high when the thermocouple input is open. D1 is low to provide a device ID for the MAX6675

and bit D0 is three-state.

Figure 8: Serial Interface Protocol for Max6675

Figure 9: SO Output from Max6675

Example 1: Programming ATmega328P SPI in master mode and measure

temperature through Max6675
Based on the information regarding max6675 module, we need to interface it with ATmega328P through

the SPI protocol. 2-byte burst read is required. Moreover, the 12 date bits from 16-bit output need to be

extracted. The final result is then multiplied with resolution to get exact temperature. This is done in a

sample code below.

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

64

#include <avr/io.h>
#include <util/delay.h>
#include <stdlib.h>
#define MOSI 3
#define MISO 4
#define SCK 5
#define SS 2

void spi_init()
{
 // configuring SPI pins
 DDRB = (1<<MOSI)|(1<<SCK)|(1<<SS); //MOSI and SCK are
output
 DDRB &= ~(1 << MISO); // input
 SPCR = (1 << 0); // SPI clock rate select 0 (SPR0)
 SPCR |= (1 << 4); // Master/Slave select (MSTR)
 SPCR |= (1 << 2); // Clock phase (CPHA)
 SPCR |= (1 << 6); // SPI Enable (SPE)
 // SPI clock rate bit for SPI clock to be 1 Mhz
 SPSR &= ~(1 << 0); // Double SPI speed bit
}

void spi_select()
{
 PORTB &= ~(1 << SS);
}

void spi_deselect()
{
 PORTB |= (1 << SS);
}

uint16_t spi_read16()
{
 uint16_t data;
 // select chip to enable data transfer
 spi_select();
 _delay_ms(1);
 // write dummy value in the SPI data register to read first
8 bits from slave
 SPDR = 0xFF;
 while (!(SPSR & (1 << 7))){}; // wait till SPI interrupt flag
(SPIF) gets high
 // read data register
 data = SPDR;

 // left shifting data to 8 bits

data = data << 8;
 //write dummy value again in the SPI data register to read
last 8 bits from slave
 SPDR = 0xFF;
 while (!(SPSR & (1 << 7))){} // wait till SPI interrupt flag
(SPIF) gets high
 // writing SPI data to lower 8 bits of the data variable
 data |= SPDR;
 // disable chip
 spi_deselect();
 return data;
}

float read_Thermocouple()
{
 uint16_t data;

 // read SPI data
 data = spi_read16();
 _delay_ms(1);

 // Bit 2 gets high if thermocouple input is open
 if (data & 0x4)
 return -1;

 // discarding 3 LSB bits
 data >>= 3;
 // factor taken from datasheet of MAX6675
 return data*0.25;
}

void usart_init(void)
{
 UBRR0=0x67; //set pre-scalar for baud rate (9600)
 UCSR0A &= ~(1 << U2X0); //Single Speed U2X - 0
 UCSR0B = (1 << RXEN0) | (1 << TXEN0); //
 UCSR0C = (1 << UCSZ01) | (1 << UCSZ00); // Async
mode,parity mode = disabled,1 stop bit,character size = 8 bit
 // clock polarity = 0 for async communication
}
void usart_putChar(unsigned char data)
{
 while(!(UCSR0A & (1 << UDRE0))){}; //wait for data
register to be empty
 UDR0 = data; //write data
 while(!(UCSR0A & (1 << TXC0))){}; //wait for complete
}

void usart_putString(char* StringPtr)
{
 while(*StringPtr != 0x00)
 {
 usart_putChar((unsigned char)*StringPtr);
 StringPtr++;
 }
}
int main()
{
 float temp;
 char temp_string[10];
 spi_init();
 usart_init();
 while(1)
 {
 temp = read_Thermocouple();
 dtostrf(temp,5,2,temp_string);
 usart_putString("\n \r Temperature in
Celsius: ");
 usart_putString(temp_string);
 _delay_ms(1000);
 }
}

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

65

Task 1: To develop a temperature measurement system by interfacing Max6675

to microcontroller
1) Interface the Max6675 module with Arduino Uno by making all the required connections. Test the

code given in Example 1 that measures the temperature and transmit it through USART to PC. Note

that USART related subroutines from Lab 04 are utilized.

2) The serial terminal of PC should display room temperature value. Test it in different temperature

conditions and observe the output.

3) Now modify the given code to add a 16x2 LCD screen to your system. The LCD should display

the measured room temperature. This will make your complete temperature measurement system

portable (independent of the PC display). Make appropriate connections for LCD interfacing.

Carefully utilize the pins and ports of ATmega328P for utilizing SPI module along with the LCD

connections.

Congratulations! You have successfully developed a small system that measures and displays accurate

temperature from 0 to 1023°C.

Interesting Activity: *(Optional)

You can connect Oscilloscope probes to view SCK, MISO and SS signals at different channels

simultaneously to verify the synchronous communication. Observe that SCK signal is only available when

SS is set low and clock is generated. With respect to the clock signals, observe the data bits (D15 to D0).

Read the 16-bit output from Max6675 and try to verify the temperature obtained using the extracted 12-bit

number (D14-D3).

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-354 Course Title: Embedded Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation and
configuration steps

Completely
unable to
recognise
initialisation
and
configuration

Able to recognise
initialisation but
could not
configure

Able to recognise
initialisation but
configuration is
erroneous

Able to recognise
initialisation and
configuration
with minimal
errors

Able to recognise
initialisation and
configuration with
complete success

Equipment Identification
and Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

Completely
unable to
identify
equipment and
components
and no regard
to safe handling

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent equipment
handling capacity

__

Ability to identify
equipment and
recognises all
components,
practices careful
and safe handling

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and establish
connectivity with
software

Unable to
perform
hardware and
software
connection
verification

__

Able to verify
hardware
connection but
unable to establish
software
connection
verification

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with software
to complete the provided
sequence of steps

Inability to
recognise and
perform given
lab procedures

Able to recognise
given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

Able to recognise
given lab
procedures and
perform them by
following
prescribed order of
steps, with
frequent mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Embedded System
Problem:
Imitate and practice given
embedded C instructions
for implementing specific
control strategy and store
required variables

Incorrect
selection and
use of
programming
constructs and
instructions

Correct selection
of programming
constructs and
instructions but
their use is
incorrect

Correct selection
and use of
programming
constructs and
instructions with
many syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
little to no
syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
no syntax/logical
errors

Software Menu
Identification and Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand and
use software
menu

Little ability and
understanding of
software menu
operation, makes
many mistake

Moderate ability
and understanding
of software menu
operation, makes
lesser mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
occasional use of
advance menu
options

Detecting and Removing
Errors/Exceptions in
Hardware and Software:
Detect Errors/Exceptions
and manipulate, under
supervision, to rectify the
embedded C program

Unable to check
and detect
error messages
in software and
hardware

Able to find error
messages in
software but no
sense of
hardware error
identification

Able to find error
messages in
software and
recognise them on
hardware. Still
unable to
understand the
error type and
possible causes

Able to find error
messages in
software and
recognise them
on hardware.
Moderately able
in understanding
error type and
possible causes

Able to find error
messages in
software and
recognise them on
hardware.
Reasonably able in
understanding
error type and
possible causes

Visualisation,
Comparison and analysis
of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to compute
standard indices from
result

Unable to
understand and
utilise
visualisation,
plotting and
analysis
software

Ability to
understand and
utilise
visualisation and
plotting
instructions with
errors. Unable to
compute
standard indices

Ability to
understand and
utilise visualisation
and plotting
instructions with
occasional errors.
Able to partially
compute standard
indices

Ability to
understand and
utilise
visualisation and
plotting
instructions with
no errors. Able to
partially compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

66

LAB SESSION 07

OBJECTIVE:

To configure the Timer/Counter registers of AVR ATmega328P for generation of PWM (Pulse-Width

Modulation) signals

LAB OUTCOMES:

By the end of this lab, you will be able to:

1) Understand the timers/counters of an AVR microcontroller and their different modes of operation.

2) Identify the AVR ATmega328P pins associated with the timer ports.

3) Identify the purpose of different fields of timer / counter registers.

4) Configure the timer/counter registers for generation of PWM signal in Fast PWM mode.

5) Program ATmgea328P for PWM signal generation and verify the pulse-width and duty cycle of

the generated signals.

6) Control the position of a servo motor using PWM signal generated by ATmega328P.

“Getting into the habit of switching a timer on will, I promise, save you from any number of kitchen

disasters.” — Delia Smith

INTRODUCTION:

Microcontrollers have counter registers which can store the count of pulses from oscillator (clock) or any

external signal. Such registers can be used as Counter or Timer. To count an event, the external event

source can be connected to the pin of the counter register. The content of the counter is incremented

whenever the external event occurs. The content of the counter represents how many times an event has

occurred. To generate time delays, we connect the oscillator to the clock pin of the counter. The content of

the counter is incremented when the oscillator ticks. Since the frequency of the oscillator in a

microcontroller is known, and multiplying the time period with the count in the counter register, one can

calculate the time elapsed. The flag is set when the counter overflows.

Figure 1: General View of Counters and Timers in Microcontrollers

Therefore, the timer modules of microcontrollers are used as timers to generate a time delay or as counters

to count events happening outside the microcontroller. These timer modules have waveform generation

support as well. In this lab, we will explore the ATmega328P timers, their modes of operation, and

configuration for PWM (Pulse-Width Modulation) signal generation for given frequency and duty-cycle.

ATmega328P Timers and Basic Timer Registers
In ATmega328P, there are three timers, and all these are capable of generating PWM outputs.

• Timer0 (8-bit wide)

• Timer1 (16-bit wide)

• Timer2 (8-bit wide)

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

67

TCNTn (Timer/Counter Register):
For each of the timer modules, there is a Timer/Counter register TCNTn (i.e. TCNT0, TCNT1 and TCNT2).

This register stores the count and is cleared when reset is high. Each timer has a Timer Overflow Flag

(TOVn) which is set high when TCNTn overflows.

OCRn (Output Compare Register):
Each timer also has an OCRn (Output Compare Register) register. The content of the OCRn is compared

with the content of the TCNTn. When they are equal the OCFn (Output Compare Flag) flag will be set.

TCCRn (Timer/Counter Control Register):
The control registers are used for setting modes of operation.

The maximum and minimum values of TCNT are called TOP and BOTTOM, respectively.

Figure 2: A General Representation of the Registers and Signals Associated with AVR times

In each timer module, there is a waveform generator. The waveform generator can generate waves on the

OCn pin.

We will look into the details of each of these for the three timers and their use to program timers.

ATmega328P Pins Associated with Timers/Counter Modules & PWM

Generation

Figure 3: ATmega328P Pinout with Arduino Uno Connections

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

68

Modes of Operation of Timers/Counters

Modes of operation supported by the AVR Timer/Counter unit are:

• Normal mode (counter)

• Clear Timer on Compare Match (CTC) mode

• PWM modes (Fast PWM Mode, Phase Correct PWM Mode, and Phase and Frequency Correct

PWM Mode)

Normal Mode

In this mode, the content of the timer/counter increments with each clock. It counts up until it reaches its

max of 0xFF. When it rolls over from 0xFF to 0x00, it sets high a flag bit called TOV0 (Timer Overflow).

CTC (Clear Timer on Compare) Mode

The OCR0 register is used with CTC mode. As with the Normal mode, in the CTC mode, the timer is

incremented with a clock. But it counts up until the content of the TCNT0 register becomes equal to the

content of OCR0 (compare match occurs); then, the timer will be cleared and the OCF0 flag will be set

when the next clock occurs.

In normal or CTC modes, the OC0 pin can perform one of the following actions for wave generation: (a)

Remain unaffected (b) Toggle the OC0 pin (c) Clear (Drive low) the OC0 pin (d) Set (Drive high) the

OC0 pin.

Figure 4: Sample Square Wave Generation in Normal mode (OC0 Toggle)

PWM Modes (Fast PWM Mode and Phase Correct PWM Mode)

The first output mode shown in Figure 5(a) represents the waveforms generated given a fast PWM setting

where the TOP value is fixed at the maximum 8-bit value of 255. In this mode, two different output compare

register values can be set independent of each other, each affecting a different output pin. That is, two

separate PWM waveforms may be generated on two different port pins.

The second output mode shown in Figure 5(b) represents the waveforms generated given the phase-correct

PWM setting where the TOP value is also fixed at the maximum 8-bit value of 255. As in the fast PWM

case, two different output compare register values can be set independent of each other, each affecting their

own output pin. As can be seen, this mode alters the TCNT register behavior as once the counter reaches

the TOP value of 255, it begins counting backwards toward 0. The benefit has to do with the phase of the

modulated carrier.

Notice the narrower pulses of OCB as compared to that of OCA in both Figure 5 (a-b). In the fast case, the

front edges line up, whereas in the phase-correct case, the center of the pulses line up; that is, the phase of

the OCA and OCB waveforms are equivalent. As a result, the period of the PWM waveform is nearly

doubled. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as

high as the phase correct PWM mode that use dual-slope operation. This high frequency makes the fast

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

69

PWM mode well suited for power regulation, rectification, and DAC applications. High frequency allows

physically small sized external components (coils, capacitors), hence reduces total system cost.

Figure 5: The two PWM configuration output waveforms with TOP = 255

The final two output modes shown in Figure 6 represent the fast and phase-correct PWM waveforms when

the TOP value is set to the 8-bit value stored in OCRA. Both of these modes effectively disable the OCA

pin functionality at the benefit of increasing the PWM frequency dramatically. In both cases, the TCNT

register will count up to the OCRA value, and then either reset to 0 or start counting down toward 0. The

only comparison that matters is that to OCRB, which will affect the OCB pin as in the previous cases. The

two most significant results are that for a value loaded into OCRA, the total number of analog output levels

available is reduced from 256 to OCRA + 1.

Figure 6: The two PWM configuration output waveforms with TOP = 255

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

70

Timer0 Registers and Programming

1) TCNT0 - Timer/Counter0 Register
Timer0, an 8-bit timer, has 8-bit wide timer/counter register called TCNT0.

2) OCR0A - Output Compare0 Register A
The Output Compare Register A contains an 8-bit value that is continuously compared with the counter

value TCNT0. A match can be used to generate a waveform output on the OC0A = PD6.

3) OCR0B - Output Compare0 Register B
The Output Compare Register B contains an 8-bit value that is continuously compared with the counter

value TCNT0. A match can be used to generate a waveform output on the OC0B = PD5.

4) TCCR0A (Timer/Counter0 Control Register A)
The different bits of this register used for controlling Timer0 are explained below.

7 6 5 4 3 2 1 0

COM0A1 COM0A0 COM0B1 COM0B0 - - WGM01 WGM00

WGM01-00 Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B Register, these bits control the

counting sequence of the counter, the source for maximum (TOP) counter value, and

what type of waveform generation to be used.

COM0A1-0 Compare Output Mode for Channel A

These control the output-compare pin (OC0A = PORTD6) behavior.

COM0B1-0 Compare Output Mode for Channel B

These bits control the output compare pin (OC0B = PORTD5) behavior.

COM0x1:0 bit functionality depends on the WGM02:0 bit setting. Here, the COM0 combinations

are given for Fast PWM modes only (WGM is set in Mode 3 or 7).

WGM02:0

set to Fast

PWM

Mode

 COM0A1-0

00 Normal port operation, OC0A disconnected

01 WGM02=0 (Mode 3): Normal port operation, OC0A disconnected

WGM02=1 (Mode 7): Toggle OC0A on compare match

10 Non-inverting mode (Clear OC0A on compare match when up-counting).

11 Inverting mode (Set OC0A on compare match when up-counting).

COM0B1-0

00 Normal port operation, OC0B disconnected

01 Reserved

10 Non-inverting mode (Clear OC0B on compare match when up-counting).

11 Inverting mode (Set OC0B on Compare Match. Clear at BOTTOM).

For COM bits in the other modes, refer to the datasheet of ATmega328P.

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

71

5) TCCR0B (Timer/Counter0 Control Register B)
The different bits of this register used for controlling Timer0 are explained below.

7 6 5 4 3 2 1 0

FOC0A FOC0B - - WGM02 CS02 CS01 CS00

FOC0A Force Output Compare for Channel A and B

When operating in PWM mode, these are set to 0. These are active in non-PWM mode

only.
FOC0B

WGM02 Waveform Generation Mode

This bit along with WGM01-00 in TCCR0A set waveform generation mode.

CS02-00 Clock Select

Set the clock source to be used by Timer/Counter.

Timer2 Registers and Programming
The Timer2 is also an 8-bit timer, therefore, it has the same registers with similar functionality as explained

for the Timer0 above. The register and corresponding bits are named with 2 (for Timer2) instead of 0. The

clock-select or pre-scalar combinations are different than that of Timer0. These are listed below.

• TCNT2 - Timer/Counter2 Register

• OCR2A - Output Compare2 Register A (OC2A = PB3)

• OCR2B - Output Compare2 Register B (OC2B = PD3)

• TCCR0A (Timer/Counter2 Control Register A)

7 6 5 4 3 2 1 0

COM2A1 COM2A0 COM2B1 COM2B0 - - WGM21 WGM20

• TCCR2B (Timer/Counter2 Control Register B)

7 6 5 4 3 2 1 0

FOC2A FOC2B - - WGM22 CS22 CS21 CS20

CS22 CS21 CS20 Pre-scalar

0 0 0 No Clock Source

0 0 1 1 (System Clock)

0 1 0 8

0 1 1 32

1 0 0 64

1 0 1 128

1 1 0 256

1 1 1 1024

Timer1 Registers and Programming
Timer1 is the only 16-bit timer in ATmega328P. It has 16-bit wide registers (TCNT1, OCR1A and OCR1B)

and 3 8-bit wide control registers (TCCR1A, TCCR1B and TCCR1C). Timer1 unit allows accurate program

execution timing (event management), wave generation, and signal timing measurement (input capture).

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

72

1) TCNT1 - Timer/Counter1 Register
The 16-bit timer/counter1 register is represented as:

2) OCR1A and OCR1B (Output Compare Register1 A and B)
The Output Compare Register A contains a 16-bit value that is continuously compared with the counter

value TCNT1. A match can be used to generate an Output Compare interrupt or to generate a waveform

output on the OC1A = PB1.

The Output Compare Register B contains a 16-bit value that is continuously compared with the counter

value TCNT1. A match can be used to generate an Output Compare interrupt or to generate a waveform

output on the OC1B = PB2.

3) TCCR1A (Timer/Counter1 Control Register A)

7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 - - WGM11 WGM10

WGM11-0 Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control

the counting sequence of the counter, the source for maximum (TOP) counter value,

and what type of waveform generation to be used.

COM1A1-0 Compare Output Mode for Channel A

These control the output-compare pin (OC1A = PB1) behavior.

COM1B1-0 Compare Output Mode for Channel B

These bits control the output compare pin (OC1B = PB2) behavior.

COM1x1:0 bit functionality depends on the WGM13:0 bit setting.

WGM13:0

set to Fast

PWM

Modes

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

73

4) TCCR1B (Timer/Counter1 Control Register B)

7 6 5 4 3 2 1 0

ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10

INC1 Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler which filters Input

Capture Pin input (ICP1=PB0).

ICES1 Input Capture Edge Select

0: Falling edge is used to trigger capture event at ICP1.

1: Rising edge is used.

WGM13-2 Waveform Generation Mode(Combined with WGM11-0 in TCCR1A)

CS12-10

Clock Select:

5) TCCR1C (Timer/Counter1 Control Register C)

7 6 5 4 3 2 1 0

FOC1A FOC1B - - - - - -

FOC1A and FOC1B: Force Output Compare for Channel A and B

These are active in non-PWM mode.

6) ICR1 (Input Capture Register1)

The Input Capture Register can be used for defining counter TOP value. Otherwise, it shows the count of

event occurrence on the Input Capture Pin (ICP1=PB0).

Figure 7: Representation of 16-bit Timer Module and Associated Signals and Pins

Programming 8-Bit Timers (Timer0/2) in Fast PWM Mode for PWM Signal

Generation
1) Select modes using COM and WGM bits, for example; fast PWM (mode 3 or 7) and non-inverting

(COM0x10= 0b10).

2) Select a pre-scalar by CS bits.

3) In Fast PWM mode, use the pins associated with the timer. Configure them as output pins.

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

74

• Timer0: OC0A (=PD6, Arduino Pin 6) / OC0B (=PD5, Arduino Pin 5)

• Timer2: OC2A (=PB3, Arduino Pin 11) / OC2B (=PD3, Arduino Pin 3)

4) The frequency of generated PWM signal is calculated as:

𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =
𝑠𝑦𝑠𝑡𝑒𝑚_𝑐𝑙𝑜𝑐𝑘

𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟 (1 + 𝑇𝑂𝑃)

5) TOP is dependent on Mode. In Mode 3, it is fixed to 255 (0xFF).

6) In Mode 7, PWM mode works with a Compare Match. Top is the value stored in OCRxA. Calculate

TOP i.e., OCRxA.

The PWM wave of set frequency will be generated at OCxB as per the value of OCRxB.

Mode 7 allows you to set frequency easily through OCRxA for a given pre-scalar. In mode 3, the

frequency is fixed for any given pre-scalar as TOP is fixed.

7) Set OCRxA or OCRxB registers to achieve required duty-cycle. Lowering the top value can increase

the PWM base frequency, but reduces the resolution. It’s easier to set duty-cycle in mode 3.

For COM=10, the output will be set high for N+1, where N is value of OCR. Total cycles are determined

by TOP+1. Where, TOP = 0xFF (255) in mode 3 and TOP=OCRxA in mode 7.

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑂𝐶𝑅𝑥 + 1

𝑇𝑂𝑃 + 1

Example 1: Generating PWM Signal Using Timer2
The example code given here generates a square wave signal with a frequency of 1 kHz at OC2B. In each

cycle, the signal will be high 20% of the time and 80% low. Another expression for this is: the duty cycle

is 20%.

CODE
// Period = 1 ms => Frequenz = 1kHz

#include <avr/io.h>

int main(void)

{

 // WGM22/WGM21/WGM20 all set

 //Mode 7, fast PWM

TCCR2A = (1<<COM2B1) | (1<<WGM21) |

(1<<WGM20);

// Set OC2B at bottom,

//clear OC2B at compare match

 TCCR2B = (1<<CS22) | (1<<WGM22);

// prescaler = 64;

 OCR2A = 249;

 OCR2B = 49;

 DDRD |= (1<<PD3);

 while (1) {};

}

SAMPLE OUTPUT

Note: Observe that in the above code, the timer registers are once initialized for PWM generation outside

the while loop. In comparison to that, one can use the digital I/O pins for generation of PWM signal by

setting them high for certain time and then low, using the delay functions repeatedly in the while loop. But

that approach will use CPU itself to create the equivalent of PWM outputs. The advantage of using the

built-in PWM feature of the AVR is that it gives us the option of programming the period and duty cycle,

therefore relieving the CPU to do other important things.

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

75

PWM Signals for DC Motor Speed Control and Servo Motor Position Control

Pulse-width modulation (PWM) is a technique for controlling the speed of a DC motor by varying the width

of the pulses that are applied to the motor's power supply. The duty cycle determines the average voltage

that is applied to the motor. A higher duty cycle results in a higher average voltage, which in turn results in

a higher motor speed.

A servo motor is a motor whose shaft position can be controlled precisely. The motor has an internal

servomechanism that provides feedback about the position of shaft. SG90 is a small “Servo Motor” whose

position can be controlled by a PWM signal. The required duty-cycle for different positions of this servo

motor are given in Table below. The power requiements of SG90 can be met by Arduino Uno board.

Utilizing the timers of ATmega328P, you can easily generate the required PWM signals for controlling the

position of SG90.

• Required

Frequency=50 Hz

• At Duty cylce ~ 5 %,

Shaft Position = 0 ͦ

• Duty cycle ~ 7.5%,

Shaft Position = 90 ͦ

• Duty cycle ~ 10%,

Shaft Position = 180 ͦ

Figure 8: SG90 Servo-Motor Pinout and PWM Signal Requirements

Programming 16-Bit Timer (Timer1) in Fast PWM Mode

1) Select the mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, by

the combination of the waveform generation mode (WGM13:0) and compare output mode (COM1x1:0)

bits.

Note:

Fast PWM modes (WGM13:0 = 5, 6, 7, 14, or 15): In fast PWM mode the counter is incremented until

the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5,

6, or 7), the value in ICR1 (WGM13:0 = 14), or the value in OCR1A (WGM13:0 = 15).

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or

OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum

resolution is 16-bit (ICR1 or OCR1A set to MAX).

Using the ICR1 register for defining TOP works well when using fixed TOP values. By using ICR1,

the OCR1A register is free to be used for generating a PWM output on OC1A. However, if the base

PWM frequency is actively changed (by changing the TOP value), using the OCR1A as TOP is clearly

a better choice due to its double buffer feature which allows it to be written anytime.

2) Set TCCR1A and TCCR1B according to the selected modes.

3) Configure the associated OC1x pin as output pin.

4) Set the TOP by initializing ICR1 or OCR1A as per the selected modes and required frequency.

𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =
𝑠𝑦𝑠𝑡𝑒𝑚_𝑐𝑙𝑜𝑐𝑘

𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟 (1 + 𝑇𝑂𝑃)

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department

76

5) Set the duty-cycle by initializing OCR1A / OCR1B.

𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒 =
𝑂𝐶𝑅1𝑥 + 1

(1 + 𝑇𝑂𝑃)

Example 2: Generating PWM Signal using Timer 1 for Servo-Motor Position Control

#include <avr/io.h>

#include <util/delay.h>

int main(void)

 {

 DDRB |= (1<<PB1); // Set PB1 as output

 TCCR1A |= (1<<COM1A1) | (1<<WGM11); // Fast PWM, non-inverting mode

 TCCR1B |= (1<<WGM13) | (1<<WGM12) | (1<<CS11);

 // Fast PWM, prescaler = 8

 ICR1=39999; //20ms PWM period - TOP

 while (1){

 OCR1A = 1999; // Set position to 0 degrees

 _delay_ms(1000);

 OCR1A = 2999; // Set position to 90 degrees

 _delay_ms(1000);

 OCR1A = 3999; // Set position to 180 degrees

 _delay_ms(1000);

 }

 }

LAB TASKS

TASK 1: To verify PWM signal generation by 8-bit Timers using Example 1
1) Create an AVR project and build the code given in Example 1. Program the microcontroller with it and

test the PWM signal generated at PD3 using an Oscilloscope.

2) Measure the frequency, time-period and duty-cycle of the generated waveform for verification.

3) Modify the code to generate a waveform at 2k Hz frequency with duty-cycle of 50% using Timer0.

Show the modified code and results.

TASK 2: To test Example 2 for servo-motor position control using Timer1 PWM signal
1) Create an AVR project and build the code given in Example 2. Program the microcontroller with it.

2) Make appropriate connections to power up the SG90 servo-motor and to provide PWM signal for

control.

3) Observe the position of motor-shaft. Does it rotate by 90 degrees after every 1 second?

4) Can you control the SG90 servo motor using Timer0 or Timer2? What is the minimum frequency

achievable by Timer0, 1 and 2 in Fast PWM Modes? Consider the higher pre-scalar.

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-354 Course Title: Embedded Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation and
configuration steps

Completely
unable to
recognise
initialisation
and
configuration

Able to recognise
initialisation but
could not
configure

Able to recognise
initialisation but
configuration is
erroneous

Able to recognise
initialisation and
configuration
with minimal
errors

Able to recognise
initialisation and
configuration with
complete success

Equipment Identification
and Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

Completely
unable to
identify
equipment and
components
and no regard
to safe handling

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent equipment
handling capacity

__

Ability to identify
equipment and
recognises all
components,
practices careful
and safe handling

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and establish
connectivity with
software

Unable to
perform
hardware and
software
connection
verification

__

Able to verify
hardware
connection but
unable to establish
software
connection
verification

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with software
to complete the provided
sequence of steps

Inability to
recognise and
perform given
lab procedures

Able to recognise
given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

Able to recognise
given lab
procedures and
perform them by
following
prescribed order of
steps, with
frequent mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Embedded System
Problem:
Imitate and practice given
embedded C instructions
for implementing specific
control strategy and store
required variables

Incorrect
selection and
use of
programming
constructs and
instructions

Correct selection
of programming
constructs and
instructions but
their use is
incorrect

Correct selection
and use of
programming
constructs and
instructions with
many syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
little to no
syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
no syntax/logical
errors

Software Menu
Identification and Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand and
use software
menu

Little ability and
understanding of
software menu
operation, makes
many mistake

Moderate ability
and understanding
of software menu
operation, makes
lesser mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
occasional use of
advance menu
options

Detecting and Removing
Errors/Exceptions in
Hardware and Software:
Detect Errors/Exceptions
and manipulate, under
supervision, to rectify the
embedded C program

Unable to check
and detect
error messages
in software and
hardware

Able to find error
messages in
software but no
sense of
hardware error
identification

Able to find error
messages in
software and
recognise them on
hardware. Still
unable to
understand the
error type and
possible causes

Able to find error
messages in
software and
recognise them
on hardware.
Moderately able
in understanding
error type and
possible causes

Able to find error
messages in
software and
recognise them on
hardware.
Reasonably able in
understanding
error type and
possible causes

Visualisation,
Comparison and analysis
of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to compute
standard indices from
result

Unable to
understand and
utilise
visualisation,
plotting and
analysis
software

Ability to
understand and
utilise
visualisation and
plotting
instructions with
errors. Unable to
compute
standard indices

Ability to
understand and
utilise visualisation
and plotting
instructions with
occasional errors.
Able to partially
compute standard
indices

Ability to
understand and
utilise
visualisation and
plotting
instructions with
no errors. Able to
partially compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Embedded Systems Lab Lab 08 OEL: Voltage Measurement using ZMPT101 Module

NED University of Engineering & Technology Electrical Engineering Department

77

LAB SESSION 08

OEL (Open Ended Lab)

OBJECTIVE:

To interface analog voltage sensor ZMPT101B for measurement of phase voltage and display its true RMS

(Root Mean Square) value on LCD (Liquid Crystal Display) screen.

DELIVERABLES:

• Report

• C-Code

• Complete hardware setup (ZMPT101B module and LCD interfaced with Microprocessor)

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-354 Course Title: Embedded Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation and
configuration steps

Completely
unable to
recognise
initialisation
and
configuration

Able to recognise
initialisation but
could not
configure

Able to recognise
initialisation but
configuration is
erroneous

Able to recognise
initialisation and
configuration
with minimal
errors

Able to recognise
initialisation and
configuration with
complete success

Equipment Identification
and Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

Completely
unable to
identify
equipment and
components
and no regard
to safe handling

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent equipment
handling capacity

__

Ability to identify
equipment and
recognises all
components,
practices careful
and safe handling

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and establish
connectivity with
software

Unable to
perform
hardware and
software
connection
verification

__

Able to verify
hardware
connection but
unable to establish
software
connection
verification

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with software
to complete the provided
sequence of steps

Inability to
recognise and
perform given
lab procedures

Able to recognise
given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

Able to recognise
given lab
procedures and
perform them by
following
prescribed order of
steps, with
frequent mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Embedded System
Problem:
Imitate and practice given
embedded C instructions
for implementing specific
control strategy and store
required variables

Incorrect
selection and
use of
programming
constructs and
instructions

Correct selection
of programming
constructs and
instructions but
their use is
incorrect

Correct selection
and use of
programming
constructs and
instructions with
many syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
little to no
syntax/logical
errors

Correct selection
and use of
programming
constructs and
instructions with
no syntax/logical
errors

Software Menu
Identification and Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand and
use software
menu

Little ability and
understanding of
software menu
operation, makes
many mistake

Moderate ability
and understanding
of software menu
operation, makes
lesser mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
occasional use of
advance menu
options

Detecting and Removing
Errors/Exceptions in
Hardware and Software:
Detect Errors/Exceptions
and manipulate, under
supervision, to rectify the
embedded C program

Unable to check
and detect
error messages
in software and
hardware

Able to find error
messages in
software but no
sense of
hardware error
identification

Able to find error
messages in
software and
recognise them on
hardware. Still
unable to
understand the
error type and
possible causes

Able to find error
messages in
software and
recognise them
on hardware.
Moderately able
in understanding
error type and
possible causes

Able to find error
messages in
software and
recognise them on
hardware.
Reasonably able in
understanding
error type and
possible causes

Visualisation,
Comparison and analysis
of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to compute
standard indices from
result

Unable to
understand and
utilise
visualisation,
plotting and
analysis
software

Ability to
understand and
utilise
visualisation and
plotting
instructions with
errors. Unable to
compute
standard indices

Ability to
understand and
utilise visualisation
and plotting
instructions with
occasional errors.
Able to partially
compute standard
indices

Ability to
understand and
utilise
visualisation and
plotting
instructions with
no errors. Able to
partially compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

78

LAB SESSION 09

OBJECTIVE:

To set up Inter-Integrated Circuit (I2C) communication on Atmega328P micro-controller for controlling a

16x2 LCD screen through PCF8574 I2C I/O (Input/Output) expander

LAB OUTCOMES:

By the end of this lab, you will be able to:

1) Explain the Inter-Integrated Communication (I2C) protocol

2) Identify the AVR ATmega328P pins associated with I2C interface (Two-Wire Interface TWI)

3) Identify the purpose of different fields of TWI registers

4) Program ATmega328P TWI in master and slave modes for single-byte and multiple-byte burst

read/write

5) Operate a 16x2 LCD in 4-bit mode

6) Identify the pins of PCF8574 I2C I/O expander module

7) Program ATmega328P TWI for controlling 16x2 LCD screen through PCF8574 expander

“A lack of communication breeds assumptions of what the other is thinking or feeling; and assumptions

are, more often than not incorrect” — Misty Lynn Walker

INTRODUCTION:

The Inter-Integrated Circuit (I2C or I2C or IIC) serial communication protocol was created by Philips to

attach low-speed peripherals to an embedded micro-processor for reliable short-distance communication.

I2C is a multi-point protocol in which more than two devices are able to communicate along the serial

interface. It uses only 2 pins for data transfer. They are called:

• SCL (Serial Clock), which synchronizes the data transfer between two chips

• SDA (Serial Data), which carries the data.

These two pins, SDA and SCK, make the I2C a 2-wire interface. In many application notes, including AVR

datasheets, I2C is referred to as Two-Wire Serial Interface (TWI). We will be using I2C and TWI

interchangeably.

Figure 1: I2C Bus Interface Representation

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

79

The 2 pins are bidirectional open-drain pins which means that a 4.7 kilo Ohm pull-up resistor for each of

line is needed as shown in Figure 1. If one or more devices pull the line to low (zero) level, the line state is

zero and otherwise the line state remains high (one).

Each of the devices connected with I2C multipoint bus interface is called a node. Each node can operate as

either master or slave.

• Master is a device that generates the clock for the system; it also initiates and terminates a transmission.

• Slave is the node that receives the clock and is addressed by the master.

In I2C, both master and slave can receive or transmit data, so there are four modes of operation.

• Master transmitter

• Master receiver

• Slave transmitter

• Slave receiver.

Notice that each node can have more than one mode of operation at different times, but it has only one

mode of operation at a given time.

Working of I2C Protocol

I2C is a synchronous serial protocol; each data bit transferred on the SDA line is synchronized by a high-

to-low pulse of clock on the SCL line. The data line cannot change when the clock line is high; it can change

only when the clock line is low. The START and STOP conditions are the only exceptions to this rule.

Figure 2: I2C Bit Format

Figure 3: I2C Start and Stop Conditions

Each transmission is initiated by a START condition and is terminated by a STOP condition. The START

and STOP conditions are generated by the master. START and STOP conditions are generated by keeping

the level of the SCL line high and then changing the level of the SDA line. The START condition is

generated by a high-to-low change in the SDA line when SCL is high. The STOP condition is generated by

a low-to-high change in the SDA line when SCL is low. The bus is considered busy between each pair of

START and STOP conditions, and no other master tries to take control of the bus when it is busy.

Figure 4: I2C Typical Transmission (Start + Address Packet + Data Packet(s) + Stop)

• In I2C, normally, a transmission is started by a START condition.

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

80

• This is followed by an address packet (SLA + R/W). Address packet consists 8 or 9 bits. The first 7-

bits are slave address (which allows connection of 128 devices). The 8th bit shows operation (1 for read,

0 for write). The 9th bit is an ACK (acknowledge - 0) or NACK (not acknowledge - 1) by the receiver.

ACK means that it is ready to receive the data byte.

Operation Address Bits + Control (SLA+R/W)

Master writes data to SDA (sent to slave)
SLA +W

A6 A5 A4 A3 A2 A1 A0 0

Master reads from data from SDA (sent by slave)
SLA + R

A6 A5 A4 A3 A2 A1 A0 1

• The address packet is followed by one or more data packets which are also 9 bits long. The first 8 bits

are a byte of data to be transmitted, and the 9th bit is ACK/NACK.

• The transmission is finished by a STOP condition.

AVR ATmega328P Two-Wire Interface (TWI) Module

The TWI module in the AVR is composed of four submodules: bit rate generation unit, bus interface unit,

address match unit, and control unit. The bit rate generation unit controls the frequency of the system clock

(SCL) when operating in a master mode. The bus interface unit detects and generates START, REPEATED

START and STOP conditions. It also detects arbitration, controls sending or receiving ACK, and also

transfers packets of data or address. The address match unit compares the received address byte with the 7-

bit address in TWI address register and informs the control unit upon an address match. The control unit

controls the TWI module and generates responses according to settings in the TWI control register. It also

sets the contents of the status register according to current state.

Figure 5: TWI (I2C) Module in AVR

Figure 6: ATmega328P TWI SDA and SCL Pins

The ATmega328P uses pins 27 and 28 for the TWI data (SDA) and clock (SCL), respectively.

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

81

ATmega328P TWI Registers

1) TWBR (TWI Bit Rate Register)

TWBR (8-bit register) selects the division factor for the bit rate generator. The bit rate generator is a

frequency divider which generates the SCL clock frequency in the Master modes.

𝑓𝑆𝐶𝐿 =
16 𝑀𝐻𝑧

16 + 2(𝑇𝑊𝐵𝑅)(𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟 𝑉𝑎𝑙𝑢𝑒)

2) TWDR (TWI Bit Data Register)

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR contains

the last byte received.

3) TWCR (TWI Control Register)

[7] [6] [5] [4] [3] [2] [1] [0]

TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

TWINT TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job (like start, stop,

transmit, receive, etc.). The TWINT flag must be cleared by software by writing a

logic one to it. Clearing this flag starts the operation of the TWI.

TWEA TWI Enable Acknowledge Bit

If the TWEA bit is written to one, the ACK pulse is generated on the TWI bus if the

device’s own slave address has been received.

TWSTA TWI START Condition Bit

To initiate master mode, TWSTA bit is written 1. The TWI hardware checks if the bus is

available and generates a START condition on the bus if it is free.

TWSTO TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition. When

the STOP condition is executed on the bus, the TWSTO bit is cleared automatically.

TWWC TWI Write Collision Flag

It is set when attempting to write to the TWI Data Register (TWDR) when TWINT is

low.

TWEN TWI Enable Bit

It enables TWI operation and activates the TWI interface. When TWEN is written to

one, the TWI takes control over the I/O pins connected to the SCL and SDA pins.

TWIE TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request

will be activated for as long as the TWINT flag is high.

4) TWSR (TWI Status Register)

[7] [6] [5] [4] [3] [2] [1] [0]

TWS7 TWS6 TWS5 TWS4 TWS4 - TWPS1 TWPS0

TWS [7-3] TWI Status Bits

These 5 bits reflect the status of the TWI logic and the 2-wire serial bus. Different status

codes are assigned for different conditions.

TWPS [1-0] TWI Pre-scalar Bits

These bits set pre-scalar value for clock frequency SCL.

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

82

TWPS[1:0] Pre-scalar Value

00 1

01 4

10 16

11 64

Other Registers

There are 2 other registers; TWAR (TWI Slave Address Register) and TWAMR – TWI (Slave) Address

Mask Register. These are used for programming ATmega328P as I2C slave. Since, we will be operating

out microcontroller in master mode, so these two will not be used. Refer to the datasheet for further

description.

Programming ATmega328P Two-Wire Interface (TWI or I2C) in Master

Mode
In this section we will discuss the steps of programming our microcontroller ATmega328P in master mode.

Here we will focus on the simplest form of TWI programming without checking the status register. In most

applications, if you are not dealing with critical systems and there is not more than one master on a single

bus, you can use this method. If you want to deal with multi-master or critical designs you must check the

value of the status register.

To program ATmega328P in master operating mode, the steps are explained below. For each individual

step, a sub-routine is created to make the complete process easier. Here we have discussed single byte read

and write only. Multiple byte burst read and write operations are also supported in I2C communication.

Initialization

To initialize the TWI module to operate in master operating mode, we should do the following steps:

1) Set the TWI module clock frequency by setting the values of the TWBR register and the TWPS bits in

the TWSR register.

2) Enable the TWI module by setting the TWEN bit in the TWCR register to one.

Transmit a START Condition

START condition is sent by setting the TWEN, TWSTA, and TWINT bits of TWCR to one.

1) Setting the TWEN bit to one enables the TWI module.

2) Setting the TWSTA bit to one tells the TWI to initiate a START condition when the bus is free.

3) Setting the TWINT bit to one clears the interrupt flag to initiate operation of the TWI module to transmit

the START condition.

4) Then we should poll the TWINT flag in the TWCR register to see whether the START condition

transmitted completely.

void i2c_init(void)

{

TWSR=0x00; //set pre-scaler bits to zero

TWBR=0x62; // 75 kHz for XTAL=16MHz

TWCR=0x04; //enable the TWI module

}

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

83

Send Device Address

After START condition, device address is sent with a control bit. SLA + W (Slave Address + Write) or

SLA + R (Slave Address + Read). To transmit SLA + R or SLA + W, a byte is sent to the slave. To write

the address byte, the same steps described for sending data byte are followed.

Send Data

These steps are followed for sending a byte (data or address) to slave

1) Copy the data byte to the TWDR.

2) Set the TWEN and TWINT bits of the TWCR register to one to start sending the byte.

3) Poll the TWINT flag in the TWCR register to see whether the byte is transmitted completely.

Receive Data
After transmitting SLA+R, the following steps are followed to receive data byte

1) Set the TWEN and TWINT bits of the TWCR register to one to start receiving a byte. To return ACK

after receiving data, the TWEA bit of the TWCR register is also set to one.

2) Poll the TWINT flag in the TWCR register to see whether a byte has been received completely.

3) Copy the received byte from the TWDR to another register to save it.

Transmit a STOP Condition
To stop data transfer, we must transmit a STOP condition. This is done by setting the TWEN, TWSTO, and

TWINT bits of the TWCR register to one.

void i2c_start(void)

{

TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);

while ((TWCR & (1 << TWINT)) == 0);

}

void i2c_write(unsigned char data)

{

TWDR = data ;

TWCR = (1<< TWINT) | (1<<TWEN);

while ((TWCR & (1 <<TWINT)) == 0);

}

unsigned char i2c_read(unsigned char isLast)

{

 if (isLast == 0) //if want to read more than 1 byte

TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWEA);

 else //if want to read only one byte

 TWCR = (1<< TWINT)|(1<<TWEN);

 while ((TWCR & (1 <<TWINT)) == 0);

 return TWDR ;

}

void i2c_stop()

{

TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWSTO);

}

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

84

PCF8574 I2C I/O Expander Module
PCF8574 is an IC that can be used as I2C to Parallel-Port Expander. The device features an 8-bit quasi-

bidirectional I/O port (P0–P7). It has SDA and SCL for I2C inputs for interface.

Figure 7: PCF8574 IC Pinout

Table 3: Functions of PCF8574 Pins

A0-A2 Address Pins (All connected to ground corresponds to device address 000. All connected to

VCC corresponds to the device address 111)

Vcc Voltage Supply

GND Ground

P7-P0 P-port input/output.

INT Interrupt output.

SDA Serial data line. Connect to VCC through a pullup resistor

SCL Serial clock line. Connect to VCC through a pullup resistor

The 7-bit slave address of this IC (PCF8574) is 010 0A0A1A2 which is 0x20 for the connections shown

above. This corresponds to the slave address SLA+W = 010 0000 + 0 = 0100 0000 =0x40.

Example 1: Using PCF8574 IC as I2C to 8-Bit Output Expander for Controlling LEDs

To demonstrate the programming of ATmega328P two-wire interface (I2C) and required connections

with PCF8574 IC, consider the example code and circuit shown in Figure 8.

Figure 8: Example 1 Code and Connections

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

85

The slave address with control bit is sent after calling i2c_init() and i2c_start() sub-routines. After sending

the address byte, data byte is sent (0b00110011). This is received by the PCF8574 IC and given at output

through its output port (P7 to P0). The output drives 8 LEDs. Simulate the circuit to verify output and

understand connections. Note that the pull-up resistors are connected with SDA and SCL pins (as needed

for I2C interface). The resistors with LEDs are simply current limiting resistors.

Figure 9: PCF8574 I2C Expander Module

Using PCF8574 IC, an expander module for LCD connection through I2C interface is available. It is also

known as Serial LCD I2C Module. This expander module provides ease of connection with the 16 pins of

LCD. However, the PCF8574 IC has only 8 I/O pins, therefore, out of the 11 (D0-D7, RS, EN and RW)

LCD pins, only 8 are internally connected and can be controlled. The connections listed below. This is the

reason we have to operate the LCD in 4-bit mode with this expander instead of the earlier utilized 8-bit

mode.

Table 4: Connections of Expander Module with LCD Pins

P0 P1 P2 P3 P4-P7 A0-A2

RS R/W E - D4-D7 111 (Default)

SLA+W = 010 0111 +0 = 0x4E

With this module, pull-up resistors for SDA and SCL are not needed externally. The rest of the pins of

LCD for power supply and backlight LEDs are connected with PCF8574 power pins. The contrast control

pin is connected with on-board potentiometer. Some LCDs have this module already connected to them as

backpack since it is compatible with HD44780.

4-bit Mode Operation of 16x2 LCD Screen

Previously we used LCD in 8-bit mode. To utilize the PCF8574 module for controlling the LCD screen

through I2C interface, we first need to understand the 4-bit mode operation of 16x2 LCD and its

requirements.

• Sending data/command in 4-bit Mode

In 4-bit mode the data is sent in nibbles (nibble is group of 4 bits). First the higher nibble and then the

lower nibble. To send both; command or data, higher 4-bits are separately sent and then the lower 4-

bits.

The common steps are:

1. Mask lower 4-bits

2. Send to the LCD port

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

86

3. Toggle enable signal (send a pulse at enable to latch the data sent)

4. Mask higher 4-bits

5. Send to LCD port

6. Toggle enable signal (send a pulse at enable to latch the data sent)

• Resetting or Initializing the LCD:

To enable the 4-bit mode of LCD, follow special sequence of initialization that tells the LCD controller

that user has selected 4-bit mode of operation. Following is the reset sequence of LCD.

1. Wait for about 20msec initially after powering-up the LCD

2. Send the first initial value (0x30)

3. Wait for about 4.1msec

4. Send second initial value (0x30)

5. Wait for about 100usec

6. Send third initial value (0x30)

7. Wait for 100usec

8. Send (0x02) to switch to the four-bit mode. This is not Function Set instruction (0x38 for 8-bit

mode or 0x28 for 4-bit mode), but it signals that a real Function Set instruction will be sent

after it.

9. Wait for 100usec

10. Select bus width by sending command (0x28) for function set: 4-bit mode and 2 line display

11. Wait for 1msec

Subroutines for LCD Control in 4-bit Mode through the I2C Interface

A few subroutines are created for initializing the LCD, sending data and commands, sending a pulse at

Enable pin, and for printing message strings on LCD in 4-bit mode. These sub-routines utilize the earlier

mentioned i2c_write() function repeatedly, since we are interfacing the LCD through I2C expander

module.

PCF8574 P7 P6 P5 P4 P3 P2 P1 P0

LCD D7 D6 D5 D4 - E R/W RS

Functions Data or command bits (4-bits at a time) - After

placing data,

a pulse is

sent to latch

0: Write

Mode

1:Read

Mode

0: Command

Mode

1: Data

Mode

The power pins of LCD and backlight are powered through expander module.

Subroutine for Sending Pulse at Enable
void toggle()

{

 i2c_write((TWDR |= 0x04)); //E=1, E is at bit 2 (P2)

 _delay_us(1); //Enable pulse for short time

 i2c_write((TWDR &= ~0x04)); // E=0

 _delay_us(100); //make pulse longer wait for at least 100usec

}

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

87

Subroutine for Sending Command
void lcd_cmd(char v2)

{

 i2c_write((TWDR&=~0x03)); //RW =0 for Read, RS=0 for Command Mode

 i2c_write((TWDR &= 0x0F)); // clear the 4bits (D7-D4)before

 //sending any new data or command

 i2c_write((TWDR |= (v2 & 0xF0))); // place command at TWDR and mask

 //the lower 4bits, to send higher nibble

 toggle(); // send pulse at E

 i2c_write((TWDR &= 0x0F)); // clear the 4 bits (D7-D4)

 i2c_write((TWDR |= ((v2 & 0x0F)<<4)));//command’s lower nibble sent

 toggle(); //send pulse at E

}

Subroutine for Data Write
void lcd_dwr(char v3)

{

 i2c_write((TWDR|=0x01)); //RS=1 for Data Mode

 i2c_write((TWDR &= 0x0F)); //Clear data pins (D7-D4)

 i2c_write((TWDR |= (v3 & 0xF0))); //mask lower nibble & send data

 toggle(); //Pulse at E

 i2c_write((TWDR &= 0x0F)); //clear data pins (D7–D4)

 i2c_write((TWDR |= ((v3 & 0x0F)<<4))); //mask higher nibble and

 //send lower nibble

 toggle();

}

Subroutine for LCD Initialization
void lcd_init()

{

 _delay_ms(100); //wait before sending initialization

 lcd_cmd(0x30); //-----Sequence for initializing LCD

 _delay_ms(10);

 lcd_cmd(0x30);

 _delay_ms(5);

 lcd_cmd(0x30); // " "

 _delay_ms(5);

 lcd_cmd(0x02);

 _delay_ms(1);

 lcd_cmd(0x28); //-----Selecting 16 x 2 LCD in 4Bit mode

 _delay_ms(1);

 lcd_cmd(0x0C); //-----Display ON Cursor OFF

 lcd_cmd(0x06); //-----Cursor Auto Increment

 lcd_cmd(0x01); //-----Clear display

 _delay_ms(4); //2msec delay required after initialization

}

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

88

Subroutine for Printing Strings / Messages
void lcd_msg(char *c)

{

 while(*c != 0) //----Wait till all String char are passed

 lcd_dwr(*c++); //--Send the char to LCD & inc c for next char

}

LAB TASKS

TASK 1: To interface LCD in 4-Bit Mode with ATmega328P through I2C Expander

1) Program Atmega328P for controlling 16x2 LCD screen in 4-bit mode using I2C interface. A sample

program is given at the end of this lab. This code uses the functions given in previous sections.

2) Make appropriate hardware connections of ATmega328P (TWI) with PCF8574 module. Connect the

module with 16x2 LCD screen.

3) Test your setup and observe output at LCD.

4) Modify the code to make the display blink with a certain delay. You can refer to the Lab 05 manual for

LCD related commands.

TASK 2: To compare communication through UART, SPI and I2C

You have studied and practiced communication of ATmega328P through different synchronous and

asynchronous methods. Compare UART, SPI, and I2C. List differences.

Sample Code for Task 1

#include <avr/io.h>
#include <util/delay.h>
#include <stdlib.h>

//Including I2C functions
void i2c_init()
{
 TWBR = 0x62; //Setting bit rate
 TWCR = (1<<TWEN); //Enable I2C
 TWSR = 0x00; //Prescaler set to 1
}

//Start condition
void i2c_start()
{
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
 //start condition
while (!(TWCR & (1<<TWINT)));
 //check for start condition
}

void lcd_init()
{
 _delay_ms(100); //wait initialization
 lcd_cmd(0x30); //-----Sequence for initializing LCD
 _delay_ms(10);
 lcd_cmd(0x30);
 _delay_ms(5);
 lcd_cmd(0x30);
 _delay_ms(5);
 lcd_cmd(0x02);
 _delay_ms(1);
 lcd_cmd(0x28);
 _delay_ms(1);
lcd_cmd(0x0C); //-----Display ON Cursor OFF
lcd_cmd(0x06); //-----Cursor Auto Increment
lcd_cmd(0x01); //-----Clear display
_delay_ms(4); //2msec delay

}

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

89

//I2C write (for sending address and data)
void i2c_write(char x)
{
 TWDR = x; //Move value to I2C
 TWCR = (1<<TWINT) | (1<<TWEN);
 //Enable I2C and clear interrupt
 while (!(TWCR &(1<<TWINT)));
}

//-----LCD 4-bit Mode functions using I2C-------//

void toggle()
{
 i2c_write((TWDR |= 0x04));
 _delay_us(1); //Enable pulse
 i2c_write((TWDR &= ~0x04));
 _delay_us(100); //make pulse longer or wait
//for at least 100usec after sending each command
}

void lcd_cmd(char v2)
{
 i2c_write((TWDR&=~0x03));
 i2c_write((TWDR &= 0x0F));
 i2c_write((TWDR |= (v2 & 0xF0)));
 toggle();

 i2c_write((TWDR &= 0x0F));
 i2c_write((TWDR |= ((v2 & 0x0F)<<4)));
 toggle();
}

void lcd_dwr(char v3)
{
 i2c_write((TWDR|=0x01));
 i2c_write((TWDR &= 0x0F));
 i2c_write((TWDR |= (v3 & 0xF0)));
 toggle();

 i2c_write((TWDR &= 0x0F));
 i2c_write((TWDR |= ((v3 & 0x0F)<<4)));
 toggle();

}

void lcd_msg(char *c)
{
 while(*c != 0) //Wait till all String are passed
 lcd_dwr(*c++); //----Send the String to LCD
}

int main (void)

{

 i2c_init(); //initialize i2c
 i2c_start(); // start i2c
 i2c_write(0x4E);
//01001110=4E
 //(Device Address)
 lcd_init(); //initialize LCD

 float Percentage=75.5; //Message %
 char buffer_str[10]; //buffer
 dtostrf(Percentage,5,1, buffer_str);

 // converting float to string

 lcd_cmd(0x80); //Cursor start of Line 1
 lcd_msg("Expected ES Lab"); //Message
 lcd_cmd(0xC0); //Move cursor to Line 2
 lcd_msg("Result ");
 lcd_msg(buffer_str);
 lcd_msg("% :)");

 while(1)
 {}
}

Embedded Systems Lab Lab 09 AVR I2C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

90

