1921-2021

NED University of Engineering & Technology
Department of Electrical Engineering

LAB MANUAL

EMBEDDED SYSTEMS
(EE-354) For T.E.(EE)

Instructor name:

Student name:

Roll # Batch:

Semester: Year:

LAB MANUAL
For the course
EMBEDDED SYSTEMS
(EE-354) For T.E.(EE)

Developed by:
Mr. Hassan-ul-Hag, Mr. Hafiz Muhammad Furgan & Ms. Aiman

Approved By

The Board of Studies of Department of Electrical Engineering

02+(779/Z) sHew oz 01 pajeas syJe|N qe [euld [e1ol [euod wexa Q3N uo Anus 104

79 10 INQ 81005 211Ny [euly [e10] 136 01 8A0GR WY S8I00S [210) OM] PPy

Z€ Jo1no |e10 . Z€101N0 [e10 |
leuld 130/M149d
JUBWIAA3IYJE JO JU8IXT 1UBWAABIYIE JO JU3IXT
=1 d + S :0€ 40 10 S[euoIssas ge| [e10] [erod wexa 3N uo Aljus 104
=d G(00T/V) :$3Jew G 0] Pa[eds aouepuany
=V :euod woly abejusdtad souepusny ge
=S G2«(26T/4) Syfew Gz 0} pafeds
=y 26T 40 IO 2102s 21IgNY [e101 136 03 BAOQE WOJY S3I0IS [10} XIS PPY
2€401n0 €101 2€401N0 [Bl0L 2€ 40 1IN0 [e101
#0e # Qe #0e
JUBLIAABIYDE JO JUdIXT JUBWIAA3IYJE JO JU8IXT 1UBWABIYIE JO JU3IXT
2€J01N0 [el0L Z€J01no [ejoL Z€J01no [ejoL
e #0e #qe
JUBWIAABIYDE JO JUsIXT JUBWIAABIYJE JO JU8IXT UBWAABIYIE JO JU3IXT

[Burjeas ou yum Jeuiod 390 uo aie Asy) se palaiua aq 01] WialsAS SIIN IGO0 Ul Ailug ereq Joy S198ys dugny Jo Arewwing

CONTENTS
Psychomotor: P3

CLO: Duplicate wiring connections for given circuit design while manipulating the embedded software with
C/Assembly IDE in order to change system behavior.
PLO: Lifelong Learning- PLO 12

S. No. Date Title of Experiment Total Marks Signature
To set-up the Code::Blocks IDE with AVR toolchain
1 and test an AVR project on the ATmega328P
microcontroller
2% To program the AVR ATmega328P 1/0 (Input/Output)

ports for digital input and output

* To program the ATmega328P for reading analog input
through its Analog-to-Digital Converter ADC module

To utilize the USART (Universal Synchronous /

4% Asynchronous Receiver /Transmitter) of ATmega328P
for transmitting and receiving data though

asynchronous serial communication with PC

To interface an LCD (Liquid Crystal Display) screen

5* with ATmega328P by sending required commands and
data
To utilize SPI (Serial Peripheral Interface) protocol for
6* interfacing the max6675 module with ATmega328P

and develop temperature measurement system based on
the K-type thermocouple

To configure the Timer/Counter registers of AVR
7* ATmega328P for generation of PWM (Pulse-Width
Modulation) signals

To interface analog voltage sensor ZMPT101B for
g* measurement of phase voltage and display its true RMS

(Root Mean Square) value on LCD (Liquid Crystal
Display) screen

To set up Inter-Integrated Circuit (12C)

9 communication on Atmega328P micro-controller for
controlling a 16x2 LCD screen through PCF8574 12C

1/0 (Input/Output) expander

* RUBRIC based assessment

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain
NED University of Engineering & Technology Electrical Engineering Department

| LAB SESSION 01 |

OBJECTIVE:

To set-up the Code::Blocks IDE with AVR toolchain and test an AVR project on the ATmega328P
microcontroller

LAB OUTCOMES:

By the end of the lab, you would be able to:

1) Install the Code::Blocks IDE with an AVR toolchain using (WinAVR)
2) Create an AVR project with the required compiler settings
3) Test the created project on ATmega328P microcontroller using AVRDUDE

BACKGROUND:

The ATmega328P is an 8-bit microcontroller based on the AVR RISC architecture. It is produced by
Microchip Technology. The ATmega328P has 32 KB of flash memory, 2 KB of RAM, and 1 KB of
EEPROM. It has 23 general-purpose I/O pins, a 16-bit timer/counter, a 8-bit timer/counter, a real-time
clock, a pulse-width modulation (PWM) unit, a serial communication interface (USART), a two-wire
interface (TWI1), and an analog-to-digital converter (ADC).

The ATmega328P is a popular microcontroller for a variety of projects, including robotics, home
automation, and wearables. It is also used in the Arduino Uno, Arduino Pro Mini, and Arduino Nano
microcontroller development boards. The ATmega328P is a powerful and versatile microcontroller that can
be used in a wide variety of applications. It is a popular choice for hobbyists and professionals alike.

We will be utilizing ATmega328P (Arduino UNO DIP R3) throughout Embedded Systems Lab work and
will program it in C-language. To program the microcontroller, we will use the following:

e Avrdude is a command-line utility for programming AVR microcontrollers. It can be used to write
firmware to the microcontroller's flash memory, erase the flash memory, and read the contents of the
flash memory.

¢ WInAVR is a software package that includes avrdude, as well as a compiler, assembler, and a number
of other tools for developing applications for AVR microcontrollers.

e Code::Blocks is an integrated development environment (IDE) that can be used to develop applications
for AVR microcontrollers. It includes a graphical user interface for editing and compiling code, as well
as a debugger for stepping through and debugging code.

Avrdude and Winavr are essential tools for developing applications for AVR microcontrollers.
Code::Blocks is a powerful IDE that can make the development process easier.

LAB TASKS

The first two lab tasks guide you to installation of the required IDE and toolchain. The setup files can be
easily found and downloaded from the internet. However, these setup files are available on this shared
folder too.

TASK 1: To install Code::Blocks IDE with AVR Toolchain

Follow the given step-by-step procedure to first install the Code::Blocks IDE on your system.

Embedded Systems Lab

Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology

Electrical Engineering Department

1) To download the required setup files from the internet, search CodeBlocks and go to
https://www.codeblocks.org/downloads/. Select Download the binary releases. Select the setup
package depending upon your platform like Microsoft Windows in our case. From the given setup files,
select codeblocks-20.03-setup.exe as shown in Figure 1. Click on one of the Download From options
for example Sourceforge.net. For a 32-bit operating system type, you can select codeblocks-20.03-

32bit-setup.exe.

2) Once the setup file is downloaded, click on it to begin the installation process. Select the default option
and follow the installation steps as suggested by the wizard. After a few minutes of decompressing and
install files, click YES when prompted to start Code::Blocks. This should yield the IDE shown in
Figure. For now, select OK if it fails to auto-detect the compiler.

Code-Blocks / Downloads

Downloads

eront w

« Download the binary release

= 2y =y o1 etallre] Corm Blocks Dawnload the S=iua Fl fun it o0 yeur computer 29
te:Blocks wil b2 installed, ready for you ta wenk with it Cant get any easier than that!

Download a nightly build

lec! nightly bullds availakle n the forums Pleass note tat we

Figure 1: DoWhIoad Code::Blocks

& &

@ sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows/codeblocks-20.(
SOURCEFORGE

Open Source Software Eusiness Software

SIEMENS

/ Code-Blocks

Code::Blocks

AfreeC, C++and Fortran IDE
Brought toyou by:

GetUpdates ‘Share This Problems Downloading?

codeblocks-20.03-setup.exe | Scanned for malware v

Other Useful Business Software

Figure 3: Downlod Source

g indow
(1] Microsoft Windows

File Download from

[codeblocks-20.03 setup exe
Codeblocks-20.03-setup-nonadmin cxe
codeblocks-20.03-nosetup.zip
codeblocks-20.03mingw-setup.xe
codeblocks-20.03mingw-nosetup.zip
codeblocks-20.03-32bit-sctup.cxe
codeblocks-20.03-3 2bit-setup
codeblocks-20.03-32bit-nosetup zip
codeblocks-20.03mingw-32bit-setup exe
codeblocks-20.03mingw-32bit-noserup.zip FossHUB or Sourceforse.net

FossHUB or Sourceforge net

FossHUB or Sourceforze.net
FossHUB or Sourceforge net
FossHUB or Sourceforge.net
FossHUB or Sourceforge net

FossHUB or Sourceforge net
exe FossHUB or net

FossHUB or Sourceforge net

FossHUB or Sourceforge net

NOTE: The codeblocks-20.03-setup.cxe file includes Code:Blocks with all plugins. The codeblocks-20.03-setup-
nonadmin.exe file is provided for convenience to users that do not have administrator rights on their machine(s)

NOTE: The codeblocks-20.03mingw-setup.exe file includes additionally the GCC/G+/GFortran compiler and GDB
debugger from MinGW-W64 project (version §.1.0, 32/64 bit, SEF).

Figure 2: Select Source and File Type

(37 CodexBlocks Installation - X

Welcome to CodeBlocks Setup

Setup will guide you through the installation of CodeBlocks.
Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue.

Cance
Figure 4: Starting Installation Wizard

https://www.codeblocks.org/downloads/

Embedded Systems Lab

Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology

(37 Code:Blocks Installation

License Agreement
Please review the license terms before installing CodeBlocks.

Press Page Down to see the rest of the agreement.

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble|

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install CodeBlocks.

< Back

Figure 5: License Agreement

& Code:Blocks Installation

Choose Install Location
Choose the folder in which to install CodeBlocks.

Setup will install CodeBlocks in the following folder. To install in a different folder, dick Browse
and select another folder. Click Install to start the installation.

Destination Folder

I | C:\Program Files\CodeBlocks

Space required: 88.1MB
Space available: 63.5 GB

Mullsoft Install System 3,05
< Back

Figure 7: Destination Folder for Installation

. Start here - Code:Blocks 20,03 - ol
File Edit View Sesrch Project Budd Debug Fomran waSmith Tools Took Plugins DoxyBlocks Settings ‘
Help.

'eB® L3 X8 e v no|ED

Management x

* Projects | Files | Fsymbols [*//|

Workspace
Q worksp:

) | i
B]

Rels 003 rey 11983 (2020-03-12 182430 gce 810
6401t

o

Logs & ctmers.

Qpenan Tip

existng o

‘project el 4
x

' 7 CodeBlocks X (J Search results X | (2 Ccce X | {¥Buildlog X | # Buile®

WindowsXPLooklFeel

Current compser ‘GHU GCC Compiler for AVR' doesn't have correctly defined

debugger!

Infis scaing facior is 1,000 (actuat 1.000)

Running startup script

Scrpt plign registered: Find Broken Fles pligh

‘Scrpt/functon ‘eat_startup_script scre regatered under meny ‘S Setings/-£dt startup scryt

SpelChecter Thesaurus fles C'Program FlesiCodeBlocksisnareicodebocksiSpelChecker ¥

Figure 9: Code::Blocks IDE

Electrical Engineering Department

(.7 Code:Blocks Installation

Choose Components
Choose which features of CodeBlocks you want to install,

install. Click Next to continue.

Check the components you want to install and uncheck the components you don't want to

Select the type of install: I Full: All plugins, all tools, just everything

VI

Or, select the optional
components you wish to
install:

Default install
Contrib Plugins
B CBP2Make

Space required: 88.1MB

Mullsoft Install System v3.05
< Back
Figure 6: Plug-in Selection

‘:" Code:Blocks Installation

Installing
Please wait while CodeBlocks is being installed.

Create shortcut: C:\Users\Shaheryar\AppData\Roaming Microsoft\Windows \Start Menu\Progr

Extract: cb_shq B) ~
Output folder: {7 Code:Blocks Installation rtMen...
Create shortcul tart M...
Output folder: .
Extract: ChLa Do you want to run Code::Blocks now?
Create shor tart M
Output folder:
Created uninst E No
Output folder:{ . - i -) _ frtMen...
Create shortcut: C:\Users\Shaheryar\AppData\Roaming\Microsoft\Windows\Start M...

Nullsoft Insta 1 5
< Back Next > Cancel
Figure 8: Installation Completion
Compilers auto-detection [m] X

Note: After auto-detection, at least one compiler's master path is still empty and therefore invalid.

Inspect the list below and change the compiler's master path later in the compiler options.

Select you favourite default compiler here:
Compiler

Status fal Set as default

Current default compiler. GNU GCC Compiler

=]

Figure 10: Ignore Compiler Status

Embedded Systems Lab

Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology

Electrical Engineering Department

3) The Code::Blocks IDE is now ready and would allow you to create projects. Since our aim is to develop
AVR Projects, therefore, we first need to install AVR Toolchain. For this we will make use of WinAVR.

4)

Search for WinAVR and go to https://sourceforge.net/projects/winavr/files/latest/download. Click on

Download. It will start downloading the latest WinAVR package.

Click on the downloaded file to start the setup wizard. Follow the steps shown in figures and select the
correct features to be installed. The WinAVR package has the required avrdude as well as GNU GCC
Compilers.

5)

WinAVR

Brought 10 you by:

ekdekok

Last Update:

Project Activity N
Figure 11: Source to Download WinAVR
& WinAVR 20100110 Setup - X

Welcome to the WinAVR 20100110
Setup Wizard

This wizard will guide you through the installation of WinAVR
20100110,

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue.

Conce
Figure 13: Setup Wizard
& WinAVR 20100110 Setup — X

Choose Install Location
Choose the folder in which to install WinAVR 20100110,

&®

Setup will install WinAVR 20100110 in the following folder. To install in a different folder, dick
Browse and select another folder. Click Next to continue.

Destination Folder

:\WinAVR -20 100110

Browse...

Space required: 262,2MB
Space available: 63.3GB

< Back Next > Cancel

Figure 15: Destination Folder

€

This PC > Downloads

Date modified

- Name Type
~ Today (2)
@ WinAVR-20100110-install 04/03/2023 9:15 pm Application
(# codeblocks-20.03-setup 04/03/2023 857 pm Application
Installer Language X
géE Please select a language.
English ~
o] [o
Figure 12: Run Dwonloaded Application File
& WinAVR 20100110 Setup - X
License Agreement

@

Please review the license terms before installing WinAVR 20100110.

Press Page Down to see the rest of the agreement.

"'VII'!F\UR Licensing Information ~

IGNU Binutils is distributed under the GNU GPL License.

IGNU Compiler Collection (GCC) is distributed under the GNU GPL License,

avr-ibc is distributed under a BSD License.

lavrdude is distributed under the GNU GPL License.

IGNU Debugger (GDB) is distributed under the GNU GPL License.

Insight is distributed under the GNU GPL License

ISimulAVR is distributed under the GNU GPL License

AVaRICE is distributed under the the GNU GPL License. v

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install WinAVR 20100110,

< Back Cancel

Figure 14: License Argeement

@5 WinAVR 20100110 Setup - X
Choose Components
Choose which features of WinAVR 20100110 you want to install. @
Check the components you want to install and uncheck the components you don't want to
install, Click Install to start the installation.

Select components to install: | []SS

[“] Add Directories to PATH (Recommended)
[“] nstall Programmers Notepad

Space required: 262.2M8

< Back Cancel

Figure 16: Choose Components for Installation

https://sourceforge.net/projects/winavr/files/latest/download

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain
NED University of Engineering & Technology Electrical Engineering Department

@ WinAVR 20100110 Setup

Completing the WinAVR 20100110
Setup Wizard

WinAVR 20100110 has been installed on your computer.

Click Finish to dose this wizard.

==
Figure 17: Finish Installation

6) Before you create and start working on a project, verify that directories are correctly added to the system
path. To do this, open the command prompt by searching cmd in the Windows search option. In the
command prompt, simply write avrdude. You will see the message shown in Figure if it is correctly
added else you will see the error message shown in Figure.

=X

partno>
baudrate> O 2 baud rate.
bitclock> ify JTAG/STK v2 bit clock period (us).
nfig-file> fy location configuration file.
rogrammer> Specify programmer type.
Disable auto erase for flash memory
ISP Clock Delay [in microseconds]
fy connection port.
invalid signature check.
'm a chip erase.
'm RC oscillator calibration (see AVR@
format]
lemory operation specification.
Multiple -U options are allowed, each request
ed in the order specified.
Do not write anything to the device.
Do not ve V.
Disable safemode, default when running from a script.
Silent safemode operation, will not ask you if
ould be changed back.
rminal mode.
rammer exit specifications.
ed_param> to programmer.
-y Count rase cycles in EEPROM
-Y <number> Initialize erase cycle # in EEPROM.
-v Verbose output. -v -v for more.
Quell progress output. -q -q for 1
Display this usage.

Figure 18: Testing avrdude through Command Prompt

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

7)

Command Prompt ~ - *

Microsoft Windows [Version 10.0.19045.2604]
(c) Microsoft Corpor

‘avr s N gnized as an internal or external command,

operable program or batch file.

C:\Users\Shaheryar>

Figure 19: Error-avrdude is not recognized as internal command

After this write path to verify that the required directories shown in the figure are added to the system

10\utils\
ram Files

rs\Shaheryar>

Figure 20: Verifying Directories Added in System Path

TASK 2: To create an AVR Project with the required compiler settings

Now you are ready to create and build an AVR project through the Code::Blocks IDE. The following steps
guide you to create the project and set the compiler settings required to build the project. Follow the steps

given below.

a) Creating AVR Project:

1) Open the Code::Blocks. Go to File> Create >Project.... Select AVR Project and click Go. Select
Next.

2) Atthis step, you are asked to give project title and select folder to create project files. Give any
suitable name to your project for example here, we have called it Projectl. A new folder ES Labs is
created on the desktop and is chosen as project folder. After this, click Next.

3) Now, make sure the selected compiler is GNU GCC for AVR and keep the remaining settings as
shown in the figure. Then click Next.

4) The processor we have selected for ES labs is ATmega328P. Select it from the dropdown menu
carefully and keep the rest of the settings as shown in the Figure. Then click Finish

5) You will see your created project Projectl folder created in the Projects tab workspace. Click on the

Project Name > Sources. This folder will show 2 files; main.c and fuse.c, double click on the main.c
file to open it. It is a blank file template created for the AVR project. This is where you will write a
code.

Embedded Systems Lab

Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology

Electrical Engineering Department

‘e eI N L |QpEa~aamn e
New from template

Y (/r<|®F ;e @ |Projects Category: | <All categories>
| | Build targets

AL Pale = Fe Qs an. m LT

=

fi 3| | |Files e - o0 ,j; Cancel
| | Custe N = 1
i X1 startnere x| [FOR ates || ARM Projeft AVR Project | Arduino Code:Blo.. Console
'oPto)eﬂs Files FSy* Project plugin application
Workspace
2 o 9 .-
D DirectyX Dynamic Empty FLTK project
application project LinkLibrary project
| 0 swr
8 8 8 & &
FortranDLL Fortran Fortran GLFW GLUT
application library project project
& A 2 View as
@ & © 8 . v
GTK+ Irrlicht Java Kemel Lightfeather @ Large icon
project project application Mod.. project Olist
| s - A -~ n 7
Logs B ahers |y, Try right-clicking an item
¢ [2 code:s|
WindowsXPLook 1. Select a wizard type first on the left
otial scaling Q2. Select a specific wizard from the main window (filter by categories if needed)
unning startup)
Script plugin reg 3. Press Go
AVR Project L
Please select the folder where you want the new project B
to be created as well as its title. 1
4
Project title: [
AVR Project | Project ‘ |
Folder to create project in:
| CA\Users\Shaheryar\Desktop\ES Labs ‘E
Project filename:
| Projectl.cbp ‘ 1
Resulting filename: b
| CA\Users\Shaheryar\Desktop\ES Labs\PrDjecﬂ\Projecﬂ‘
k
< Back Next = Cancel

Figure 23: Project Details

AVR Project X

Welcome to the new Atmel AVR project wizard!
This wizard will guide you to create a new Atmel
AVR project.

When you re ready to proceed, please click
“Next"..

AVR Project

[[] Skip this page next time

< Back Next > Cancel

Figure 22: AVR Project Wizard

AVR Project X

Please select the compiler to use and which configurations
you want enabled in your project.

Compiler:

AVR Project GNU GCC Compiler for AVR

Create "Debug” configuration:

"Debug” options
Qutput dir.:

‘ bin\Debug ‘

Objects output dir.: ‘ obj\Debug ‘

Create "Release” configuration: | Release

“Release” options

Output dir.: ‘ bin\Release

Objects output dir. ‘ obj\Release

< Back Cancel

Figure 24: Compiler Selection

Embedded Systems Lab

Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology

Electrical Engineering Department

AVR Project

o

AVR Project

| atmega328p v|

[[]Use external memory

0x801100

Define F_CPU with the following value:

Create symbol map file (map)

Create hex files (hex .eep.hex)

|:| Create Motorola S-Record files (.srec .eep.srec)
|:| Create Binary files (bin .eep.bin)

Create Fuse, Lock, Signature files (fuse lock .sig)

Create extended listing file (Iss)

Run avr-size after build
—

< Back Cancel

Figure 25: Choosing Processor for AVR Project

b) Compiler Settings:

=]

File Edit View Search Project Build Debug Fortran

0@‘@-%|%“&\%@[}‘3@m Debug

i | <global> ~ ||main{void) : int

wxSmith

Tools

Tools+

;%—ﬂxwuh\%;ﬁ]oﬂ»qu

[a3
Management x mainc
* Projects Files Fsy.* 1
G Workspace 2
= P8 Project1 3
- Sources 4 4include <avr/io.h>
i e 5
6 int main(veoid)
y = =
g
9
10
11 while (1)
12 ;
13
14 return 0;
5 }
16

Figure 26: Created Empty Project with main.c

and fuse.c files

Before we write instructions for our first test project, let’s first complete the required compiler settings
that will be needed for all AVR projects.

6) Now, go to Settings > Compiler.
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks @ Settings Help

7)

tpEALIINERE

§1|‘;M$<|,‘

QR &S0

Aidob D)

] L

Management

* Projects

Files

[RV R ——

Under the Selected Compiler dropdown menu, select GNU GCC Compiler for AVR and click Set

X

FSyl*

Global variables...

Scripting...

Edit startup script

Debug v) U Environment... i
E‘Iifnr]
7 - I Compiler.. Jﬁ

“ @ > L cfha & ! Debugger...

Figure 27: Accessing Compiler Settings Option

as default. From the different tabs right below this, select Toolchain executables. For Compiler’s
installation directory, click Auto detect. It should show the auto detected installation path as the one

folder by browsing through ... option beside Auto-detect. Click OK.

where WinAVR destination folder was selected earlier. If it fails to do so, you can manually select the

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department
| er se O X
Global compiler settings -
i |] selected compiler
| GNU GCC Compiler for AVR v
Set as default Copy Rename Delete Reset defaults

Global compiler

settings Compiler settings Linker settings Search directorieQTOOkhain executables Custom variables Buildo * | *
P : '\‘
g- Compiler's installation directory 0
T ——

IE ' X :I Auto-detect

Profiler settings N o Auto-detected installation path of "GNU GCC Compiler for AVR”
ing"C\WinAVR-20100110"
Pro
o il
’5 Cd |—|OK
= C++ compiler: | avr-g++.exe ot

Figure 28: Specifying the Compiler and Installation Directory in Toolchain Executables

any of the "Additional

This will update a number of things for these settings. Verify each as shown in the following figures.
Compiler settings U x

V ~
i ‘ Set as default Copy Delete Reset defaults

Global compiler
settings Compiler settings Linker settings Search directories Toolchain executables Custom variables Buildo/ 4 | *
|
Compiler's installation directory
‘ CAWIinAVR-20100110 .. | Auto-detect

. B} MNOTE: All programs must exist either in the "bin" sub-directory of this path, or in any of the "Additional
Profiler settings

Program Files Additional Paths

i iler:
C compiler: avr-gcc.exe

= C++ compiler: avr-g++.exe

Linker for dynamic libs: | avr-g++.exe

|

|

Batch builds |
Linker for static libs: |

avr-ar.exe
Debugger: --- Invalid debugger --- e
Resource compiler: | ‘
Make program: | make.exe ‘

Figure 29: Specifying the Program Files in the Compiler’s Installation Directory

The Program Files and Additional Paths tabs under the Toolchain executables will be updated as
shown.
Compiler settings Linker settings Search directories Toolchain executables Custom variables Buildo * | *

Compiler's installation directory

CAWInAVR-20100110 . | Auto-detect
MNOTE: All programs must exist either in the "bin" sub-directory of this path, or in any of the "Additional

Program Filesy Additional Paths

CA\WInAVR-201001104utils\bin

Figure 30: Additional Paths in Toolchain Executables

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain
NED University of Engineering & Technology Electrical Engineering Department

Go to Search directories tab and check that C:WinAVR\avrinclude is added in the Compiler tab.

Linker se‘rtingsl Search directories ITDUIchain executables Custom variables Build options Other settir| * | *

Compiler Linker Resource compiler

Policy:

| CAWinAVR\avr\include |

Figure 31: Verifying the Search Directories

Select Compiler settings tab at the left-most. Check the Optimize generated code (for size) [-Os]
option.

Selected compiler

GNU GCC Compiler for AVR M

L Set as default Copy Rename Delete Reset defaults

Compiler settings JLinker settings Search directories Toolchain executables Custom variables Build options Other settings

Policy:

Compiler Flags Other compiler options Other resource compiler options #defines
[-03]
Don't keep the frame pointer in a register for functions that don't need one [-fomit-frame-pointer]
Expensive optimizations [-fexpensive-optimizations]

Link-Time-Optimization [-flto]

ooood

Optimize even more (for speed) [-02]

Optimize fully (for speed) [-03]

Optimize generated code (for speed) [-O] |:|
Optimize more (for speed) [-01] D
Strip all symbols from binary (minimizes size) [-s] |:|
El AVR CPU architecture derivatives
AT43USB320 [-mmcu=at43usb320] |:| W

Figure 32: Optimization Settings for Compiler

8) Click OK to close the window. The GNU GCC Compiler is set as default with the required compiler
settings needed for now.

c) Add Code and Build Project:
1) Update the main.c file opened in the Editor window with the code given in Figure and save the file
(Ctrl+S). This is a test code that causes the LED on board blink with a delay of 1000msec (1sec).

10

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain
NED University of Engineering & Technology Electrical Engineering Department

#include <avr/io.h>
#define BLINK_DELAY_MS 1000
#include <util/delay.h>
int main (void)
{
// Arduino digital pin 13 (pin 5 of PORTB) for output
DDRB |=0B100000; // PORTB5
while(1) {
// turn LED on
PORTB |=0B100000; // PORTB5
_delay_ms(BLINK_DELAY_MS);
// turn LED off
PORTB &=~ 0B100000; // PORTB5
_delay_ms(BLINK_DELAY_MS);

}
}

Figure 33: Test Code - LED Blink

File Edit View Search Project'IBuiIdiDebug Fortran wxSmith Teools Tools+ Plugins DoxyBlocks Settings Help

PO 3 YR RIAREI> Ee LN OB

Management o

main.c X
| Projects | Files | FSymbols | * 1 $include <avr/ia.h>
) Workspace 2 #define BLINK DELAY MS 1000
Elﬂ Project1 3 $include <util/delavy.h>
EIB Sources 4 int main (void)
----- j fuse.c 5 H«
. j miain.c [Arduino digital pin 13 pin 5 of PORTEB) for output
) DDRE |= OQB1000Q0O0; PORTES
8
9 [while(1l)
10 turn LED on
11 PORTE |= O0B100000; PORTES
12 _delay ms(BLINK DELAY MS);
13
14 turn LED off
15 PORTE &= ~ QB100000; PORTES
16 _delay ms(BLINE DELLY M5):
17 o }
18 i
19 =

Figure 34: Updating main.c File with Test Code

2) Now select Build > Build. For a successful build, the Build Log below will show the following
message with 0 errors and O warnings.

11

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain
NED University of Engineering & Technology Electrical Engineering Department

Logs & others x

¢ |# CodexBlocks (), Search results) Ceec aEuild log f Build messages | CppCheck/Vera++ ¥ CppCheck/Vera++ messages #| Cscope uDebugger v

"~
—————————————— Build: Debug in Projectl {compiler: GNU GCC Compiler For AVR)---------------
avr-gec.exe -Hall -mmeu=atmega3Z8p -DF_CPU=16000000UL -g -Os -IC:\WinAVR-20100110\avriinclude -c main.c -o obj\Debugimain.o
avr-gec.exe -L"C:\Program Files\CodeBlocks\MinGW\lib" -LC:\Users\Aiman\Desktop\ES\check -LC:\WinAVR\avrilib -LC:\WinAVR-20100110\avrilib -o bin\Debug
“Projectl.elf obj\Debug\fuse.o cbj\Debugimain.c -mmeu=atmega3Z8p -Wl,-Map=bin\Debug'Projectl.map,--cref
Output file is bin\Debug\Projectl.elf with size 4.63 KB
Bunning project post-build steps
avr-size --meusstmega3ZSp --format=avr bin\Debug\DProjectl.elf
emd je "avr-cbjdump -h -5 bin\DebugiProjectl.elf > bin\DebugiProjectl. lss"
AVE Memory Usage

Device: atmega328p

Program: 172 bytes (0.5% Full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% Full)

{.data + .bss + _noinit)

avr-cbjcopy -R .eeprom -R _fuse -R _lock -R .signature -0 ihex bin\Debug\Projectl.elf bin\DebughProjectl_hex

avr-cbjcopy --no-change-warnings -j _eeprom —-change-section-lma _eeprom=0 -0 ihex bin‘\Debug\Projectl_elf bin\Debug\Projectl.eep
avr-cbjeopy --no-change-warnings -j .lock --change-section-lma .lock=0 -0 ihex bin'\DebugProjectl.elf bin\Debug\Projectl.lock
avr-cbjeopy --no-change-warnings -j _signature --change-section-lma _signature=0 -0 ihex bin\Debug\Projeetl.elf bin\Debug\Projeetl.sig
avr-cbjcopy -—-no-change-waznings -j .fuse -—change-section-lma .fuse=0 -0 ihex bin\DebugProjectl.elf bin\Debug\Projestl.fuse

sree_ecat bin\Debug\Drojectl.fuse -Intel -crop 0x00 O0x01 fset 0x00 -0 bin\DebugiProjectl.lfs -Intel

sree_ecat bin\Debug\Drojectl.fuse -Intel -crop 0x0L 0x0Z et -0x01 -0 bin\DebugiPrejectl.hfs -Intel

srec_ecat bin\Debug\Drojectl.fuse -Intel -crop 0x0Z 0x03 fset -0x0Z -0 bin\DebugiProjectl.efs -Intel

Frocess terminated with status 0 (0 minute(s), 6 sesond(s))

0 error(s), 0 warningis) (0 minute(s). & second(s)})

Figure 35: Build Log (Successful Build)

3) Upon successful build, you will see some new folders and files added to the project folder. Go to bin
and verify the addition of .hex file as shown in the figure.

*> This PC * Desktop » ESLlabs > Projectl

bin obj fuse.c main.c Projectl.cb
D

Figure 36: Project Folder Updated after Building the Project

> This PC * Desktop * ESLabs * Projectl *fbin * Debug

|| Projectl.eep
|| Project1.efs
|| Projectt.elf
|| Project1.fuse
| 1 Projectt.hfs
|| Project1.ifs
|| Projectt.lock
| | Projectt.ss
|| Projectl.map
|_| Project1.sig

Figure 37: Generated Files

Congratulations! You have generated the output file for our code written in the C language. This .hex
file is the one that will be uploaded to the flash memory of microcontroller ATmega328P for
execution of the code.

12

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

TASK 3: To test the project on ATmega328P microcontroller

Arduino UNO R3 DIP uses ATmega328P microcontroller IC. Therefore, we will be using the Arduino
UNO board to program the ATmega328P.

1) Connect Arduino UNO USB cable with your system port. The LEDs on your board should light-up to

verify that connection is made. The system might start installing the required drivers. To verify the
correct connection, go to Device Manager of your system, and check Ports (COM & LPT). If the
device is detected as Arduino UNO or USB Serial Device, note the port it is connected to. Here, we
can see Arduino UNO (COM3) so COM3 is the port. In case the system fails to identify the device,
you need to install Arduino Drivers. For this download the drivers from the internet or access through
the shared drive. Extract the folder contents. Then, right click on the device under Ports in the Device
Manager, and select Update Driver Software... and follow the Wizard. You will have to specify the
path of downloaded driver files.

k=1
File Action View Help
e @B Hm e R &RS
4 = Aiman
» i Audic inputs and outputs

> % Batteries

> M Computer

» o Disk drives

- B Display adapters

+ & DVD/CD-ROM drives

> UF‘, Human Interface Devices

> g IDE ATAJATAPI controllers

» %51 Imaging devices

» 2= Keyboards

» E] Memory technology devices
» }3 Mice and other pointing devices
- B Monitors

» ¥ Metwork adapters

T Ports (COM & LPT)

-
Figure 38: Arduino UNO R3 DIP Prmquess .
(ATmega328P) Figure 39: Arduino UNO Connection Port

1Y

There are 2 approaches to upload the generated code on ATmega328P flash memory. First we will
use AVRDUDE through Command Prompt instructions. Through this, you will be able to understand
the working of AVRDUDE for uploading the file to our microcontroller. Later, we will integrate this tool
to our Code::Blocks to eliminate the manual Command Prompt steps for our ease. Let’s begin the
interesting part of this lab.

a)

1)
2)

Uploading code to ATmega328P microcontroller using AVRDUDE through Command
Prompt

Open the Command Prompt by typing cmd in the Windows search.
First change the current directory to the folder path where Projectl.hex file is saved.
For example: C:\Users\Aiman\Desktop\ES Labs\Project1\bin\Debug
To do this, use cd command
cd C:\Users\Aiman\Desktop\ES Labs\Project1\bin\Debug

13

Embedded Systems Lab

Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology

Electrical Engineering Department

3) Now, type avrdude to verify that it is recognized (as has already been done). It display a list
of options available for usage with avrdude command. Read the description written with

each.

4) For now, we will use only the required ones and the details of which are given below. Note

that these

are case sensitive.

Table 1: avrdude Usage Options and Description

Options Description Example as applicable to the test case
-p Part No. (To specify the AVR device) In our case, it is m328p (Atmega 328p)
-P Port (To specify the Connection port) In our case, it is COM3
-C Programmer (To specify Programmer In our case, it is Arduino
Type)
-U Memory operation specification. In our case, flash is the memory type where

Required format is:

<memory type>:w:<file name>
Where, w shows

read the specified file and write it to the
specified device memory

we want to write the code saved in the
generated Projectl.hex file

5) Based on the above, write (type, don’t copy-paste) the following command in the Command

Prompt.

avrdude —p m328p —P com3 —c arduino —U flash:w:Projectl.hex

It will display some messages shown in Figure below. For successful upload of the hex file,

you will see the LED blinking at the specified rate.

vrdude :

UserssAiman~Desktop~ES Labs>cd C:wUserssAimansDesktopsES Labs“\Projectisbin-De

UserssAiman~Desktop~ES Labs“ProjectibinxDebugravrdude -p m3I28p —c arduino -P
com3 -l flash:w:Projecti.hex

AUR device initialized and ready to accept instructions

U BREREHEEHE R R R R B R B R R R R R Y | 108, 0.82s

: Device signature = Bxle?58fF

: MOTE: FLASH memory haz been specified. an erase cycle will be performed

To disable this feature, specify the —D option.

: erasing chip
: reading input file "Projectl_hex"

: input file Projectl.hex auto detected az Intel Hex

I writing flash (172 hytes):

U BREREHEEHE AR R R R B B R R R R R Y | 108 0.06s

= 172 bhytes of flash written

: verifying flash memory against Projectl_hex:
: load data flash data from input file Projectl.hex:
: dnput file Projectl.hex auto detected as Intel Hex

: input file Projectl.hex contains 172
: reading on—chip flash data:

hytes

U BREREHEEHE R R R R B R B R R R R R Y | 108 0.850s

: verifying ...
: 172 bytes of flash verified

: safemode: Fuses 0K

vrdude done. Thank you.

sUzerssAiman~Desktop~ES Labs“ProjectisbinDebug>

Figure 40: Uploading the .hex File to ATmega328P through Command Prompt avrdude

b) Uploading code to ATmega328P microcontroller using Code::Blocks tool

14

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain

NED University of Engineering & Technology Electrical Engineering Department

To avoid the time-consuming and intimidating Command Prompt interface, we will now add the
AVRDUDE tool to Code::Blocks. Follow the following steps:

1)

2)

3)

In your Code:Blocks IDE, click on Tools > Configure Tools > Add. In the Edit Tool
window, set the Name, Executable, Parameters and Working Directory as shown in Figure.
To set the executable browse the specified path of WinAVR folder, and select avrdude.exe.
Note, that in the parameters option, we have written the same avrdude command used earlier.
The working directory is set to be the one containing the .hex file. Click OK and close the

Tools Window.

Edit tool O x
)
MName: avrdude
Executable: CAWInAVR-201001100\bin\avrdude.exe
Parameters: -p m328p -P com3 -c arduino -U flashww:Project1.hex
Working directory: | Ch\Users\Shaheryar\Desktop\ES Labs\Project1\bin\Debug

Figure 41: Required Tool Settings

User-defined tools *
avrdude Move up
Move down
Add

Add separator

Edit

Remove

Close

Figure 42: Added Tool avrdude

Now, select Tools from the top menu bar once again. The name of tool just added for
example: avrdude will be available now above the Configure Tools option. Click the
avrdude and that’s it. The Log Window below will show the execution. Once the code is
uploaded to ATmega328P, you will observe the blinking LED.

To make it more generalized, we will now add a tool using macros. Here, instead of
specifying the exact file and project names and path, we will use macros that will do the
job and you won’t have to type it again and again for each of your projects.

15

Embedded Systems Lab Lab 01 Setting-up the Code::Blocks IDE with AVR Toolchain
NED University of Engineering & Technology Electrical Engineering Department

4) Go to Tools> Configure Tools. Either Edit the previous tool or use Add to add another
one. This time set the Parameters and Working Directory in terms of macros replacing
project name and path. Click OK.

Edit tool O >

P
Mame: avrdudedirect
Executable: CAWInAVRE-20100110\bin\avrdude.exe
Parameters: I_p m328p -P com3 -c arduino -U flashw ${TARGET_OUTPUT_BASENAME} hex
Working directory: ${PROJECT_DIR}P${TARG ET_OUTPUT_DIR}

Launching options

(@ Launch tool in a new console window and wait for a keypress when done
() Launch tool hidden with standard output redirected
(O Launch tool visible (without output redirection)

() Launch tool visible detached (without output redirection)

Figure 43:Adding avrdude with Generic Parameters and Working Directory

5) Now, modify the delay in your main.c file by replacing 1000 to 5000 for 5sec delay. Save it and
Rebuild the file using the Build> Rebuild option. The new file will replace the previously generated
hex file.

6) Now, upload this one by selecting the newly added Tool through Tools>avrdudedirect. Verify the
successful upload by blinking of LED at 5msec delays.

Congratulations! You have successfully created, built and tested your first AVR project on
ATmega328P using Code::Blocks with AVR Toolchain.

16

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

| LAB SESSION 02 |

OBJECTIVE:
To program the AVR ATmega328P 1/O (Input/Output) ports for digital input and output
LAB OUTCOMES:

By the end of the lab, you would be able to:

1) Identify the AVR ATmega328P I/O ports

2) Utilize DDR (Direct Data Registers) for setting direction of ports

3) Take digital input and set digital output through 1/O ports

4) Build required logics for digital inputs and outputs in pure C-language codes and test them on
ATmega328P microcontroller

5) Utilize logical operations for bit-wise manipulation of ports

“There are exactly 10 types of people in the world.
Those who understand binary numbers and those who don’t.”

If this doesn’t make sense to you, you need to brush up your number system’s knowledge which
is a pre-requisite to the course.

BACKGROUND:

ATmega328P Pin Diagram and 1/O Ports

Figure 1 shows ATmega328P pin diagram. Here, we can see total 28 pins (14 at each side). Throughout the
labs, we will be exploring functions of these pins and their utilization. Most port pins are multiplexed with
alternate functions for the peripheral features on the device i.e. they have dual roles. Note that enabling the
alternate function of some of the port pins does not affect the use of the other pins in the port as general
digital I/0. However, in this lab, we will focus on the pins that can be utilized for digital input and
output i.e. simple 1/O function, so don’t get intimidated by the pin diagram shown in Figure 1.

N
(PCINT14/RESET) PC6 [1 28 [1 PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PDO [2 27 [0 PC4 (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1] 3 26 [PC3 (ADC3/PCINT11)
(PCINT18/INTO) PD2 | 4 25 [PC2 (ADC2/PCINT10)
(PCINT19/0C2B/INT1) PD3 [5 24 [T PC1 (ADC1/PCINT9)
(PCINT20/XCK/T0) PD4 [6 23 [1 PCO (ADCO/PCINTS)
vee 7 22 [1GND
GND 8 21 [1AREF
(PCINT&/XTAL1/TOSC1) PB6 [9 20 [0 AVCC
(PCINT7/XTAL2/TOSC2) PB7 (] 10 19 [0 PB5 (SCK/PCINTS5)
(PCINT21/0CO0B/T1) PD5] 11 18 [0 PB4 (MISO/PCINT4)
(PCINT22/0C0A/AINO) PD6 [12 17 [A PB3 (MOSIOC2A/PCINTS)
(PCINT23/AIN1) PD7] 13 16 [1 PB2 (SS/0C1B/PCINT2)
(PCINTO/CLKO/ACP1) PBO] 14 15 [1 PB1 (OC1A/PCINT1)

Figure 1: Pin Diagram of ATmega328P

17

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

Ports as General Digital 1/0 Pins

Digital 1/0 pins on the AVR microcontroller are grouped into ports. Each port has up to eight pins assigned
to it. However, each pin can be individually configured. So, you can have a mix of input and output pins
on the same port.

The ATmega328P has 23 General Purpose Digital 1/0 Pins assigned to 3 GPIO Ports (8-bit Ports B, D and
7-bit Port C).

Ports are designated by a letter and pins are numbered starting at 0. For example, the first pin on port B is
named PBO and the third pin on port D is named PD2. The ports are bi-directional 1/0 ports. The pin driver
is strong enough (20mA) to drive LED displays directly.

Let’s consider Figure 2 which shows the names and locations of the pins on the ATmega328P for the DIP
package, as well as the corresponding locations on the Arduino Uno board. For those coming from an
Arduino background, there are a couple things to take note. Firstly, you may notice that not all the digital
1/0 pins are available for use on the Arduino Uno board. This is because these pins are being used for
alternate functions. PC6 is being used for device reset and PB6 and PB7 are connected to the crystal on the
board. Secondly, even though the analog pins A0 - A5 can be used with the Analog-to-Digital converter,
they may also be used for digital 1/0.

Now that we know the names of the pins and where they are located, we will learn how to configure them
using pure C-programming.

YT TRTe
£ || [=] [
R L L
R L N L

'Y YaYa
Ca||~I||S|[un
R ML A
R N N

AVR Port B Pins
AVR Port C Pins
Dn) AVR Port D Pins

Arduino Uno Digital Pins
An Arduino Uno Analog Pins

C

3

ool

Figure 2: Pins on the ATmega328P with the corresponding locations on the Arduino Uno board.

18

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

Configuring the Pin

Each port has three 1/0 registers associated with it, one each for the Data Register — PORTX, Data Direction
Register — DDRX, and the Port Input Pins — PINx. Also notice that each of the 1/0O registers is 8 bits wide,
and each port has a maximum of 8 pins; therefore each bit of the 1/O registers affects one of the pins.
Consequently, each port pin consists of three register bits: DDxn, PORTxn, and PINxn.

The Port Input Pins I/O location is read only, while the Data Register and the Data Direction Register are
read/write.

All registers and bit references in this section are written in general form. A lower case “x” represents the
numbering letter for the port, and a lower case “n” represents the bit number. However, when using the
register or bit defines in a program, the precise form must be used. For example, PORTB3 for bit no. 3 in
Port B, here documented generally as PORTxn.

]] I | I] | | |
1 | | | | | |
DDRx: 7 !'e !5 1 4 1 31 211 10
PORTx: 7,6 5 4 , 3,2 , 1,0
PIMNx: ¥ 1 6 1 5 0 4 1 3 1 2 11 10
u

Px?7 Px6 Px5 Px4 Px3 Px2 Px1 Px0

Figure 3: Relations between the Registers and the Pins of AVR
1) Role of DDRx (Data-Direct Register)

The DDRXx 1/O register is used solely for the purpose of making a given port an input or output port. To
make any pin of the port an output pin, we write 1 to the corresponding bit of DDRX register. It must be
noted that unless we set the DDRX bits to one, the data will not go from the port register to the pins of the
AVR.

To output data to all of the pins of the Port B, we first put 0b11111111 (0xFF) into the DDRB register to
make all of the pins output. To make a port an input port, we must first put Os into the DDRX register for
that port, and then bring in (read) the data present at the pins.

Notice that upon reset, all ports have the value 0x00 in their DDR registers. This means that all ports are
configured as input.

i Symbol Truth Table
[
[DDRx.n E
Bi £ \ J/I " En Input Output
in n o D I PORTX.N |
port x ~ Input Output 0 X Hi-Z

AVR chip AVR chip 1 1 1

I
|
I
I
QOutside the : Inside the
I
I
L

Figure 5: Buffer (DDRx.n is used an Enable pin in

Figure 4: The I/O Port in AVR Figure 4)

19

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

2) Role of PINx (Pin-Register)

To read the data present at the pins, we use PIN register. It must be noted that to bring data into CPU from
pins we read the contents of the PINX register.

3) Role of PORTx (Data-Register)

The PORTX register is used to send data out to pins.

Why program the AVR in C?

Compilers produce hex files that we download into the Flash of the micro-controller. The size of the hex
file produced by the compiler is one of the main concerns because microcontrollers have limited on-chip
Flash.

While Assembly language produces a hex file that is much smaller than C, programming in Assembly
language is often tedious and time consuming. On the other hand, C programming is less time consuming
and much easier to write, but the hex file size produced is much larger than if we used Assembly language.
The following are some of the major reasons for writing programs in C instead of Assembly:

1) Itis easier and less time consuming to write in C than in Assembly.

2) C is easier to modify and update.

3) You can use code available in function libraries.

4) C code is portable to other microcontrollers with little or no modification.

As seen in the last lab, we have used WinAVR GNU GCC Compiler for AVR.
Starting AVR Programming in C

This section provides a revision of basic syntax of C language, its data types, and functions which we will
be needing to build our logic for AVR programming.

When we create an AVR project in Code::Blocks, we get an empty main.c file with a basic template shown
in Figure 6.

main.c

#include <avr/io.h>

int main (void)

=

[==TNE I I W Y S PRI oS I

w

10
11 while (1)
12 ;
13
14 return 0;
15 }

16 -

Figure 6: main.c Template Code

Comments:
//Single line comment

/* Multiple line
Comment */
20

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

Header files:

The #include is a preprocessor directive that instructs the compiler to find the file in the < > brackets and
tack it on at the head of the file you are about to compile. The io.h provides appropriate 1/0 definitions for
the device we are using, and the delay.h provides the definitions for the delay function.

Statements control the program flow and consist of keywords, expressions, and other statements. A
semicolon ends a statement.

main (): All C programs contain the main() function that contains the code and is first run when the
program begins. main (void) means the function doesn’t take any input. ‘int main’ means that the function
needs to return some integer at the end of the execution and we do so by returning 0 at the end of the
program.

While Loop: It is a control flow statement that allows code to be executed repeatedly based on a given
Boolean condition. The while loop can be thought of as a repeating if statement. The while(1) will run the
loop forever because ‘1 is the definition of true (false is defined as 0).

Data Types: A good understanding of C data types for the AVR can help programmers to create smaller
hex files. In declaring variables, we must pay careful attention to the size of the data type and data range,
refer to the Table 1.

Remember that C compilers use the signed char as the default unless we put the keyword unsigned in front
of the char. In many situations, such as setting a counter value, where there is no need for signed data, we
should use the unsigned char instead of the signed char. Using the int instead of the unsigned char leads to
the need for more memory space.

Table 1: Data types widely used by C compilers

Data Type Size in Bits Data Range/Usage

unsigned char 8-bit 0 to 255

char 8-bit —128 10 +127

unsigned int 1 6-bit 0 to 65,535

int 16-hit 32768 to +32 767

unsigned long 32-bat 0 to 4,294 967 295

long 32-bit ~2.147 483 648 to +2 147 483 648
float 32-bit £1.175e-38 to £3 . 402e38

double 32-bit +1.175e-38 to £3.402e38

Declaring (Creating) Variables: type variableName = value;

Where type is one of C types (such as int), and variableName is the name of the variable (such as x or
myName). The equal sign is used to assign a value to the variable.

Delay functions: One way of generating time delay is to use predefined functions such as _delay_ms()
and _delay_us() defined in delay.h in WinAVR For this, we need to include the header file delay.h For
example: #include <utils/delay.h>

Constants: Data that cannot be changed by the program. By convention, constants are named in capital
letters. These are defined at the start or in header files, then can be used anywhere in the code.

define PI 3.1415926

21

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

AVR 1/0O Programming in C

All port registers of the AVR are both byte accessible and bit accessible. Let’s first discuss and practice the
byte-size 1/0.

Byte size 1/0

To access a PORT register as a byte, we use the PORTX label where x indicates the name of the port. The
data direction registers are accessed using DDRX to indicate the data direction of port X. To access a PIN
register as a byte, we use the PINX label where x indicates the name of the port.

Writing C-Code for Giving Output from ATmega328P Pins

Considering the above discussion, let’s check how we can output digital high or low signal from
ATmega328P 1/0 pins.

Example 1-Output through 1/O Port to drive LEDs:

Consider the port D which has 8 1/0 pins. Let’s set the first 4 pins (D0, D1, D2 and D3) as output pins. This
is done by first setting the DDR register of port D as 0b00001111.

DDRD= 0b00001111 (or, DDRD = 0X0F)

Once the port pins are set as output pins, now we can output logic high or low at these pins. Here, we will
set the Port register’s corresponding last 4-bits high.

PORTD=0b00001111
Similarly, to set the alternate bits (DO and D2) low, we can use;
PORTD = 0b00001010 (or, PORTD = 0X0A in Hex)

The complete code is shown in Figure with corresponding connections. Note that, the DDR registers are
set outside the while loop in the main function once.

finclude <util/delay.h>

Arduino Uno R3 Text - ¥ @ A~ 1 (Arduino Uno R3)
1 | 1 #include <avr/io.h>

2 int main (void)

5 {

DDRD= 0b00001111; // PORTD Last 4 pins

while (1) {
// turn LED on
PORTD= 0b00001111;
_delay ms(1000);
PORTD= 0b00000000;
_delay ms (1000);

}

-
e
L 5

oNIngEy

Figure 7: Code and Connections for Example 1

22

-

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

Writing C-Code for Taking Input to ATmega328P Pins

Considering the port B which has 8 pins. Let’s set the pin PB0, PB1, PB2 and PB3 of port B as input pins.
To take input, we need to set the DDRB port first and then we can use the PINB for reading from the port
B pins.

DDRB= 0X00 // Setting all pins as input pins
temp = PINB //reading from PINB and saving it in temp variable
Example 2 — Taking Input through 1/O Ports from Switches:

$include <avr/io.h>
#include <util/delay.h>

int main (void)
{

unsigned char temp;

while (1)

temp = PINB;

PORTD= temp;
H
return 0;

1

Figure 8: Code and Connections for Example 2
Bit-wise Logic Operations in C for 1/0O Bit Manipulation

One of the most important and powerful features of the C language is its ability to perform bit manipulation.
You might be familiar with the logical operators AND (&&), OR (|[), and NOT (!), but might be less familiar
with the bit-wise operators AND (&), OR (]), EX-OR (%), inverter (~), shift right (>>), and shift left (<<).
These bit-wise operators are widely used in software engineering for embedded systems and
microcontroller-based system design and interfacing.

Masking for Bit Size 1/0

We use these bit-wise logical operations to access a single bit of a given register without disturbing the rest
of the byte. In this section you will see how to mask a bit of a byte.

Initially, the output port PORTD is set as;
PORTD = 0b 00000 0000; // All bits are clear

To set the 5" bit high without disturbing the other bits, we can perform bit-wise OR | operation of PORTD
register’s previous value with 0b00010000.

PORTD = PORTD | 0b00010000; // To set the 5% bit (bit # 4) only

Similarly, if PORTD is initially set as 0b11111111, and we just want to clear the 4™ bit (Bit #3) then we
can perform a bit-wise AND operation.

PORTD=PORTD & 0b111110111;

Irrespective of the value of a bit, the AND operation of the bit with 1 results in the previous value of the bit
i.e. it remains unchanged. Whereas, AND operation of a bit with O clears the bit.
23

//setting Port D data-dir reg for Output
DDRD= 0b00001111; // PORTD Last 4 pins
//3etting PortB data-dir reg for Input

//setting PortD equal to the Input read

DDRB = 0b0000000; //Same as DDRC= 0b00000000;

//Read Port C pins for Input from Switches

fr

om C

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

Similarly, the OR operation of a bit with 1, results in setting the bit high. However, OR operation with 0
leaves the bit unchanged.

Table 2: Bit-wise Logical Operators in C

AND OR EX-OR Inverter
A B A&B AlB A*B Y=~B
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1
1 1 1 1 0

To invert all bits, the bit-wise NOT (~) operator can be used.
PORTD =~PORTD;
Example 3 — Using logical operators for bit-wise 1/0 from ATmega328P ports

The following examples get the status of bit 3 of Port D and send it to the bit 0 of port D continuously.

3 finclude <avr/io.h> //standard AVR header
4 int main(void)
{ //bit 3 of Port D is input

DDED = DDED & 0OkR11110111;

//bit 0 of Port B is output

DDRE = DDEE | O0bOOOCOOO01;

while (1)

{

if {PIND & 0Ob0O0O00Q1000)

12 //set bit 0 of Port B to 1
3 FORTE = PORTE | 0bO00OO00QO0OO01;
else
//clear bit 0 of Port B to 0

PORTB = PORTB & 0b11111110;

ONInayy "= -

17 }

return 0;

Figure 9: Code and Connections for Example 3
Compound Assignment Operators
To reduce coding (typing) we can use compound statements for bit-wise operators in C.

Table 3: Compound Assignment Operators

Operation Abbreviated Expression Equal C Expression
And assignment a&=b a=ad&b
OR assignment al=b a=alb

24

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

Example 4 — Using compound assignment operators for bit-wise 1/O from ATmega328P ports

The Example 3 is re-written using the compound bit-wise operators. Observe the difference. Note that the
compound assignment operators ‘=" don’t have a space ‘| =’ in between.

: #include <avr/ic.h> //standard AVR header

4 int main(void)
s //bit 3 of Port D is input
DDRD &= 0bl1110111;
//bit 0 of Port B is output
DDRB |= 0k00000001;
while (1)
{
if (PIND & 0bO000O01000)
//set bit 0 of Port B to 1
PORTB |= 0b00000O001;
else
//clear bit 0 of Port B to O

PORTB &= 0b11111110;
1

return 0;

Figure 10: Code and Connections for Example 4
Shift Operation for Bit-Manipulation:

To do bit-wise I/O operation in C, we need numbers like 0b00100000 in which there are seven 0s and one
1. Only the position of the one varies in different programs. To leave the generation of ones and zeros to
the compiler and improve the code clarity, we use shift operations. For example, instead of writing
“0b00100000” we can write “0b00000001 << 5” or we can write simply “1<<5”. Sometimes we need
numbers like 0b11101111. To generate such a number, we do the shifting first and then invert it. For
example, to generate 0b11101111 we can write ~(1<<4).

LAB TASKS

From Task 2 to 5, create AVR projects and test them on ATmega328P. Feel free to use different conditional
statements, loops, switch-case structure to complete the C-programming related tasks.

TASK 1: Explain what makes the Blinky.c blink?

The code we tested in Lab 01 is given below. Explain what makes this Blinky.c blink?

//Blinky.c from Lab01
#include <avr/io.h>
#define BLINK_DELAY_MS 1000
#include <util/delay.h>
int main (void)
{
DDRB |=0B100000;
while(1) {
PORTB |=0B100000;
_delay_ms(BLINK_DELAY_MS);
PORTB &=~ 0B100000;
_delay_ms(BLINK_DELAY_MS); }

}

25

Embedded Systems Lab Lab 02 AVR Port Programming for Digital Input & Output
NED University of Engineering & Technology Electrical Engineering Department

TASK 2: To check and indicate the status of a sensor using the specified ports and bits of
ATmega328P

A door sensor (here, assume the switch) is connected to pin 1 of Port B, and an LED is connected to pin 5
of Port C. Write an AVR C program to monitor the door sensor and, when it opens, turn on the LED.

TASK 3: To use the general 1/0 pins of ATmega328P as input or output pin based on the
given condition

Write an AVR C program to monitor bit 7 of Port B. If it is 1, make bit 4 of Port B input; otherwise, change
pin 4 of Port B to output.

TASK 4: To control the specified pins of a given port without disturbing the rest of the pins

Write an AVR C program to control a set of 8 LEDs connected to port D such that the first 4 LED glow
when input from a switch is high, and remain off when the input from switch is low. The remaining 4 LED
toggle continuously without disturbing the rest of the pins of port D.

TASK 5: To control the output based on combination of 2 input pins

Write an AVR C program to read pins 0 and 1 of Port B and update the LEDs at pin 0, 1 & 2 of Port D
according to the following logic. You can use switch-case structure.

Input Port B [1:0] Status Output Port D [2:0] Status
0b 00 0b 000
Ob 01 Ob 011
0b 10 0Ob 101
Ob 11 Ob 111

26

Course Code: EE-354
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Embedded Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration

Equipment Identification | Completely Ability to identify Ability to identify
and Handling: unable to equipment but equipment and
Sensory skill to identify | identify makes mistakes in recognises all
equipment and its | equipment and recognising components,
components along with | components _ components, _ practices careful
adherence to safe | and no regard demonstrates and safe handling
handling to safe handling decent equipment

handling capacity
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to establish successfully
between computer and | connection _ software _ establishes
hardware kit and establish | verification connection software
connectivity with verification connection
software verification
Following step-by-step | Inability to | Able to recognise | Able to recognise | Able to recognise | Able to recognise

procedure to complete
lab work:

Observe, _imitate _and
operate hardware in

conjunction with software
to complete the provided
sequence of steps

recognise and
perform given
lab procedures

given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

given lab
procedures and
perform them by
following

prescribed order of
steps, with

frequent mistakes

given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

given lab
procedures and
perform them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Controller for given | selection and | of programming | and use of | and use of | and use of
Embedded System | use of | constructs and | programming programming programming
Problem: programming instructions but | constructs and | constructs and | constructs and
Imitate and practice given | constructs and | their use is | instructions with | instructions with | instructions with
embedded C instructions | instructions incorrect many syntax/logical | little to no | no syntax/logical

for implementing specific

errors

syntax/logical

errors

control strategy and store errors

required variables

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

many mistake

lesser mistakes

no major mistakes

occasional use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions in | and detect | messages in | messages in | messages in | messages in
Hardware and Software: | error messages | software but no | software and | software and | software and
Detect Errors/Exceptions | in software and | sense of | recognise them on | recognise them | recognise them on
and manipulate, under | hardware hardware error | hardware. Still | on hardware. | hardware.
supervision, to rectify the identification unable to | Moderately able | Reasonably ablein
embedded C program understand the | in understanding | understanding
error type and | error type and | error type and
possible causes possible causes possible causes
Visualisation, Unable to | Ability to | Ability to | Ability to | Ability to
Comparison and analysis | understand and | understand and | understand and | understand and | understand and
of results: utilise utilise utilise visualisation | utilise utilise
Copy or enter results in | visualisation, visualisation and | and plotting | visualisation and | visualisation and
analysis software to | plotting and | plotting instructions with | plotting plotting
visualise and compare | analysis instructions with | occasional errors. | instructions with | instructions
them with inputs. Use | software errors. Unable to | Able to partially | no errors. Able to | without errors.

analysis tools to compute
standard indices from
result

compute
standard indices

compute standard
indices

partially compute
standard indices

Able to compute
standard indices
completely

Page 2 of 2

Embedded Systems Lab Lab 03 ADC Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

| LAB SESSION 03 |

OBJECTIVE:

To program the ATmega328P for reading analog input through its Analog-to-Digital Converter ADC
module

LAB OUTCOMES:

By the end of the lab, you would be able to:

1) Identify the AVR ATmega328P pins associated with the ADC module

2) ldentify the purpose of different bits of ADC registers and utilize them for their set purposes like
setting reference voltage, selecting source of analog input, and indicating start / end of conversion

3) Take analog input through the ADC pins and indicate its digital equivalent

4) Build required logics for reading analog input in pure C-language codes and test them on
ATmega328P microcontroller

5) Verify the analog to digital conversion ADC of microcontroller pins by testing the digital output
through external DAC (digital-to-analog) R-2R circuit / DAC0808 IC

BACKGROUND:

Digital computers use binary (discrete) values, but in the physical world the signals are analog (continuous).
Most physical variables are analog in nature and can take on any value within a continuous range of values.
Temperature, pressure, humidity, and velocity are a few examples of physical quantities that we deal with
every day. For acquisition of analog signals, we need Analog-to-Digital (ADC) module for conversion.
Microcontrollers are therefore generally featured with ADC module. In this lab, we will explore
ATmega328P ADC input channels that enable us to capture analog signals.

Basics of Analog-to-Digital Conversion (ADC)
An analog-to-digital converter takes an analog input voltage and after a certain amount of time produces a
digital output code which represents the analog input. ADC involves the following steps:

e Sampling: Sampling is the processes of converting snalog
continuous- time analog signal into a discrete-time Input — R
signal by taking the “samples” at discrete-time Signal . Vol
intervals. Sampling analog signals makes them
discrete in time but still continuous valued. ; i)
Sampling frequency determines the intervals at I l\ jh
which samples are taken. Nyquist criterion requires Apc \ ;lf
that the sampling frequency be at least twice the < Quantize
highest frequency contained in the signal.

e Quantization: Quantization is the process of L ==
mapping continuous infinite values to a smaller set o0t
of discrete finite values. The quantization step size
is the smallest possible difference in amplitude [B
between samples.

H——

Digital Output

Encoding: After guantization, each quantization - . .
* g q d Figure 1. Analog-to-Digital Conversion

level is assigned a unigue binary code.

27

Embedded Systems Lab Lab 03 ADC Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

Relation between the Number of Bits, Resolution and Reference Voltage

The quantization levels are dependent on the number of bits available or required for representing the digital
output. ‘n’ is the number of bits, then the quantization levels are 2™ (0 to 2*~1). Consequently, the ADC
has n-bit resolution. Higher-resolution ADCs provide a smaller step size, where step size is the smallest
change that can be discerned by an ADC. The resolution is dependent on reference voltage as well. The
number of bits and reference voltage decide the step-size. This is related as:

Step size = %
Table 1: Reference Voltage Relation with Resolution for 8-bit and 10-bit ADC
Reference Voltage Step-size for 8-bit ADC Step-size for 10-bit ADC
5V 5/256 = 19.53 mV 5/1024=4.88 mV
3.3V 3.3/256 = 12.89 mV 3.3/1024 =3.22 mV
1.1V 1.1/256 = 4.297 mV 1.1/1024 = 1.074 mV

e Range of analog input voltage for ADC: 0 to Vref.

Vref
In an 8-bit ADC we have an 8-bit digital data output of ?
D0-D7, while in the 10-bit ADC the data output is DO = g? T-
Do. i [
Analog XDbét - g% :: Digital
The obtained digital output D, is related to the input gt Converter :gg:: O/Ps
analog voltage V;,, as: .
—— D7 —»
Vi
Dout = Sror—size : o .
p — size Figure 2: 8-bit ADC Representation

D, 1s the decimal equivalent of n-bit binary result.

ADC (Analog-to-Digital Conversion) Module of ATmega328P

ATmega328P microcontroller ADC module capable of converting an analog voltage into a 10-bit number
from 0 to 1023 or an 8-bit number from 0 to 255. There are 6 ADC input channels on the chip as shown in
Figure 3 (pin # 23 to 28 = ADCO to ADC5). The input to the module can be selected from any one of the 6
inputs on the chip i.e., one channel can be converted at a time. The inputs to the ADC module appear on
the Arduino board as connections AQ through A5.

In Figure 3, you can see a few pins, other than ADCO to ADC5, marked with Green color, representing
their connection with analog related circuitry.

The function of different pins for utilization of the ADC module is explained with their associated registers
in the following sections.

28

Embedded Systems Lab Lab 03 ADC Programming of AVR

NED University of Engineering & Technology Electrical Engineering Department
(PCINT14/RESET) PCo [1 ~ 28 [l PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PDO |77 2 27 [PC4 (ADC4/SDA/PCINTI12)
(PCINT17/TXD) PDI1 77 3 26 [l pc3 (ADC3/PCINTI1)
(PCINT18/INT0) PD2 [4 25 [PC2 (ADC2/PCINT10)
(PCINT19/0C2B/INT1) PD3 [5 24 [pC1 (ADCI1/PCINT9)
(PCINT20/XCK/T0) PD4] 6 23 [l PCO (ADCO/PCINTS)
vee [7 22 [l GND E -
oND i 8 21 [AREF P —
(PCINT6/XTAL1/TOSC1) PB6 [9 20 [] avee B oo
(PCINT7/XTAL2/TOSC2) PB7 [10 19 [PBS (SCK/PCINTS) E M;
(PCINT21/0COB/T1) PD5 [11 18 |8 PB4 (MISO/PCINT4)
(PCINT22/OC0A/AINO) PD6 12 17 PB3 (MOSI/OC2A/PCINT3)
(PCINT23/AIN1) PD7] 13 16 |1 PB2 (SS/0C1B/PCINT2)
(PCINTO/CLKO/ICP1) PBO [14 15 [PB1 (OCIA/PCINTI)

Figure 3: ATmega328P pin diagram
Pins for ATmega328P ADC
Table 2: ATmega328P pins related to the analog circuitry

. ADC Module — .
Pin # | Port Pin Names Function

23 | PCO ADCO ADC Input Channel 0

24 | PC1 ADC1 ADC Input Channel 1

25 | PC2 ADC2 ADC Input Channel 2

26 | PC3 ADC3 ADC Input Channel 3

27 | PC4 ADC4 ADC Input Channel 4

28 | PC5 ADC5 ADC Input Channel 5

21 - AREF External voltage supply for setting reference voltage.
By connecting a capacitor between the AREF pin and
GND, reference voltage becomes more stable and
increases the precision of ADC

20 - AVCC Provides the supply for analog ADC circuitry.

12 | PD6 AINO Analog Comparator Positive & Negative Input- AINO &

13 | PD7 AINL AINL1. These pins are associated with analog comparator
module. These are not necessarily needed for ADC.

Registers for AVR ADC Programming
Five major registers are associated with the ADC module for interfacing it. Let’s examine each one-by-
one. The description given here is quite brief. You can refer to the datasheet for further details.

ADCH (high data)

ADCL (low data)

ADCSRA and ADCSRB (ADC Control and Status Registers A & B)
ADMUX (ADC multiplexer selection register)

DIDRO

29

Embedded Systems Lab Lab 03 ADC Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

The name of register is written in capital letters. Each register is 8-bit wide. Indexing is done to show
different bits, for example XYZ [2:0] means the least significant 3 bits of the register XYZ (XYZ2, XYZ1
& XYZ0). XYZ[2:0] =5 would mean (XYZ2 =1, XYZ1=0and XYZ0 =1 since 5 =0b101).

1) ADC Data Register Low and High Byte

After the A/D conversion is complete, the result is stored in registers ADCL (A/D Result Low Byte) and
ACDH (A/D Result High Byte). For 10-bit ADC result, the eight bits sit in one 8-bit register and the
remaining two bits are provided in the other register, with six bits being unused. The result can be left or
right adjusted as shown below. If only eight bits of resolution are needed, the ADC value is left-justified

and the high-order byte are read through ADCH.

ADCH ADCL
Left-Justified

ADLAR =1 [os|ps[o7[pe[ps[p4]p3]p2| [p1]oo] UNUSED |

ADLAR=0 | UNUSED [pe]ps] [o7]p6]ps5[p4[p3]p2[p1] D]
Right-Justified

Figure 4: 10-bit ADC result adjustment in ADCH and ADCL
2) ADMUX (ADC Multiplexer Selection Register)

It is an 8-bit register with bits illustrated below.

Bit 7 6 5 4 3 2 1 0
| REFS[1:0] | ADLAR | \ MUX[3:0] |

e Reference Selector Bits (REFS [1:0]) The ADMUX [7:6] bits select the voltage reference for the
ADC.
Table 3: Function of the reference selector bits

ADMUX]7:6] | Reference High

= REFS[1:0] | Voltage Selection Description
00 AREF Voltage provided at AREF pin externally (Internal Vref turned OFF)
01 AVCC AVCC with external capacitor at AREF pin. Note: Arduino already has

capacitor placed on line

Internal 1.1 V reference fixed regardless of VCC. Note: Arduino already

11 Internal 1.1V . .
has capacitor placed on line
Outside the : Inside the
AVR chip : AVR chip
|
|
AVCC
(pin30)

|
| [internal 1.4v
I

|

AVREF
(pin32) I:}
Figure 5: Reference voltage selection

e ADC Left Adjust Result (ADLAR) ADMUX [5] is called ADLAR. The ADLAR bit affects the
presentation of the ADC conversion result in the ADC data register.

\

.

Table 4: ADLAR bit values for result adjustment

ADLAR Conversion Result
0 Right adjusted for 10-bit result
1 Left adjusted for 8-bit result

30

Embedded Systems Lab Lab 03 ADC Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

e Analog Channel Selection (MUX][3:0]) The 4 bits ADMUX[3:0] serve as selector for the
multiplexer that selects one of the 6 analog input channels to be connected to ADC.

Table 5: Input Channel Selection for ADC

MUX [3:0] Input Channel
0000 ADCO
0001 ADC1
0010 ADC2
0011 ADC3
0100 ADC4
0101 ADC5
1000 Temperature Measurement

Interesting Fact: The Atmega328P has an internal temperature sensor. Refer to the datasheet and read
about it. The output of the temperature sensor can be selected as one of the inputs for ADC module as
shown in the description of ADMUX Channel Selection bits.

3) ADCSRA (ADC Control and Status Register A)

Bit 7 B 5 4 3 2 1 0
[apen | apsc | apare | apF | aDE | ADPS [2:0]

Table 6: Function of ADCSRA Register Bits

Fields Full-Form ADSCRA Bit No. Function for Different VValues
1: ADC is enabled
ADEN | ADC Enable ADSCRA[7] 0: ADC is turned off
1: To start each conversion in Single Conversion
ADsc | ADPCsStart ADSCRA[6] mode
Conversion L
Returns to 0 when conversion is complete.
ADC Auto It is set to 1 for enabling auto-triggering of ADC
ADATE Trigger ADSCRA[5] th_rough_the selected trigger S|gnal._ The A[_)C tested in
this lab is not external interrupt-driven. It is set O for
Enable . i
single-conversion mode.
ADC This bit is set when an ADC conversion completes
ADIF Interrupt ADSCRA[4] and the data registers are updated. It is used to
Flag identify completion of conversion.
ADC .)
ADIE Interrupt ADSCRA[3] Not neegjed for now. I_t is used to activate ADC
conversion complete interrupt.
Enable
These bits determine the division factor between the
system clock frequency and the input clock to the
ADC. 50kHz to 200kHz is acceptable for ADC
circuitry
System clock frequency for Arduino UNO is 16MHz
ADC Pre- . (Crystal oscillator connected with UNO).
ADPS ADSCRA[2:0
scalar Select [2:0] ADPSJ[2:0]- Factor | ADPS[2:0]- Factor
000-1 100 - 16
001-2 101-32
010 — 4 110 - 64
011-8 111-128

31

Embedded Systems Lab
NED University of Engineering & Technology

Lab 03 ADC Programming of AVR
Electrical Engineering Department

4) DIDRO (Digital Input Disable Register 0)
When an analog signal is applied to the ADCS5...0 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer. DIDRO = 0x3F

Bit T & 5 4 3 2 1 0
| | | ADCSD | ADC4D | ADC3D | ADC2D | ADC1D | ADCOD |

5) ADCSRB

This is not needed for now. It has 2 important fields: (ACME-Analog Comparator Multiplexer Enable
and ADTS[2:0]- Auto Trigger Source Selection).

Steps for ATmega328P ADC Programming and C-Code

To program the A/D converter of the AVR, the following
steps must be taken:

1. Make the pin for the selected ADC channel an input pin.

2. Turn on the ADC module of the AVR because it is
disabled upon power-on reset to save power.

Relevant Register Values or C-Code

DDRC=0b00000000//assume PortC

ADCSRA =0b10000111
3. Select the conversion speed. We use registers ADPS2:0

to select the conversion speed.

ADMUX = 0b01100000

Vref is AVCC (REFS = 01)

Left Adjusted (ADLAR=1)

ADCO Input Channel (MUX=0000)

4. Select voltage reference and ADC input channels.

5. Activate the start conversion bit by writing a one to the

_ ADCSRA | = (1<<6)
ADSC bit of ADCSRA. Or, 1<< ADSC
6. Wait for the conversion to be completed by checking the | (ADSCRA & (0p00010000))

Equal to 0 as long as conversion takes place
due to ADIF bit (0)

(ADSCRA & (0b00010000))
NOT equal to 0 when conversion is

ADIF bit in the ADCSRA register.

After the ADIF bit has gone HIGH, read the ADCL and
ADCH registers to get the digital data output.

Notice that you have to read ADCL before ADCH,;
otherwise, the result will not be valid.

complete due to ADIF bit (1)

Read:

For 8-bit result only, x=ADCH;

Where, x is unsigned char

Or to forward at output, PORTB=ADCH
For 10-bit result, x=ADC

Where, x is unsigned int
Or, PORTB=ADCL;

PORTD=ADCH

8. If you want to read the selected channel again, go back to step 5.

If you want to select another Vref source or input channel, go back to step 4

NOTE: The ADC has two different operating modes. In single conversion mode, each conversion will
be initiated by the user. In free running mode, the ADC is constantly sampling and updating the ADC
Data Registers. When a conversion is complete, the result is written to the ADC data registers, and ADIF
is set. In single conversion mode, ADSC is cleared simultaneously. The software may then set ADSC
again to start a new conversion. In free running mode, a new conversion will be started immediately after

32

Embedded Systems Lab Lab 03 ADC Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

the conversion completes while ADSC remains high. For further description, refer to the ATmega328P
datasheet section Analog to Digital Converter.

Example # 1: Reading an Analog Voltage Set by a Potentiometer

In this example, we are taking analog input through a potentiometer. The analog input voltage can vary
from 0 to 5V. This is given at ADCO input channel. The digital 8-bit output is taken through PORTD pins
by reading the ADCH register. An LED is used to indicate each bit of the digital output. For a reference
voltage of 5V, using 8-bit ADC, each level corresponds to 19.53 mV.

#include <avr/io.h> //standard AVR header
int main (woid)

1 oy 00 s L) |

{

DDRD = OxFF; //make Pocrt D an cutput pert for B8-bit result
DDRC = //make Pert C an input for ADC input
ADCSRE: 37 ; make ADC enable and select ck/128
ADMUX ; //avcc, ADCO single ended input

10 //data will be left—justified

11 while (1)

12] {

13 ADCSRRE|=(1l<<ADSC); //start conversicn, set RDSC bit high

14 while [(ADCSRA & (1<<ADIF))==0)//wait for conversicn end

16 // conversion continues as long as ADIF bit is low,

17 hen ADIF goes high, while loop breaks

18 //¥Note that the while loop is empty

20 ;//Exits While leop

22 // reads ADCH when cocnversicn ends

) PORTD=ADCH; //give the high byte to PORTD

25 d both, ADCL first and then ADCH

26 the low byte to PORTD

27 the high byte toc PORTEB

28| }

b return 0;

- }

Figure 6: Code for Example 1- Reading Analog Input from ADCO Channel

@
| 1000 mV |g
>

For Analog I/P at 1V,
Digital 8 bit O/P is:
0Ob 00110011 =51d
Mapping it to 5V for 8-bit ADC
51 corresponds to 1V

= s l...l---l...l‘.‘..l‘---l... .o
| X | b0, b1,62,63,b4,b5,56 b7

a-lost Significant Bit at Right

Figure 7: Connections and Output Representation for Example 1

33

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

Embedded Systems Lab Lab 03 ADC Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

LAB TASKS
TASK 1: To test the Example 1 on ATmega328P and verify working of ADC using an

external D/A Converter

1. Create a new AVR project and build the code given in the Example 1. Test the obtained digital output
by varying the output from potentiometer. Observe the on / off status of LEDs (used as indicators for
digital output) and verify the digital voltage by calculation for 8-bit ADC at given reference voltage.

Note that the ATmega328P has an ADC module but not a built-in DAC module so it cannot provide an
analog output through any of its pins.

2. Now, remove the LEDs and provide the 8-bit digital output to an external DAC circuit i.e., convert
the digital output to analog for verification. You can use a simple R-2R circuit of Figure 8 or use
DACO0808 IC. For DACO0808 IC, refer to its datasheet for more information. The pin diagram and
DAC circuit using this is shown in Figure 9 and 10.

Vout

BIT7 BIT6 BIT5 BIT4 BIT3 BT2 BIT1 BITO
(MSB) (LSB)

Figure 8: Layout of 8-bit R-2R Ladder Circuit-DAC

Vcec =5V
nef | Q [15lcoMPENSATION
GNDO] 2 15VREF- 13
5.000k
Ve[TZVREF+ (s 110 - 0——AAA———0 Vref=10V
] 15 Sk
1[4 3vee Ao '?O—'V\N—Tl 5.000k
DAC0808 DIGITAL AO= oacosss [= b
MSB A1 5 12]as LsB INPUTS 45 O— =
10 4
a6 e
ad Y pebec] u
A7) [10]as i £38 a0 —'ij —0 1
3 .
CE EX i T
Figure 9: DAC0808 (8-bit R-2R based Vee=-15V
D/A Converter)

Figure 10: Sample Circuit for Digital to Analog Converter
Circuit using DAC0808

3. Measure the analog input given through potentiometer and the analog output reproduced by the DAC.
Compare both and verify the ADC and DAC. This is shown in Figure 11 using R-2R circuit.

34

https://www.ti.com/lit/ds/symlink/dac0808.pdf?ts=1681455485903

Embedded Systems Lab Lab 03 ADC Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

1 #include <avr/iec.h> //standard AVRE header
2 int main (wvoid)

3| 4

4 DDRD = OxFF; //make Port D an cutput

5 DDRC = 0x00 1 Jika for ADC input
¢ RDCSRR= 0xf AT

7 ADMUX = 0xe0;

g8 //data will be left-justified
8 while (1){
0 ADCSBEA|=(1<<ADSC); //start conversicn
12 while ((ADCSRA& (1<<ADIF))==0);//wait for conversion end
3 PORTD=ADCH;
50 1
& return 0;

_:}

J@ External R-2R DAC Circuit

Figure 11: Sample Representation of Task 1 with R-2R DAC
TASK 2: To control the status of an LED based on the value of input analog voltage

Modify the previous task or, example to read 10-bit ADC value of voltage across potentiometer instead of
8-bit result. Map the obtained 10-bit result with voltage level using the step-size. Connect an LED to
indicate the voltage level. Use some conditions to build the following logic for controlling the LED status.

- If voltage is above 2.5V, the LED turns ON
- If voltage is below 2.5V, the LED red turns OFF

LB Note: Pay attention to the data type of variables when you calculate the input analog voltage using
the step-size and ADC result.

35

Course Code: EE-354
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Embedded Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration

Equipment Identification | Completely Ability to identify Ability to identify
and Handling: unable to equipment but equipment and
Sensory skill to identify | identify makes mistakes in recognises all
equipment and its | equipment and recognising components,
components along with | components _ components, _ practices careful
adherence to safe | and no regard demonstrates and safe handling
handling to safe handling decent equipment

handling capacity
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to establish successfully
between computer and | connection _ software _ establishes
hardware kit and establish | verification connection software
connectivity with verification connection
software verification
Following step-by-step | Inability to | Able to recognise | Able to recognise | Able to recognise | Able to recognise

procedure to complete
lab work:

Observe, _imitate _and
operate hardware in

conjunction with software
to complete the provided
sequence of steps

recognise and
perform given
lab procedures

given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

given lab
procedures and
perform them by
following

prescribed order of
steps, with

frequent mistakes

given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

given lab
procedures and
perform them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Controller for given | selection and | of programming | and use of | and use of | and use of
Embedded System | use of | constructs and | programming programming programming
Problem: programming instructions but | constructs and | constructs and | constructs and
Imitate and practice given | constructs and | their use is | instructions with | instructions with | instructions with
embedded C instructions | instructions incorrect many syntax/logical | little to no | no syntax/logical

for implementing specific

errors

syntax/logical

errors

control strategy and store errors

required variables

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

many mistake

lesser mistakes

no major mistakes

occasional use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions in | and detect | messages in | messages in | messages in | messages in
Hardware and Software: | error messages | software but no | software and | software and | software and
Detect Errors/Exceptions | in software and | sense of | recognise them on | recognise them | recognise them on
and manipulate, under | hardware hardware error | hardware. Still | on hardware. | hardware.
supervision, to rectify the identification unable to | Moderately able | Reasonably ablein
embedded C program understand the | in understanding | understanding
error type and | error type and | error type and
possible causes possible causes possible causes
Visualisation, Unable to | Ability to | Ability to | Ability to | Ability to
Comparison and analysis | understand and | understand and | understand and | understand and | understand and
of results: utilise utilise utilise visualisation | utilise utilise
Copy or enter results in | visualisation, visualisation and | and plotting | visualisation and | visualisation and
analysis software to | plotting and | plotting instructions with | plotting plotting
visualise and compare | analysis instructions with | occasional errors. | instructions with | instructions
them with inputs. Use | software errors. Unable to | Able to partially | no errors. Able to | without errors.

analysis tools to compute
standard indices from
result

compute
standard indices

compute standard
indices

partially compute
standard indices

Able to compute
standard indices
completely

Page 2 of 2

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

| LAB SESSION 04 |

OBJECTIVE:

To utilize the USART (Universal Synchronous / Asynchronous Receiver /Transmitter) of ATmega328P for
transmitting and receiving data though asynchronous serial communication with PC

LAB OUTCOMES:
By the end of this lab, you should be able to:

1) Recognize the basics of serial communication protocol; baud-rate, stop bit, data bits, parity etc. and
the importance of required connectors (RS-232)

2) ldentify the AVR ATmega328P pins associated with the USART

3) Identify the purpose of different fields of USART registers

4) Program ATmega328P for initializing the USART with given baud-rate

5) Program ATmega328P in C-language to establish serial communication with PC

6) Test and verify data (character, string, integer and float) transmission and reception for given
conditions using a Serial Terminal Emulator like TeraTerm

“The single biggest problem in communication is the illusion that it has taken place.”

— George Bernard Shaw

BACKGROUND:

Microcontrollers are provided with ability to communicate with external devices like computer, other
micro-controllers and peripherals. This communication is done through different protocols to allow
microcontrollers to send and receive data. ATmega328P is provided with USART (Universal
Synchronous/Asynchronous Transmitter/Receiver). In this lab, we will be exploring Asynchronous
Transmitter and Receiver (UART). It is not only used as a communications link to external device but
also as a debugging port to send status messages. This is one of the 3 communication options that can be
established with ATmga328P. The other two are SPI and 12C which will be explored later. Before
discussing the working of relevant pins and registers, we first need to understand the different types and

basics of communication protocols.
{ Well, I need your help to deb\ulg!_J

Hey small micro, what's up?

Figure 1: Serial Communication of Microcontroller with PC for Troubleshooting

36

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

Basics of Serial Communication

Parallel Vs Serial Data Transfer: Computers transfer data in two ways: parallel and serial.

Serial Transfer i Parallel Transfer

i Do
Sender Receiver \ Sender | — 4| Receiver
i
I =
" .
; —

fr———
——

=
e ——
D7

Figure 2: Serial and Parallel Data Transfer Representation

In parallel data transfer, the data is sent one byte (or multiple bits) at a time. For this multiple wires are
needed and this is suitable for a short-distance like printers. In serial communication, the data is sent one
bit at a time. It needs lesser number of wires. It is suitable for longer distance communication and is cheaper.

Synchronous vs Asynchronous Communication: Serial data communication can be, asynchronous or
synchronous. The synchronous method transfers a block of data (characters) at a time, whereas the
asynchronous method transfers a single byte at a time. In Synchronous transmission a common clock is
shared by the transmitter and receiver to achieve synchronization while data transmission. In asynchronous
interface, it does not have any separate clock signal. Only the data is sent on the lines and the transmitter
must send the data at an agreed upon rate and in a defined manner.

Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a configurable
peripheral of ATmega328p which supports both Synchronous (SPI) and Asynchronous (Serial)
communication protocols. In our case we will be dealing only with the asynchronous communication.

Asynchronous Communication Protocol

Baud Rate — Data Transfer Rate: The rate of data transfer in serial data communication is stated in bps
(bits per second). Another widely used terminology for bps is baud rate. In the context of microcontroller
USART programming, we will be using the terms bps and baud interchangeably. The maximum data
transfer rate is limited by the hardware ports but the transmitter and receiver must agree on the same baud
rate.

Data Framing: In data framing for asynchronous communications, the data, such as ASCII characters,
are packed between a start bit and a stop bit. The start bit is always one bit, but the stop bit can be one or
two bits. In modern PCs, however, the use of one stop bit is standard. The start bit is always a 0 (low),
and the stop bit(s) is 1 (high). For example, look at Figure in which the ASCII character “A” (8-bit
binary 0100 0001) is framed between the start bit and a single stop bit. Notice that the LSB is sent out
first. There are a total of 10 bits for the character: 8 data bits for the ASCII code, and 1 bit each for the
start and stop bits.

- goes out first
goes out last \) .) .) . . NE
stopp 0 1 0 0 : 0 0 ‘o 1 start
: bit] : : : : bit
d7 ' . ’) | "d0 “Space” mark

Figure 3: Framing ASCII ‘A’ (41H) with a stop-bit (1) and a start bit (0)

37

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

Parity Bit: UART chips allow programming of the parity bit for odd-, even-, and no-parity options. It is a
single bit added to the data frame to maintain data integrity.

ATmega328P Serial Port Pins and Connection with PC

ATmega328P has one serial port. Pin 2 and pin 3 of ATmega328P serve as USARTO transmitter (TxD)
and receiver (RxD) pins. Arduino UNO pin 0 and 1 are therefore marked as TX and RX. These are the
same pins on the chip as 1/0 ports PD1 and PDO. This means that applications that use the USARTO cannot
also use these two bits in Port D. It is not necessary to set any bits in the DDRD register in order to use the
USARTO.

If LEDs placed on the RX and TX pins will flash, they indicate the transmission of data.

PORT ATmega328P Pins

== R (=)
0 o ¥

Arduino UNOD

Figure 4: Connection of ATmega328P RXD and TXD pins with Arduino UNO for UART

LED - Power-On
LED - TX &RX
Reset Button LED - Load & Pin 13

Serial Port (USART)

14x Digital IN/OUT
Sow renedn o (6x PWM OUT™)
=9 gt e :

4 88 (5V, 20mA continuous,
| 40mA max)

ATmegalb handles
programming of

) main MCU

Al Atmel ATmega328P
Microcontroller

(8-bit, 16 MHz,

UsB
(S5V Power IN &
Serial Port for
32 KB Flash,
1 KB EEPROM,
2 KB SRAM)

DC Power Jack
(AC-to-DC adapter)
(7-12v)

Power OUT
(5V, <500mA)
(3.3V, SOmA)
16MHz Crystal 5V Power IN

Power IN 6x Analog IN
(9V battery) (0-5V 10-bit ADC)
or Digital IN/OUT

Figure 5: Placement of RX and TX pins and corresponding LEDs with ATmega328P and ATmegal6 on
Arduino UNO board

To establish communication between microcontroller (USART pins) with PC, the PC must have a
communication port to support serial data transfer. These are called COM ports. A COM port is simply an
1/0 interface that enables the connection of a serial device to a computer. COM ports are also referred to as
serial ports. They are asynchronous interfaces that can transmit one bit of data at a time when connected to

a serial device.
- L .
o o

Figure 6: RS-232 Serial Port (DB9)

The AVR serial port can be connected to the COM port of a PC for serial communication. However, USB
interfaces have largely replaced the RS232 serial ports seen in the past as a faster way of performing serial

38

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

data transmission. In the absence of a COM port, a COM-to-USB converter module is needed. You can
read more about it here.

Luckily, the Atmegal6U2 incorporated on the UNO (R3) board acts as a USB-to-serial converter for serial
communication using USB com drivers. On PC, a software applications is used with it to send data to or
display the received data from the board.

ATmega328P Serial Port Registers
1) UDRO - USART Data I/0O Register

This register is used to hold data to be sent or received.

e The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same
1/0 address referred to as USART Data Register or UDRO.

e For data transmission, TXB will be the destination for data written to the UDRO Register location.

e For data reception, reading the UDRO Register location will return the contents of RXB.

) [5 o 3 2 1 0
RXB[7:0] UDRn (Read)
TXB[7:0) UDRn (Write)

2) UCSROA - USARTO Control and Status Register A

UCSRO [7] [6] [5] [4] [3] [2] [1] [0]
A RXCO TXCO UDREO FEO DORO PEO uU2xo | MPCMO
Bits Function

RXCO USART Receive Complete
Indicates receive buffer register (RXB) status.
1: Unread data present in receive buffer
0: Receive buffer is empty
TXCO USART Transmit Complete
1: Entire frame in transmit shift register has been transmitted, no new data
available in transmit data buffer register (TXB)
UDREOQO | USART Data Register Empty
1: Transmit data buffer register is ready to receive new data
0: TXB is not empty. Don’t write to UDR if UDREQ is 0
FEO Frame Error
1: Frame error occurred in receiving next character in receive buffer
Frame error is detected if first stop bit of character in RXB is 0
DORO Data Over-Run
1: Indicates data over-run
Data over-run occurs if RXB and receive shift-register are full and new start bit is detected.
PEO USART Parity Error
1: Indicates parity error in the receive buffer if Parity Checking UPMO1 is enabled.
u2xo Double the USART Transmission Speed
1: It doubles the transfer rate for asynchronous operation (baud rate divisor
becomes 8 instead of 16)
MPCMO | Multi-processor Communication Mode
Enables the Multi-processor Communication mode. Transmitter is unaffected by it.
The default value of UCSROA to 0x20 = Ob 0010 0000

39

https://www.serial-over-ethernet.com/serial-to-ethernet-guide/what-is-com-port/

Embedded Systems Lab

Lab 04 Serial Port Programming of AVR

NED University of Engineering & Technology

Electrical Engineering Department

3) UCSROB - USARTO0 Control and Status Register B

UcsroB — L [6] [5] [4] [3] [2] [1] [0]
RXCIEQO | TXCIEO | UDRIEO | RXENO | TXENO | UCSZ02 | RXB80 | TXB80

Bits Function

RXCIEO | RX Complete Interrupt Enable

1: Set 1 to enable the interrupt on the RXC flag in UCSROA

TXCIEO

TX Complete Interrupt Enable
1: Set to enable the interrupt on the TXC flag in UCSROA

UDRIEO

USART Data Register Empty Interrupt Enable
1: Set to one enables interrupt on the UDREOQ

RXENO

Receiver Enable
1: Enables the USART Receiver
0: Disables the Receiver. Flushes the RXB.

TXENO

Transmitter Enable
1: Enables the USART Transmitter
0: Disables the Transmitter; effective once transmission is complete.

UCSZ02

Character Size
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSROC sets the number of data
bits (Character SiZe) in a frame the Receiver and Transmitter use.

RXB80

Receive Data Bit 8
It is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRO.

TXB80

Transmit Data Bit 8
It is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRO.

RXENO, TXENO and UCSZ02 are most important here for enabling the receiver, and transmitted and to
set the character size. The interrupt related bits are not needed now. Its default value is 0x00.

4) UCSROC - USARTO0 Control and Status Register C

ucsroc |1 [6] 51 [4 [8 [[2] [1] [0]
UMSELO1 | UMSEL00 | UPMO1 | UPMOO0 | USBSO | UCSZ01 | UCSZ00 | UCPOLO
Bits Function
UMSELO | USART Mode Select Bits (UMSEL01-00)
1 00: Asynchronous USART
UMSELDO 01: Synchronous USART
0
UPMO1 USART Parity Mode (UPM01-00)
These enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame.
The Receiver will generate a parity value for the incoming data and compare it to the UPMO
UPMO0 setting. If a mismatch is detected, the UPEOQ Flag in UCSROA will be set.
00: Disabled
10: Enabled, Even Parity
11: Enabled, Odd Parity
USBSO0 USART Stop Select Bit
Selects number of stop bits to be inserted by the Transmitter.
0: 1-bit Stop bit
1: 2-bit Stop bits

40

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

UCSZ01 Character Size (UCSZ01:00)
The UCSZ01:00 bits combined with the UCSZ02 bit in UCSROB sets the number of data
bits (Character SiZe) in a frame the Receiver and Transmitter use.

UCSZ00 [UCSZ02,USCZ01,UCSZ00] Character Size
000 5-bit
001 6-bit
010 7-bit
011 8-bit
111 9-bit

UCPOLO | Clock Polarity

0: The bit is cleared when asynchronous mode is used.

In synchronous mode, it is useful for setting relation between data and clock.

Correct initialization of all the UCSROC bits is important in setting communication protocols. Its default
value is 0x06 = 0b000 0110.

5) UBRRO - USARTO Baud Rate Register

It is used to set baud-rate by specifying the pre-scalar in its 12 bits.

Bit 15 14 13 12 " 10 a8 8
- = - - UBRRn[11:8] UBRRnH
UBRRn[7:0] UBRRnL

T B 5 4 3 2 1 LI

UBRRJ[15:12] The 4 bits, reserved, are set to 0. The remaining 12 bits UBRR[11:0] contain the USARTO
baud rate (pre-scalar). The UBRROH contains the four most significant bits, and the UBRROL contains the
eight least significant bits of the USARTO baud rate.

For required baud rate ‘BAUD?’, and oscillator frequency fosc, the value for UBRRO is calculated by;

fosc
16 X BAUD

For a 16MHz clock, the required values of UBRRO register are given in the Table below for different baud-
rates. Note: U2XO0 is set 0 here. The baud-rates can be doubled by setting U2X0 high for same UBRRO
values. The formula can be applied for verification.

Table 1; UBRRO Values for Different Baud Rates

UBRRO =

Baud Rate (bps) UBRRO
2400 416 = 0x01A0
4800 207 = 0x00CF
9600 103= 0x0067
14400 68 = 0x0044
19200 51 =0x0033

Serial Terminal Emulator — TeraTerm

COM Port (communication port) is the original, yet still common, name of the serial port interface on PC-
compatible computers. It can refer not only to physical ports, but also to emulated ports.

Serial terminal emulators are software applications that replicate physical COM ports. The virtual serial
ports are fully compatible with operating systems and applications and are treated in the same way as a real
port. These are used for the serial communication between the host computer and an embedded system

41

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

(Target). It is mainly used as a user interface for debugging embedded system. It is also used for sending
commands, displaying result, loading firmware, logging result, etc.

Tera Term and PUTTY are famous terminal emulator applications. In this lab, we can use Tera Term. It is
an open-source, free, software implemented terminal emulator (communications) program.

1) Download Tera-Term using: https:/filehippo.com/download_tera-term/
2) Type Tera Term in Windows search to open it. You will be able to select Serial once you connect
your device to PC USB port (connect Arduino UNO). The Serial and Port options will be enabled.

a Tera Term - [disconnected] VT
File Edit 5§ Tera Term: New connection

® TCPAP Host:]
History

Service: () Telnet TCP porti: |22
® SSH SSH version: | §SHZ2

) Other .
IP version: AUTO

Cancel

Figure 7: Tera Term Connection

3) Go to Setup >> Serial port... It allows you to select Baud Rate, Stop Bit, Data Bits, and Parity etc.

- : < Nl
Tera Term: Serial port setup and connection
|
New open

Speed: | v
Data: 8 bit v Cancel
Parity: none v
Stop bits: 1 bit v Help
Flow control: none v

Transmit delay

0 msecfchar 1] msecfline

Figure 8: Tera Term Serial Port Settings

4) For writing to Serial Terminal window (send character from PC to Microcontroller), turn on echo. Go
to Setup >> Terminal and select Local echo.

Tera Term: Terminal setup
Terminal size New-line
0K
a0 ¥ |24 Receive: CR+LF w
[¥] Term size = win size Transmit. |cR4LF Cancel

Auto window resize

Help
Terminal ID: VT100 + Local echo

Answerback: [[] Auto switch [VT<->TEK])

Figure 9: Tera Term Terminal Setup

5) Save the settings for later use. Select Setup > Save setup.

42

https://filehippo.com/download_tera-term/

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

ATmega328P Serial Port Programming in C

Programming for USART Initialization

The USART has to be initialized before any communication can take place.

The initialization process consists of the following steps. | Relevant Register Values (example) & C-Code

1. Setting-up as Transmitter and / or Receiver
Enable the TxD and (or) RxD pins using TXENO UCSROB=0b00011000 or,
and (or) RXENO bits of UCSROB. UCSROB = (L<<TXEN) | (1<<RXEN)

2. Setting-up Frame Rate
Load UCSROC to indicate asynchronous mode with | UCSROC=0x06 oz,
8-bit data frame, no parity, and one stop bit UCSROC=0b00000LL0

_ UBRRO = 0x67
3. Set the baud-rate using UBRR. For baud-rate of 9600 bps at 16MHz crystal

frequency at U2X0 =0.

> Subroutine for USART initialization

For ease, we create a subroutine for USART initialization to avoid repeating these lines of code again and

again.
void usart_init (void)
{
UBRRO=0x67; //set pre-scalar to configure baud rate (9600)
UCSROA &= ~ (1 << U2X@); //Single Speed U2X - @ (can be set to 1)
UCSROB = (1 << RXEN@) | (1 << TXEN®); // enable transmitter and receiver
// Async mode, parity mode = disabled, 1 stop bit, character size = 8 bit
clock polarity = @ for async communication
UCSROC = (@<<USBS®@) | (1 << UCSZe1l) | (1 << UCSZeov);
}
Programming for Data Transmission
To program the USART as Transmitter, follow the steps: Relevant Register Values or C-Code
1. Initialize the USART. Call usart init();
]] while (! (UCSROA & (1<<UDREO)))
2. Monitor the UDRE bit of UCSROA to make sure {);:
UDR is ready to accept byte to transmit. An empty while loop that waits to check UDR is
empty (indicated by UDRE bit).
3. Write the character to be transmitted to the UDR. UDRO=ch;
Where, ch is an unsigned char for example ‘A’.
4. Wait for complete frame transmission. while (! (UCSROA & (1 << TXC0))){};

5. To transmit the next character, go to Step 2.

» Subroutine for transmitting character

void usart_putChar(unsigned char data)

{
while (!(UCSROA & (1 << UDRE®))) {}; //wait for data register to be empty
UDRO = data; //write data
while (!(UCSROA & (1 << TXCO0))) {}; //wait for complete frame transmission
}

43

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

Programming for Data Reception

To program the USART as Receiver, follow the steps: Relevant Register Values or C-Code
1. Initialize the USART. Call usart init();
While (! (UCSROA & (1<<RXCO0))) ;

2. Moqitor the_RXC flag bit of the UCSROA register t0 | A empty while loop that waits for data to be
see if an entire character has been received yet. received. Loop ends when RXC bit turns high as
the given condition is not equal to 0.
3. When RXC is high, read the UDR as it has received | ch=UDR;
Where, ch is an unsigned char type variable to
the byte. :
store the received character.

4. To receive the next character, go to Step 4.

» Function for receiving character

char usart_getChar()

{
char data;
while (!(UCSROA & (1 << RXCO))) {}; // wait for data to receive
data = UDRO;
return data;
}
EXAMPLES

The tested asynchronous communication is polling based and not interrupt based.
Example # 1: Transmitting a Character from ATmega328P to PC through UART

The following code transmits ‘A’ repeatedly with a delay of 1 sec. Note that only one character is sent at a
time. The following example uses usart_init() and usart_putChar() from the listed 3 sub-routines therefore,
these sub-routines must be defined in the main.c file.

26 #include <avr/io.h>
27 #include <util/delay.h>
28 int main(void)
p-L I e
30 usart init():
31 while (1)
3z |H {
33 usart putChar| |-
34 usart putChar| |
35 usart putChar| |
36 _delay ms(1000)
37 - 1

] retarn O;
39

Figure 10: Code for Example#1

See the character ‘A’ is written in quotes. You can write its ASCII code (65). In that case, don’t use ¢’ as
we want to transmit a single character ‘A’ through the ASCII code and not the integer 65 (which are 2
characters).

Now, you are able to do Task 1 and Task 2.

44

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

Example # 2: Transmitting and Receiving Strings, Integers and Floats

For transmitting a string of characters (instead of a single character), we can write a C subroutine that
transmits one character at a time using the previously described usart_putChar(). Similarly, to receive a
string of characters, we can makes use of a buffer to hold the received characters in the form of a string.
Look at the following subroutines.

» Subroutines for receiving and transmitting strings

//subroutine for transmitting a character string
void usart_putString(char* StringPtr)
{
while(*StringPtr != 0x00)
{
usart_putChar((unsigned char)*StringPtr);
StringPtr++;

Type Casting

Converting one datatype into another is known as type casting or, type-conversion. To transmit integer or
float data through USART, we first need to convert them into string. There are different approaches to do
so, one simple technique is shown here.

» Integer to String:

The itoa(num,buffer,10) function coverts the integer num into a null-terminated character string. The
string is placed in the buffer passed, which must be large enough to hold the output. The last input shows
number format 10 for decimal. Include <stdlib.h> for itoa().

» Float to String:

The dtostrf (val,width,prec,s) function converts the double value passed in val into an ASCII
representation that will be stored under s. Conversion is done in the format '[-]d.ddd'. The minimum field
width of the output string (including the possible "." and the possible sign for negative values) is given in
width, and prec determines the number of digits after the decimal sign. The dtostrf() function returns the
pointer to the converted string s.

The example code given here shows transmission of strings, float and integers by utilizing the subroutines
and functions discussed above. You can observe that a string is received from PC to AVR too.

45

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

include <avr/3

include <util

H == s

include

int main(void)
usart_imit():;

wvolatile char CHIC[13]:

ninté t a=13; cnic
usart_putString ("Enter your 13-digit CNIC ‘\n\zx"):
usart_getString (CHIC,a):

usart putString("\n\rThe entered CNIC i=s: \n\z"):
usart put3tring (CNIC) ;

usart _putString("\n \r Displayving Integers:\n\r"):
int nmum=5555;

char buffer [=izecf(int)*2+1]:

itoa (num, buffer, 10) :

usart_putString (buffer);

usart_putString("\n\r Displaying Float or Double:\n\r"):

float temp=23.51;

char str temp[10];

dtostrf (temp, 5, 5, 3tr_temp) -

usart_putString (str_ temp);
retarn O;

Figure 11: Code for Example 2-Transmitting Strings, Float and Integer Data Types
Header File usart.h

For ease, you can include the header and source files (usart.h and usart.c) provided with the manual. Utilize
its simple functions for transmitting and receiving data or use the sub-routines discussed above in your code
to complete the given lab tasks.

LAB TASKS

TASK 1: To test Example 1 for transmitting a character serially at baud-rate of 9600 with 1

stop bit using ATmega328P USART
Test the Example 1 code using Arduino UNO. After building the given code, program the ATmega328P.

Now, disconnect and reconnect Arduino UNO with PC port. Open Serial Terminal Emulator (Tera Term).
Make connection with the required settings and observe the serial terminal. You should see the data
transmitted by AVR (received by the PC) on serial terminal.

e Isthere any impact if you select a different baud rate in Tera Term without changing the baud rate
initialized in the ATmega328P code? Are you able to correctly transmit the characters when
microcontroller and PC work at different baud rate?

e Add two more lines to the code and comment on the result.
usart_putChar(65)
usart_putChar(‘65”)

46

Embedded Systems Lab Lab 04 Serial Port Programming of AVR
NED University of Engineering & Technology Electrical Engineering Department

TASK 2: To program ATmega328P for controlling the status of LED based on the received
character

Modify the previous code to make the microcontroller receive a character sent by PC. If the received
character is ‘A’, turn on the on board LED otherwise turn it off. The data should be received at baud-rate
of 14400 with 1 stop bit.

TASK 3: To transmit the analog voltage across a potentiometer read by the ATmega328P
ADC to PC

Extend the Task 2 of Lab 03 where you used ADC module to measure the voltage across potentiometer.
Send (transmit) the following through USART of the microcontroller to the PC serial terminal.

1) The 10-bit ADC output (in range of 0 to 1023)
2) The analog voltage across potentiometer in Volts

A Pay attention to the data-type. You may use any suitable baud rate of your choice.

Vary the voltage and observe the values. Verify the analog voltage reading by ADC module and
transmission through the USART by comparing voltmeter reading and values displayed by Tera Term.

Sample Output:

**********10_bit ADC************

*FhxFxEX*R**5V Reference Voltage****

x*x*\/oltage across Potentiometer*

ADC Value: 307
Output Voltage: 1.5 Volts

ADC Value: 205
Output Voltage: 1.01 Volts

47

Course Code: EE-354
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Embedded Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration

Equipment Identification | Completely Ability to identify Ability to identify
and Handling: unable to equipment but equipment and
Sensory skill to identify | identify makes mistakes in recognises all
equipment and its | equipment and recognising components,
components along with | components _ components, _ practices careful
adherence to safe | and no regard demonstrates and safe handling
handling to safe handling decent equipment

handling capacity
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to establish successfully
between computer and | connection _ software _ establishes
hardware kit and establish | verification connection software
connectivity with verification connection
software verification
Following step-by-step | Inability to | Able to recognise | Able to recognise | Able to recognise | Able to recognise

procedure to complete
lab work:

Observe, _imitate _and
operate hardware in

conjunction with software
to complete the provided
sequence of steps

recognise and
perform given
lab procedures

given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

given lab
procedures and
perform them by
following

prescribed order of
steps, with

frequent mistakes

given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

given lab
procedures and
perform them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Controller for given | selection and | of programming | and use of | and use of | and use of
Embedded System | use of | constructs and | programming programming programming
Problem: programming instructions but | constructs and | constructs and | constructs and
Imitate and practice given | constructs and | their use is | instructions with | instructions with | instructions with
embedded C instructions | instructions incorrect many syntax/logical | little to no | no syntax/logical

for implementing specific

errors

syntax/logical

errors

control strategy and store errors

required variables

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

many mistake

lesser mistakes

no major mistakes

occasional use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions in | and detect | messages in | messages in | messages in | messages in
Hardware and Software: | error messages | software but no | software and | software and | software and
Detect Errors/Exceptions | in software and | sense of | recognise them on | recognise them | recognise them on
and manipulate, under | hardware hardware error | hardware. Still | on hardware. | hardware.
supervision, to rectify the identification unable to | Moderately able | Reasonably ablein
embedded C program understand the | in understanding | understanding
error type and | error type and | error type and
possible causes possible causes possible causes
Visualisation, Unable to | Ability to | Ability to | Ability to | Ability to
Comparison and analysis | understand and | understand and | understand and | understand and | understand and
of results: utilise utilise utilise visualisation | utilise utilise
Copy or enter results in | visualisation, visualisation and | and plotting | visualisation and | visualisation and
analysis software to | plotting and | plotting instructions with | plotting plotting
visualise and compare | analysis instructions with | occasional errors. | instructions with | instructions
them with inputs. Use | software errors. Unable to | Able to partially | no errors. Able to | without errors.

analysis tools to compute
standard indices from
result

compute
standard indices

compute standard
indices

partially compute
standard indices

Able to compute
standard indices
completely

Page 2 of 2

Embedded Systems Lab Lab 05 LCD Interfacing
NED University of Engineering & Technology Electrical Engineering Department

| LAB SESSION 05 |

OBJECTIVE:

To interface an LCD (Liquid Crystal Display) screen with ATmega328P by sending required commands
and data

LAB OUTCOMES:
By the end of this lab, you would be able to:

1) ldentify the pins and commands for controlling a 16x2 LCD
2) Interface a 16x2 LCD screen with ATmega328P and display different messages

“I don't care what it is, when it has an LCD screen, it makes it better.” — Kevin Rose
INTRODUCTION:

Display units like LEDs, 7-segment LED displays, LCD screens etc. play an important part in establishing
a good communication between the users and machines, and therefore, are vital for embedded systems.
Through display screens, the user gets a feeling of knowing the system’s working status. Consider the
examples of ATM machine, automatic washing machine or microwave ovens. They allow us to give input
through keypad or knobs or touch screens, and display useful messages on screens which guide us or show
the status of process. LCD screens are now seen everywhere due to their declining prices, ease of
programming due to an internal controller, and ability to display characters and graphics.

For learning purpose, we are interfacing our ATmega32P microcontroller with a standard 16x2 LCD screen.
16x2 LCD is named so because; it has 16 Columns and 2 Rows. Such dot-matrix LCDs are available in
different packages like 8x1, 8x2, 16x1, and 20x4.

16x2 LCD (Liquid Crystal Display)

Features

e The operating voltage of this LCD is 4.7V-5.3V

e It includes two rows where each row can produce 16-characters.

e The utilization of current is ImA with no backlight

e Every character can be built with a 5x8 pixel box

e It can display alphabets, numbers and a few custom generated characters

e It can work on two modes (4-bit and 8-bit): In 4-bit mode we send the 4 bits (out of the total 8-
bits) at a time and in the 8-bit mode, we can send all 8-bits in one stroke.

e These are obtainable in Blue & Green Backlight

The LCD can display 32 characters in total and each character will be made of 5*8 (40) pixel dots. The
standard LCDs have HD44780 dot-matrix liquid crystal display controller / driver that is mounted on LCD
module itself. The function of this interface IC is to get the commands and data (sent over parallel data

lines) from the MCU and process them to display meaningful information onto our LCD Screen. Hence,
the MCU doesn’t directly have to deal with the 1280 pixels of LCD and their positions.

[Datasheet HD44780.]

48

https://circuitdigest.com/sites/default/files/HD44780U.pdf

Embedded Systems Lab

Lab 05 LCD Interfacing

NED University of Engineering & Technology

LCD Pinout

Electrical Engineering Department

Figure 1 shows the 16 pins of a 16x2 LCD and their names. Most of the LCDs have these 16 pins that are
used for connection according to their functionality. Let’s discuss the function of each pin one-by-one.

(%21 [a} g
?gg&zmSESSEEBquz No Symbol Function
1 VssS Ground
2 VDD 5V +
3 Vo Contrast
4 RS Register
5 RW Read/Write
6 E Enable
7 Do Data bus
8 D1 Data bus
9 D2 Data bus
10 D3 Data bus
11 D4 Data bus
12 D5 Data bus
13 Dé6 Data bus
14 D7 Data bus
15 A Anode (5V+)
16 K Cathode (GND)
Figure 1: 16x2 LCD Pinout
Al Description / Function Type Connection
Name
VSS | Pin for LCD ground. Connected to the ground of the MCU/
Source | Power source.
2 - Pin Connected to the supply pin of power
VDD | Pin for LCD supply voltage. source / +5V of MCU.
3 VO Contrast Control: Adjusts the Connected to a variable potentiometer
contrast of the LCD. that can source 0-5V.
4 Connected to a digital output pin of
RS Register Select: Selects either MCU.
command register or data register 0: Command Mode
1: Data Mode
S Read/Write: Toggles the LCD Connected to a digital output pin of
Ry | between Read/Write operations. Control | MCU.
Read operation is rarely needed for Pins 0: Write Operation
information like cursor position etc. 1: Read Operation
6 The enable pin is used by the LCD to
latch information presented to its data
E Enable: Must be held high to pins. When data is supplied to data pins,
perform Read/Write Operation a high-to-low pulse must be applied to
this pin in order for the LCD to latch in
the data present at the data pins.
7- In 4-bit mode, only 4 pins (D0-D3) are
14| DOto | Data Bits (0-7): Pins used to send Cc?rﬁﬁlan connected to MCU digital output pins.
D7 | command or data bits to the LCD. | ' In 8-bit mode, all 8 pins (D0-D7) are
INS | connected to MCU digital output pins.
15 LED + Anode of backlight LED LED+ and LED- are connected to 5V
A I o . .
is given positive voltage. Backliaht and Ground pins of MCU with a current
16 LED - Cathode is connected to LED P?ns limiting resistor in series.
K ground to illuminate backlight
LED.

49

Embedded Systems Lab Lab 05 LCD Interfacing
NED University of Engineering & Technology Electrical Engineering Department

In this lab, we are interfacing the LCD with ATmega328P directly (parallel interface) and sending data
in 8-bit mode. Note that the 8-bit data interfacing is easier to program but uses 4 more pins.

LCD Commands
The following table hex code for the commands that are sent to LCD instruction register for the specified

functions.
Table 1: Hex code for Commands

Hex Code for Eunction
Command to LCD

O0E Display on, cursor on
01 Clear display screen
02 Return home
04 Decrement cursor (shift cursor to left
06 Increment cursor (shift cursor to right)
05 Shift display right
07 Shift display left
OF Display on, cursor blinking
80 Force cursor to beginning of first line
Co Force cursor to beginning of 2nd line
38 Function Set: 2 lines and 5 x 8 matrix (D0-D7, 8-bit mode)
08 Display off, cursor off
18 Shift the entire display to the left
1C Shift the entire display to the right

Interfacing LCD with ATmega328P and C-Programming
The Figure 2 shows required connections for LCD 16 pins with ATmega328P in 8-bit data mode. The
R/W pin can be directly connected to ground instead of utilizing an I/O pin (as we are performing write
operation only).
VBUS (+5V)
DD

é
< ™y
[LCD
-
A Bsssiadag BEoHY G
HHAEEEREERERBura s> &
glg::g:ga.wu--xow.-rmu_‘
5V]

MCU
10K

suld 0/1 [eugig

Figure 2: LCD Connections with ATmega328P for 8-bit Mode

50

Embedded Systems Lab Lab 05 LCD Interfacing
NED University of Engineering & Technology Electrical Engineering Department

For controlling the LCD and sending commands and data, the following steps are needed. Remember, the
digital I/0O pins connected with the LCD must be configured as output pins using DDRX registers as per
your connections.

Initializing or Configuring the LCD:

To initialize the LCD for 2-line and 8-bit operation, the following sequence of commands should be sent
to the LCD. Next we will show how to send a command to the LCD. After power-up you should wait
about 15ms before sending initializing commands to the LCD. If the LCD initializer function is not the
first function in your code you can omit this delay.

1) Function Set: 2 lines and 5 x 8 matrix (DO-D7, 8-bit mode) - 0x38
2) Display on, cursor blinking - OX0E
3) Clear display screen - 0x01

After initialization, wait for 2msec.

Sending Command:

To send any of the commands from Table 1 to the LCD,

1) Make pin RS low for selecting command register. (R/W should be made low if not already grounded).
2) Put the command number on the data pins (D0-D7) i.e., use relevant PORTX register.

3) Send a high-to-low pulse to the E pin to enable the internal latch of the LCD.

Notice that after each command you should wait for some time (100us generally or for 2msec in some
cases like clear screen and return home) to let the LCD module run the command.

Sending Data:

To send data to the LCD

1) Make pins RS =1 (for data register) and R/W = 0.
2) Put the data on the data pins (D0-D7) i.e., use relevant PORTX register.
3) Send a high-to-low pulse to the E pin to enable the internal latch of the LCD.

Notice that after sending data you should wait about 100 ps to let the LCD module write the data on the
screen.

Example Code and Subroutines

See the sample code for Example 1. It is written in in terms of LCD_DPRT, LCD_DDDR, LCD_DPIN.
These will be replaced by the PORT, DDR and PIN register of the port with which DO-D7 are connected.
In our example, it is port D. This is done to make the code more generalize, and to achieve this we have
used #define directive (#define causes the compiler to substitute token-string for each occurrence of
identifier in the source file). Similarly, LCD_CPRT, LCD_CDDR, LCD_CPIN are used to show the
relevant registers of port with which we have connected control pins (RS and E). Here, it is port B. For the
position of these pins is indicated by LCD_RS and LCD_E which is 0 and 1. If you change the hardware
connections, you have to update the relevant registers only once (i.e., at the start with the #define directive)
without changing the rest of the code or subroutines.

Based on the steps described earlier, 4 useful subroutines are defined before the main function.
51

Embedded Systems Lab

Lab 05 LCD Interfacing

NED University of Engineering & Technology
1) lcdCommand: It takes hex code of command as input.
2) IcdData: It takes the data character to be displayed.

3) lcd_init: This performs initialization steps.

Electrical Engineering Department

4) lcd_print: This takes a complete string to be printed and passes one character at a time by lcdData.

L/
. omp—

- =

-

- & & & @ 7
& & & ® 3

T S ® 8 W
-
-

8™ & & &
we 4

- & = = = I

nme = =« &« =

& & & & &1
@ & & & &%

e a &« & =

s & & & &

Figure 3: Connections for LCD Interfacing (8-bit Mode) with ATmega328P

Note that RW is connected with GND for writing.

52

Embedded Systems Lab

Lab 05 LCD Interfacing

NED University of Engineering & Technology

Electrical Engineering Department

#include <avrfio.h>

#include <util/delay.h>

#define LCD_DPRT PORTD //LCD DATA PORT

#define LCD_DDDR DDRD //LCD DATA DDR

#define LCD_DPIN PIND //LCD DATA PIN

#define LCD_CPRT PORTB //PORT for LCD Control Pins
#define LCD_CDDR DDRB //DDR for LCD Control Pins
#define LCD_CPIN PINB //PIN Reg for LCD Control Pins
#define LCD_RS 0 //LCD RS (RS is connected at PBo)
#define LCD_EN 1//LCD EN (EN is connected at PB1)

void ledCommand(unsigned char cmnd)

{
LCD_DPRT = cmnd; //[send cmnd to data port
LCD_CPRT &=~ (1<<LCD_RS); //RS =0 for command
LCD_CPRT |= (1<<LCD_EN); //EN =1 for H-to-L pulse

_delay_us(1); /Iwait to make enable wide
LCD_CPRT &= ~ (1<<LCD_EN); //EN = o for H-to-L pulse
_delay_us(100); /Iwait to make enable wide

void led_init()

{

}

LCD_DDDR = 0xFF;//making data port (output)
LCD_CDDR |= (1<<LCD_RS)|(1<<LCD_EN);

//[making control pins output pins
LCD_CPRT &=~(1<<LCD_EN); //LCD EN=0
delay_ms(20); //wait for init.

I_chommand(ox38); [finit. LCD 2-line, 8-bit mode
lcdCommand(oxoF); //display on blinking
IcdCommand(oxo1); //clear LCD

delay_us(2000); //wait

I_chommand(oxo6); [[shift cursor right

void led_print(char * str)

{

unsigned chari=o;
while(str[i]!=0)

lcdData(str[i]);

} i++;
/I _delay_ms(100); /[for typing effect
}
void ledData(unsigned char data) }
{
LCD_DPRT = data; //send data to data port int main(void)
LCD_CPRT |= (1<<LCD_RS); /|RS = 1 for data {
LCD_CPRT |= (1<<LCD_EN); //[EN =1 for H-to-L pulse lcd_init(); /finitialize
_delay_us(1); //wait to make enable wide _delay_ms(1000);
LCD_CPRT &=~ (1<<LCD_EN); lcd_print("Congratulations!!");
/[EN = o for H-to-L pulse lcdCommand(oxCo); //Cursor at the start of 2nd line
_delay_us(100); //wait to make enable wide lcd_print(" LCD works ");
} return o;
}
Figure 4: Sample Code for Example 1 - LCD Interfacing (8-bit Mode) with ATmega328P
LAB TASKS

TASK 1: To test Example 1 using ATmega328P and 16x2 LCD
Program ATmega328P with the given code. Make connections to interface the LCD and test the results.

TASK 2: To test different commands for modifying LCD display

Modify the code and test different commands to make the display interesting.

e Online 1, display: <Your Name> (You can have more than 16 characters in the string).

e Online 2, display: <Roll # >

e Make the text moving (scrolling) continuously from left to right by using shift display commands.

53

Embedded Systems Lab Lab 05 LCD Interfacing

NED University of Engineering & Technology Electrical Engineering Department

Go-to Subroutine

Following is an interesting subroutine that allows you to move cursor at any specified location (y, X).
Where X is the line number (1 or 2) and y is character position (1 to 16).

void lcd_gotoxy(unsigned char x, unsigned char y)

{
char firstCharAdr[]={0x80,0xC0,0x94,0xD4}; //Table
IcdCommand(firstCharAdr[y-1] + x - 1);
_delay_us(100);

¥

If you are interested, you can try this too!

54

Course Code: EE-354
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Embedded Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration

Equipment Identification | Completely Ability to identify Ability to identify
and Handling: unable to equipment but equipment and
Sensory skill to identify | identify makes mistakes in recognises all
equipment and its | equipment and recognising components,
components along with | components _ components, _ practices careful
adherence to safe | and no regard demonstrates and safe handling
handling to safe handling decent equipment

handling capacity
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to establish successfully
between computer and | connection _ software _ establishes
hardware kit and establish | verification connection software
connectivity with verification connection
software verification
Following step-by-step | Inability to | Able to recognise | Able to recognise | Able to recognise | Able to recognise

procedure to complete
lab work:

Observe, _imitate _and
operate hardware in

conjunction with software
to complete the provided
sequence of steps

recognise and
perform given
lab procedures

given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

given lab
procedures and
perform them by
following

prescribed order of
steps, with

frequent mistakes

given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

given lab
procedures and
perform them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Controller for given | selection and | of programming | and use of | and use of | and use of
Embedded System | use of | constructs and | programming programming programming
Problem: programming instructions but | constructs and | constructs and | constructs and
Imitate and practice given | constructs and | their use is | instructions with | instructions with | instructions with
embedded C instructions | instructions incorrect many syntax/logical | little to no | no syntax/logical

for implementing specific

errors

syntax/logical

errors

control strategy and store errors

required variables

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

many mistake

lesser mistakes

no major mistakes

occasional use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions in | and detect | messages in | messages in | messages in | messages in
Hardware and Software: | error messages | software but no | software and | software and | software and
Detect Errors/Exceptions | in software and | sense of | recognise them on | recognise them | recognise them on
and manipulate, under | hardware hardware error | hardware. Still | on hardware. | hardware.
supervision, to rectify the identification unable to | Moderately able | Reasonably ablein
embedded C program understand the | in understanding | understanding
error type and | error type and | error type and
possible causes possible causes possible causes
Visualisation, Unable to | Ability to | Ability to | Ability to | Ability to
Comparison and analysis | understand and | understand and | understand and | understand and | understand and
of results: utilise utilise utilise visualisation | utilise utilise
Copy or enter results in | visualisation, visualisation and | and plotting | visualisation and | visualisation and
analysis software to | plotting and | plotting instructions with | plotting plotting
visualise and compare | analysis instructions with | occasional errors. | instructions with | instructions
them with inputs. Use | software errors. Unable to | Able to partially | no errors. Able to | without errors.

analysis tools to compute
standard indices from
result

compute
standard indices

compute standard
indices

partially compute
standard indices

Able to compute
standard indices
completely

Page 2 of 2

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing
NED University of Engineering & Technology Electrical Engineering Department

| LAB SESSION 06 |

OBJECTIVE:

To utilize SPI (Serial Peripheral Interface) protocol for interfacing the max6675 module with ATmega328P
and develop temperature measurement system based on the K-type thermocouple

LAB OUTCOMES:
By the end of this lab, you will be able to:

1) Recognize the difference between synchronous and asynchronous transmission

2) ldentify the AVR ATmega328P pins associated with SPI communication

3) Identify the purpose of different fields of SPI registers

4) Program ATmega328P for SPI communication in master and slave modes for single-byte and
multiple-byte burst read/write

5) Interface SPI protocol-based module (Max6675) as slave with ATmega328P in master mode

6) Develop the complete system for temperature measurement and transmit result through USART to
PC

“Don’t expect what you don’t communicate clearly.” — Anonymous

INTRODUCTION:

In Lab 04, we discussed briefly about serial and parallel data transmission. USART was utilized for
asynchronous transmission and reception, which is one of the types of serial communication. In this lab,
we will explore Serial Peripheral Interface communication protocol which is synchronous. The SPI (serial
peripheral interface) is a bus interface connection incorporated into many devices. The SPI bus was
originally started by Motorola Corp. (now Freescale), but in recent years has become a widely used standard
adapted by many semiconductor chip companies as it’s faster, compact and results in reduced power
consumption. Let’s first understand the features of Serial Peripheral Protocol.

Serial Peripheral Interface Bus Protocol

SPI has a Master/Slave configuration. It has only one master device but can have multiple slaves. A master,
that initiates communication, is usually a microcontroller and the slaves can be a microcontroller, sensors,
ADC, DAC, LCD etc.

SPI is 4-wire protocol.

SDO SDO
e SPI devices use only 2 pins for data transfer that are; SDI and SDO, SDI><SDI
also called MISO (Master-In Slave-Out) and MOSI (Master-Out SCLK—SCLK
Slave-In). CE ~|cE
e The SPI bus has the SCLK or SCK (shift clock) pin to synchronize the e

data transfer between two chips.

e The last pin is CE chip enable, also called SS Slave Select, which is

used to initiate and terminate the data transfer. It determines which) .
Figure 1: 4-wire SPI Bus

device the master is currently communicating with. Representation

55

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing
NED University of Engineering & Technology Electrical Engineering Department

Working of SPI

The system consists of two 8-bit wide shift registers, and a master clock generator. The SPI master initiates
the communication cycle when pulling low the slave select SS. Master and slave prepare the data to be sent
in their respective shift registers, and the master generates the required clock pulses on the SCK line to
interchange data (one-bit at a time in each clock cycle). In SPI, the shift registers are 8 bits long. It means
that after 8 clock pulses, the contents of the two shift registers are interchanged. Data is always shifted from
master to slave on the MOSI, line, and from slave to master on the master MISO, line. After each data
packet, the master will synchronize the Slave by pulling high the slave select, SS line. It must be noted that
SPI is full duplex, meaning that it sends and receives data at the same time.
I |

MSB MASTER LSB : MISO MISO : MSB SLAVE LSB
8 Bit Shift Register o e 8 Bit Shift Register
i | | i i
| MOSI MOS! |
- | -
I |
| |
| |
I |
I |
: | Shift
SPI I SCK SCK1 Enable
-—— -— r
Clock Generator | — —
1S 58
- |
| |

Figure 2: SPI Architecture and Master/Slave Interconnection

In connecting a device with an SPI bus to a microcontroller, we use the microcontroller as the master while
the SPI device acts as a slave.

551
SCK
MISO
MOsI

Slave 2

Figure 3: SPI Interface of 1-master and 2-slave devices
Serial Peripheral Interface of AVR ATmega328P Microcontroller

The serial peripheral interface (SPI) of AVR allows high-speed synchronous data transfer between the
ATmega328P and peripheral devices or between several AVR devices. It can operate in master and slave
modes and allows LSB first or MSB first transfer options. Figure 3 shows the pins associated with
ATmega328 SPI and their connection pins on Arduino UNO board. Pin 11 or ICSP-4 is used as MOSI, Pin
12 or ICSP-1 is used as MISO, Pin 13 or ICSP-3 is connected with SCK and Pin 10 for SS.

56

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department

AROUINO

Figure 4: Pin Configuration of ATmega328P for SPI Interface and Associated Arduino UNO

pinout

ARDUINO

N
EEEENEEEEEEEEDN

ATMEL
ATMEGA328P

Figure 5: In-Circuit Serial Programming (ICSP) Header for SPI Communication

Table 1:
Pins Use Pin Configuration

Slave SS Used by Master device to enable and disable specific Input — For Slave
Select devices to communicate with. The SS pin is useful for

packet/byte synchronization to keep the slave bit Output — For Master

counter synchronous with the master clock generator. (usually)

When the SS pin is driven high, the SPI slave will

immediately reset the send and receive logic, and drop

any partially received data in the shift register.
Master-In MISO | For sending data from Slave devices to Master device. | Input — For Master
Slave-Out Output — For Slave
Master-Out | MOSI | For sending data from Master device to Slave devices. | Input — For Slave
Slave-In Output — For Master
Serial SCK | For clock pulses to synchronize data transmission from | Input — For Slave
Clock Master devices. Output — For Master

57

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing
NED University of Engineering & Technology Electrical Engineering Department

SPI Data Modes and Clock Phase with Polarity

As we mentioned before in USART communication, transmitter and receiver must agree on a clock
frequency. In SPI communication, the master and slave(s) must agree on the CPOL (clock polarity) and
CPHA (clock phase), with respect to the data.

CPOL 0: The base value of the clock is zero. 1: The base value of the clock is one.

CPHA 0: Sample (Read) on the first clock edge. 1: Sample (Read) on the second clock edge.

cPOL=0 SCK /M \ /S
CPOL = 1 sck ~ /NSNS

cs T\ —

CPHA =0 'ﬂ'ggf:)(ﬁxfszx%xExéx?K%U:

CPHA =1 Tﬂ"gg"f:)(:*1}?2){3*4){5i{a){?}i(a}(:

Figure 6: Transfer Format as per SPI Clock Polarity and Phase
Based on this, 4 different modes of SPI are available.
Table 2: SPI Modes

CPOL | CPHA Data Read and Change Time SPI1 Mode
0 0 Sample or read at rising edge. Setup or change data at falling edge. 0
0 1 Setup at rising edge. Sample at falling edge. 1
1 0 Sample at falling edge. Setup at rising edge. 2
1 1 Setup at falling edge. Sample at rising edge. 3

ATmega328P SPI Registers

In AVR three registers are associated with SPI. They are SPSR (SPI Status Register), SPCR (SPI Control
Register), and SPDR (SPI Data Register).

1) SPDR (SPI Data Register)

7 6 5 4 3 2 1 0
I MSB LSB I

The SPI Data Register is a read/write register. To write into SPI shift register, data must be written to SPDR.
To read from the SPI shift register, you should read from SPDR. Writing to the SPDR register initiates data
transmission.

58

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing
NED University of Engineering & Technology Electrical Engineering Department

2) SPCR (SPI Control Register)

T B 5 4 3 2 1 0
I SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO

SPIE SPI Interrupt Enable
Setting this bit to one enables the SPI interrupt.
SPE SPI1 Enable
Setting this bit to one enables the SPI
DORD | Data Order
The LSB is transmitted first if DORD is one; otherwise, the MSB is transmitted first.
MSTR | Master/Slave Select
1: Selects master mode
0: Selects slave mode
CPOL | Clock Polarity
0: The base value of the clock is zero.
1: The base value of the clock is one.
CPHA | Clock Phase
0: Sample (Read) on the first clock edge.
1: Sample (Read) on the second clock edge.
SPR1, SPI Clock Rate Select 1 and 0
SPRO SPI2X, SPR1, and SPRO are combined to make different clock frequencies for master.
sSPI2X SPR1 SPRO SCK Frequency
0 0 0 Fosc/4
Fosc/16
Fosc/o4
Fosc/128
Fosc/2 (Mot recommended!)
Fosc/8
Fosc/32
Fosc/o4

Uiy (U . -] F=—1 =]

0
1
1
0
0
1
1

—|=|—=|z| ==~

3) SPSR (SPI Status Register)

7 B 5 4 3 2 1 0
SPIF WCOoL - - - - - SPI12X

SPIF SPI Interrupt Flag

This bit is set when a serial transfer is completed (in master mode if SS is configured as an
output pin).

WCOL | Write COLIlision Flag

The WCOL bit is set if you write on SPDR during a data transfer

SPI12X | Double SPI Speed

When the SPI is in master mode, setting this bit to one doubles the SPI speed.

Steps of Programming ATmega328P SPI

In accessing SPI devices, we have two modes of operation: single-byte and multiple-byte burst. To
program ATmega328P SPI, the following steps are needed depending upon master or slave modes. The

59

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing
NED University of Engineering & Technology Electrical Engineering Department

codes or subroutines are given here as sample for reference. In this lab, we will be operating our
microcontroller in the master mode only.

Single-Byte Reading and Writing in Master and Slave Mode

» ATmega328P SPI Master Initialization
To initialize ATmega328P as Master, do the following steps

1) Make MOSI, SCK, and SS pins directions as output.

2) Make MISO pin direction as input.

3) Make SS pin High.

4) Enable SPI in Master mode by setting SPE and MSTR bits in the SPCR register.

5) Set SPI Clock Rate Bits combination to define SCK frequency and clock polarity and phase.

#include <avr/io.h> //macros
#include <util/delay.h>
#define MOSI 3
#tdefine MISO 4
#define SCK 5
#define SS 2
void spi_init_master()
{
// configuring SPI pins
DDRB = (1<<MOSI) | (1<<SCK) | (1<<SS); //MOSI and SCK are output
DDRB &= ~ (1 << MISO_BIT); // input
// SPI Interrupt disabled
// SPl enabled
// Data order = MSB transmitted first
// Master mode enabled
// Clock polarity = Leading edge is rising
// Clock phase = Data is sampled on trailing edge
// SPI frequency = 16 Mhz / 16 = 1 Mhz
SPCR = (1 << 0); // SPI clock rate select 0 (SPRO)
SPCR |=(1 << 4); // Master/Slave select (MSTR)
SPCR |=(1 << 2); // Clock phase (CPHA)
SPCR |=(1 << 6); // SPI Enable (SPE) // SPI clock rate bit for SPI clock to be 1 Mhz
SPSR &=~ (1 << 0); // Double SPI speed bit (SPI2X)

}

» SPI Master Write (Single-Byte)

Master writes data byte in SPDR. Writing to SPDR starts data transmission. 8-bit data starts shifting out
towards slave and after the complete byte is shifted, SPI clock generator stops, and SPIF bit gets set.
Follow the steps below:

Make SS low to select slave.

1. Load the 1 byte of data in the SPI shift register.

60

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing
NED University of Engineering & Technology Electrical Engineering Department

2. Wait till transmission is complete i.e., poll SPIF flag to become high.
3. Make SS high to deselect slave.

PORTB &=~ (1 << SS);

void spi_write(char data) /* SPI write data function */

{
SPDR = data; /* Write data to SPI data register */
while (!(SPSR & (1<<SPIF))); /* Wait till transmission complete */

}
PORTB |= (1 << SS);

» SPI Master Read (Single-Byte)
1) Since writing to SPDR generates SCK for transmission, write dummy data in the SPDR register
even if you don’t want to send any data from master to slave.
2) Wait until the transmission is completed i.e. poll SPIF flag till it becomes high.
3) When the SPIF flag gets set, read requested received data in SPDR.

char spi_read() /* SPI read data function */

{
SPDR = OXFF;
while (1(SPSR & (1<<SPIF))); /* Wait till reception complete */
return (SPDR); /* Return received data */

}

» ATmega328P SPI Slave Initialization and Read/Write Operation
1) Inslave mode there is no need to set SCK frequency because the SCK is generated by the master,
but you must select the SP1 mode (Clock Phase and Clock Polarity) and Data Order to match with
SP1 mode and Data Order of the other side (master device).
2) Make MOSI, SCK, and SS pins direction of the device as input.
3) Make MISO pin direction of the device as output.

4) Enable SPI in slave mode by setting SPE bit and clearing MSTR bit.
The Slave SPI interface remains in sleep as long as the SS pin is held high by the master. It activates only
when the SS pin is driven low. Data is shifted out with incoming SCK clock from master during a write
operation. SPIF is set after the complete shifting of a byte.

For the read and write operations in slave mode, almost the same steps are followed as in master mode.

void spi_init_slave() /* SPI Initialize function */

{
DDRB &= "~ ((1<<MOSI) | (1<<SCK)|(1<<SS)); /* Make MOSI, SCK, SS as input pins */
DDRB | = (1<<MIS0O); /* Make MISO pin as output pin */
SPCR = (1<<SPE); /* Enable SPI in slave mode */

}

61

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology Electrical Engineering Department
char spi_receive() /* SPI Receive data function */
{
while(!(SPSR & (1<<SPIF))); /* Wait till reception complete */
return(SPDR); /* Return received data */
}
void spi_write(char data) /* SPI write data function */
{
SPDR = data; /* Write data to SPI data register */
while (!(SPSR & (1<<SPIF))); /* Wait till transmission complete */
1

Multiple-Byte Burst Reading and Writing in Master and Slave Modes

Burst mode reading or writing is an effective way to share multiple bytes from master / slave at once. To
do this,

1) Make SS low to select slave device.

2) Load the 1 byte of data in the SPI shift register.
3) Wait till transmission is complete.

4) Repeat step 2 and 3 till all bytes are transferred.
5) Make SS high to deselect slave.

We will practice this for interfacing our required module for this lab.

Max6675 Module with K-Type Thermocouple

The MAX6675 is a sophisticated thermocouple-to-digital converter with a built-in 12-bit analog-to-digital
converter (ADC). The MAX6675 also contains cold-junction compensation sensing and correction, a digital
controller, an SPI-compatible interface, and associated control logic.

Features

e Direct Digital Conversion of Type -K Thermocouple Output

e Cold-Junction Compensation: Simple SPI-Compatible Serial Interface
e 12-Bit, 0.25°C Resolution

e Open Thermocouple Detection

Datasheet: Max6675

The function of the thermocouple is to sense a difference in temperature between two ends of the
thermocouple wires. The thermocouple’s hot junction can be read from 0°C to +1023.75°C. The cold end
(ambient temperature of the board on which the MAX6675 is mounted) can only range from -20°C to
+85°C. While the temperature at the cold end fluctuates, the MAX6675 continues to accurately sense the
temperature difference at the opposite end. The MAX6675 senses and corrects for the changes in the
ambient temperature with cold-junction compensation. The device converts the ambient temperature
reading into a voltage using a temperature-sensing diode. To make the actual thermocouple temperature
measurement, the MAX6675 measures the voltage from the thermocouple’s output and from the sensing
diode. The device’s internal circuitry passes the diode’s voltage (sensing ambient temperature) and
thermocouple voltage (sensing remote temperature minus ambient temperature) to the conversion function
stored in the ADC to calculate the thermocouple’s hot-junction temperature. The ADC adds the cold-

62

https://www.analog.com/media/en/technical-documentation/data-sheets/MAX6675.pdf

Embedded Systems Lab
NED University of Engineering & Technology

Lab 06 SPI Protocol and Max6675 Interfacing
Electrical Engineering Department

junction diode measurement with the amplified thermocouple voltage and reads out the 12-bit result onto
the SO pin. A sequence of all zeros means the thermocouple reading is 0°C. A sequence of all ones means
the thermocouple reading is +1023.75°C.

Ve

0ApF

MAXGE75
BND MICRQF D_NTRE_)LLER

50 MISO

T+ SCK SCK

[¢] 538

Figure 7: Typical connections of max6675 with microcontroller
As per the datasheet, following sequence of operation generates results from the max6675 module.

Force CS low to output the first bit on the SO pin. A complete serial interface read requires 16 clock cycles.
Read the 16 output bits on the falling edge of the clock. The first bit, D15, is a dummy sign bit and is always
zero. Bits D14-D3 contain the converted temperature in the order of MSB to LSB. Bit D2 is normally low
and goes high when the thermocouple input is open. D1 is low to provide a device ID for the MAX6675
and bit DO is three-state.

cs

A /

SCK

S0 Do
D15 D1

Figure 8: Serial Interface Protocol for Max6675

DUMMY

BIT SIGN BIT

12-BIT
TEMPERATURE READING

THERMOCOUPLE
INPUT

DEVICE
ID

STATE

Bit 15

14

13

12

1|10 9 |8 |7 |6

3 2

1

0

MSB

LSB

0

Three-
state

Figure 9: SO Output from Max6675

Example 1: Programming ATmega328P SPI in master mode and measure
temperature through Max6675
Based on the information regarding max6675 module, we need to interface it with ATmega328P through
the SPI protocol. 2-byte burst read is required. Moreover, the 12 date bits from 16-bit output need to be
extracted. The final result is then multiplied with resolution to get exact temperature. This is done in a
sample code below.

63

Embedded Systems Lab

Lab 06 SPI Protocol and Max6675 Interfacing

NED University of Engineering & Technology

Electrical Engineering Department

#include <avr/io.h>
#include <util/delay.h>
#tinclude <stdlib.h>
#define MOSI 3
#tdefine MISO 4
#tdefine SCK 5

#define SS 2

void spi_init()
{
// configuring SPI pins
DDRB = (1<<MOSI) | (1<<SCK)| (1<<SS); //MOSI and SCK are
output
DDRB &= ~(1 << MISO); // input
SPCR = (1 << 0); // SPI clock rate select 0 (SPRO)
SPCR |= (1 << 4); // Master/Slave select (MSTR)
SPCR |=(1 << 2); // Clock phase (CPHA)
SPCR |=(1 << 6); // SPI Enable (SPE)
// SPI clock rate bit for SPI clock to be 1 Mhz
SPSR &= ~(1 << 0); // Double SPI speed bit

}

void spi_select()

{ PORTB &= ~(1 << SS);
}

void spi_deselect()

{ PORTB |= (1 << SS);

}

uintl6_t spi_read16()
{

uint16_t data;

// select chip to enable data transfer

spi_select();

_delay_ms(1);

// write dummy value in the SPI data register to read first
8 bits from slave

SPDR = OxFF;

while (/(SPSR & (1 << 7))){}; // wait till SPI interrupt flag
(SPIF) gets high

// read data register

data = SPDR;

// left shifting data to 8 bits

data = data << §;

//write dummy value again in the SPI data register to read
last 8 bits from slave

SPDR = OxFF;

while (!(SPSR & (1 << 7))){} // wait till SPI interrupt flag
(SPIF) gets high

// writing SPI data to lower 8 bits of the data variable

data |=SPDR;

// disable chip

spi_deselect();

return data;

float read_Thermocouple()

{

}

void usart_init(void)

{

mode,parity mode = disabled,1 stop bit,character size = 8 bit

}

void usart_putChar(unsigned char data)

{

register to be empty

}

void usart_putString(char* StringPtr)

{

}
}
int main()
{
float temp;
char temp_string[10];
spi_init();
usart_init();
while(1)
{
temp = read_Thermocouple();
dtostrf(temp,5,2,temp_string);
usart_putString("\n \r Temperature in
Celsius: ");
usart_putString(temp_string);
_delay_ms(1000);
}
}

uint16_t data;

// read SPI data
data = spi_read16();
_delay_ms(1);

// Bit 2 gets high if thermocouple input is open
if (data & 0x4)
return -1;

// discarding 3 LSB bits

data >>=3;

// factor taken from datasheet of MAX6675
return data*0.25;

UBRR0=0x67; //set pre-scalar for baud rate (9600)
UCSROA &= ~(1 << U2XO0); //Single Speed U2X - 0
UCSROB = (1 << RXENO) | (1 << TXENO); //

UCSROC = (1 << UCSZ01) | (1 << UCSZ00); // Async

// clock polarity = 0 for async communication

while(|(UCSROA & (1 << UDREQ))){}; //wait for data

UDRO = data; //write data
while(|(UCSROA & (1 << TXCO0))){}; //wait for complete

while(*StringPtr != 0x00)

{
usart_putChar((unsigned char)*StringPtr);
StringPtr++;

64

Embedded Systems Lab Lab 06 SPI Protocol and Max6675 Interfacing
NED University of Engineering & Technology Electrical Engineering Department

Task 1: To develop a temperature measurement system by interfacing Max6675
to microcontroller

1) Interface the Max6675 module with Arduino Uno by making all the required connections. Test the
code given in Example 1 that measures the temperature and transmit it through USART to PC. Note
that USART related subroutines from Lab 04 are utilized.

2) The serial terminal of PC should display room temperature value. Test it in different temperature
conditions and observe the output.

3) Now modify the given code to add a 16x2 LCD screen to your system. The LCD should display
the measured room temperature. This will make your complete temperature measurement system
portable (independent of the PC display). Make appropriate connections for LCD interfacing.
Carefully utilize the pins and ports of ATmega328P for utilizing SPI module along with the LCD
connections.

Congratulations! You have successfully developed a small system that measures and displays accurate
temperature from 0 to 1023°C.

Interesting Activity: *(Optional)

You can connect Oscilloscope probes to view SCK, MISO and SS signals at different channels
simultaneously to verify the synchronous communication. Observe that SCK signal is only available when
SS is set low and clock is generated. With respect to the clock signals, observe the data bits (D15 to DO0).
Read the 16-bit output from Max6675 and try to verify the temperature obtained using the extracted 12-bit
number (D14-D3).

65

Course Code: EE-354
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Embedded Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration

Equipment Identification | Completely Ability to identify Ability to identify
and Handling: unable to equipment but equipment and
Sensory skill to identify | identify makes mistakes in recognises all
equipment and its | equipment and recognising components,
components along with | components _ components, _ practices careful
adherence to safe | and no regard demonstrates and safe handling
handling to safe handling decent equipment

handling capacity
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to establish successfully
between computer and | connection _ software _ establishes
hardware kit and establish | verification connection software
connectivity with verification connection
software verification
Following step-by-step | Inability to | Able to recognise | Able to recognise | Able to recognise | Able to recognise

procedure to complete
lab work:

Observe, _imitate _and
operate hardware in

conjunction with software
to complete the provided
sequence of steps

recognise and
perform given
lab procedures

given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

given lab
procedures and
perform them by
following

prescribed order of
steps, with

frequent mistakes

given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

given lab
procedures and
perform them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Controller for given | selection and | of programming | and use of | and use of | and use of
Embedded System | use of | constructs and | programming programming programming
Problem: programming instructions but | constructs and | constructs and | constructs and
Imitate and practice given | constructs and | their use is | instructions with | instructions with | instructions with
embedded C instructions | instructions incorrect many syntax/logical | little to no | no syntax/logical

for implementing specific

errors

syntax/logical

errors

control strategy and store errors

required variables

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

many mistake

lesser mistakes

no major mistakes

occasional use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions in | and detect | messages in | messages in | messages in | messages in
Hardware and Software: | error messages | software but no | software and | software and | software and
Detect Errors/Exceptions | in software and | sense of | recognise them on | recognise them | recognise them on
and manipulate, under | hardware hardware error | hardware. Still | on hardware. | hardware.
supervision, to rectify the identification unable to | Moderately able | Reasonably ablein
embedded C program understand the | in understanding | understanding
error type and | error type and | error type and
possible causes possible causes possible causes
Visualisation, Unable to | Ability to | Ability to | Ability to | Ability to
Comparison and analysis | understand and | understand and | understand and | understand and | understand and
of results: utilise utilise utilise visualisation | utilise utilise
Copy or enter results in | visualisation, visualisation and | and plotting | visualisation and | visualisation and
analysis software to | plotting and | plotting instructions with | plotting plotting
visualise and compare | analysis instructions with | occasional errors. | instructions with | instructions
them with inputs. Use | software errors. Unable to | Able to partially | no errors. Able to | without errors.

analysis tools to compute
standard indices from
result

compute
standard indices

compute standard
indices

partially compute
standard indices

Able to compute
standard indices
completely

Page 2 of 2

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers
NED University of Engineering & Technology Electrical Engineering Department

| LAB SESSION 07 |

OBJECTIVE:

To configure the Timer/Counter registers of AVR ATmega328P for generation of PWM (Pulse-Width
Modulation) signals

LAB OUTCOMES:
By the end of this lab, you will be able to:

1) Understand the timers/counters of an AVR microcontroller and their different modes of operation.

2) Identify the AVR ATmega328P pins associated with the timer ports.

3) Identify the purpose of different fields of timer / counter registers.

4) Configure the timer/counter registers for generation of PWM signal in Fast PWM mode.

5) Program ATmgea328P for PWM signal generation and verify the pulse-width and duty cycle of
the generated signals.

6) Control the position of a servo motor using PWM signal generated by ATmega328P.

“Getting into the habit of switching a timer on will, | promise, save you from any number of kitchen
disasters.” — Delia Smith

INTRODUCTION:

Microcontrollers have counter registers which can store the count of pulses from oscillator (clock) or any
external signal. Such registers can be used as Counter or Timer. To count an event, the external event
source can be connected to the pin of the counter register. The content of the counter is incremented
whenever the external event occurs. The content of the counter represents how many times an event has
occurred. To generate time delays, we connect the oscillator to the clock pin of the counter. The content of
the counter is incremented when the oscillator ticks. Since the frequency of the oscillator in a
microcontroller is known, and multiplying the time period with the count in the counter register, one can
calculate the time elapsed. The flag is set when the counter overflows.

Oscillator

> Counter register

Y

Flag

External source

Counter/Timer

Figure 1: General View of Counters and Timers in Microcontrollers

Therefore, the timer modules of microcontrollers are used as timers to generate a time delay or as counters
to count events happening outside the microcontroller. These timer modules have waveform generation
support as well. In this lab, we will explore the ATmega328P timers, their modes of operation, and
configuration for PWM (Pulse-Width Modulation) signal generation for given frequency and duty-cycle.

ATmega328P Timers and Basic Timer Registers
In ATmega328P, there are three timers, and all these are capable of generating PWM outputs.
e TimerO0 (8-bit wide)
e Timerl (16-bit wide)
e Timer2 (8-bit wide)
66

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers
NED University of Engineering & Technology Electrical Engineering Department

TCNTn (Timer/Counter Register):

For each of the timer modules, there is a Timer/Counter register TCNTn (i.e. TCNTO, TCNT1 and TCNT2).
This register stores the count and is cleared when reset is high. Each timer has a Timer Overflow Flag
(TOVN) which is set high when TCNTn overflows.

OCRnN (Output Compare Register):
Each timer also has an OCRn (Output Compare Register) register. The content of the OCRn is compared
with the content of the TCNTn. When they are equal the OCFn (Output Compare Flag) flag will be set.

TCCRn (Timer/Counter Control Register):
The control registers are used for setting modes of operation.

The maximum and minimum values of TCNT are called TOP and BOTTOM, respectively.

OCRn TCNTn

U U

(8-bit Comparator)
—— OCFn (interrupt req.)
) J

TCNTn Top ——]

TCNTn Bottom ——» Waveform Generator

FOCn ——»]

WGMn1:0 COMn1:0

Figure 2: A General Representation of the Registers and Signals Associated with AVR times

In each timer module, there is a waveform generator. The waveform generator can generate waves on the
OCn pin.

We will look into the details of each of these for the three timers and their use to program timers.

ATmega328P Pins Associated with Timers/Counter Modules & PWM
Generation

LEGEND THE
UNOFFICIAL

CONTROL | ARDUINO

[PORT PIN . &
ATMEGA328 PIN FUNC | ATMEGA328

DIGITAL PIN PINOUT DIAGRAM

| RESET — PCINTS |— PC6—e

_PCINTI6 |{PDO e

EW-{ ™0 Pant7 H Po1 e

- w0~ ponTis D2 e

0C2B INT1 — PCINTIS {PD3 —e
o - x« — PCNT20 H{PDd—e

o pcs H{ paNT3

o—{pca — pant1z I]
(e - panru |- (S-S
o—{pc2 —{ pciNTi0 B)

o—{pc1 — PCINTS

o—{PCO —{ PCINTS

1
2
3
4
5
6
7
8
9

051 — XTALL — PCINT6 [PB6 —e —{ vec |

ATMEGA328

-
o

0SC2 — XTAL2 — PCINT7 — PB7 —e
ocos HTPWMIIEH T ot P05
0C0A AINO —{ PCINT22 {PD6 —o

EB- am = panT23 H D7 e
ice1 - cxo — panto H{PB0 —e

o—(pes { pants {INSCKIN—EED)

o—(pea { panTs —{IINISON—EFN

o—(pe3 { pan3 | ocea —{E—{PWAIN—NMOSIN)
—{PB2 - PCNT2 - oC18 10 g T S EES

{701 -{_vewns 1 oan -ER-{WD

kB

()

-
>

Figure 3: ATmega328P Pinout with Arduino Uno Connections
67

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers
NED University of Engineering & Technology Electrical Engineering Department

Modes of Operation of Timers/Counters
Modes of operation supported by the AVR Timer/Counter unit are:

o Normal mode (counter)

e Clear Timer on Compare Match (CTC) mode

e PWM modes (Fast PWM Mode, Phase Correct PWM Mode, and Phase and Frequency Correct
PWM Mode)

Normal Mode

In this mode, the content of the timer/counter increments with each clock. It counts up until it reaches its
max of OxFF. When it rolls over from OxFF to 0x00, it sets high a flag bit called TOVO (Timer Overflow).

CTC (Clear Timer on Compare) Mode

The OCRO register is used with CTC mode. As with the Normal mode, in the CTC mode, the timer is
incremented with a clock. But it counts up until the content of the TCNTO register becomes equal to the
content of OCRO (compare match occurs); then, the timer will be cleared and the OCFO flag will be set
when the next clock occurs.

In normal or CTC modes, the OCO pin can perform one of the following actions for wave generation: (a)
Remain unaffected (b) Toggle the OCO pin (c) Clear (Drive low) the OCO pin (d) Set (Drive high) the
OCO pin.

| 1

| | Time
1 T L

| |

oco
T_ e e ——
0

Figure 4: Sample Square Wave Generation in Normal mode (OCO Toggle)
PWM Modes (Fast PWM Mode and Phase Correct PWM Mode)

The first output mode shown in Figure 5(a) represents the waveforms generated given a fast PWM setting
where the TOP value is fixed at the maximum 8-bit value of 255. In this mode, two different output compare
register values can be set independent of each other, each affecting a different output pin. That is, two
separate PWM waveforms may be generated on two different port pins.

Y

The second output mode shown in Figure 5(b) represents the waveforms generated given the phase-correct
PWM setting where the TOP value is also fixed at the maximum 8-bit value of 255. As in the fast PWM
case, two different output compare register values can be set independent of each other, each affecting their
own output pin. As can be seen, this mode alters the TCNT register behavior as once the counter reaches
the TOP value of 255, it begins counting backwards toward 0. The benefit has to do with the phase of the
modulated carrier.

Notice the narrower pulses of OCB as compared to that of OCA in both Figure 5 (a-b). In the fast case, the
front edges line up, whereas in the phase-correct case, the center of the pulses line up; that is, the phase of
the OCA and OCB waveforms are equivalent. As a result, the period of the PWM waveform is nearly
doubled. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as
high as the phase correct PWM mode that use dual-slope operation. This high frequency makes the fast

68

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers
NED University of Engineering & Technology Electrical Engineering Department

PWM mode well suited for power regulation, rectification, and DAC applications. High frequency allows
physically small sized external components (coils, capacitors), hence reduces total system cost.

TCNTx TCNTx
286 fF------ 255 |fe-=----=
OCRxA | ---=-"- OCRxA [--"c---
OCRxB | --Z_—_t_¢_ OCRxB | -——_
] t 0 t
0OCxA OCxA
L LN sV
n t n t
OCxD 0OCxDB
5V 5
0 I I t o t
le— T —ul
(a) Fast PWM (b) Phase-Correct PWM

Figure 5: The two PWM configuration output waveforms with TOP = 255

The final two output modes shown in Figure 6 represent the fast and phase-correct PWM waveforms when
the TOP value is set to the 8-bit value stored in OCRA. Both of these modes effectively disable the OCA
pin functionality at the benefit of increasing the PWM frequency dramatically. In both cases, the TCNT
register will count up to the OCRA value, and then either reset to 0 or start counting down toward 0. The
only comparison that matters is that to OCRB, which will affect the OCB pin as in the previous cases. The
two most significant results are that for a value loaded into OCRA, the total number of analog output levels
available is reduced from 256 to OCRA + 1.

TCNTx TCNTx
255 F------ E 255 ------
1]
1 1
OCRxA |--p--- R e R OCRxA [---=---
OCRxB | -C--#-p-f -yt mm ey OCRxB |-<--"s-Ll_ ¢ _N_1_ . L __ .. __
0 . - t 0 t
1 !]
[
OCxA '3 OCxA
1 1]
I
BV preesaaaaa. _E_:_e.. ‘,V
[
1 I]
[
i I]
[
1 1]
0 —— t 0 t
1 : 1
0CxB Lo ocxB
1
Lo
5V e ! | prer peer seer s 5V
0 . ! t 0 l t
e T+l — T —
(a) Fast PWM (b) Phase-Correct PWM

Figure 6: The two PWM configuration output waveforms with TOP = 255
69

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers
NED University of Engineering & Technology Electrical Engineering Department

Timer0 Registers and Programming

1) TCNTO - Timer/Counter0O Register
Timer0, an 8-bit timer, has 8-bit wide timer/counter register called TCNTO.

TCNTO D7 |Ds | D5 | D4 | D3 | D2 | D1 | DO

2) OCROA - Output Compare0 Register A
The Output Compare Register A contains an 8-bit value that is continuously compared with the counter
value TCNTO. A match can be used to generate a waveform output on the OCOA = PD6.

3) OCROB - Output Compare0 Register B
The Output Compare Register B contains an 8-bit value that is continuously compared with the counter
value TCNTO. A match can be used to generate a waveform output on the OC0B = PD5.

4) TCCROA (Timer/Counter0 Control Register A)
The different bits of this register used for controlling Timer0 are explained below.

7 6 5 4 3 2 1 0
COMOA1 | COMOAO | COMOB1 | COMO0OBO - - WGMO01 | WGMO00

WGMO01-00 | Waveform Generation Mode

Combined with the WGMO2 bit found in the TCCROB Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used.

OCROx TOVO
WGMO02-0 TOP Update Flag Set

000 Normal OxFF Immediate 0xFF
001 Phase Correct PWM 0xFF TOP 0x00
010 CTC OCROA | Immediate 0xFF
011 Fast PWM OxFF 000 0xFF
100 Reserved - - -
101 Phase Correct PWM | OCROA TOP 0x00
110 Reserved - - -
111 Fast PWM OCROA 000 TOP

COMOA1-0 | Compare Output Mode for Channel A

These control the output-compare pin (OCOA = PORTDG) behavior.

COMOB1-0 | Compare Output Mode for Channel B

These bits control the output compare pin (OCOB = PORTDS5) behavior.

COMOx1:0 bit functionality depends on the WGMO02:0 bit setting. Here, the COMO combinations
are given for Fast PWM modes only (WGM is set in Mode 3 or 7).

COMO0A1-0

00 Normal port operation, OCOA disconnected
01 WGMO02=0 (Mode 3): Normal port operation, OCOA disconnected
WGMO02=1 (Mode 7): Toggle OCOA on compare match
10 Non-inverting mode (Clear OCOA on compare match when up-counting).
WGMO02:0 11 Inverting mode (Set OCOA on compare match when up-counting).
set to Fast
PWM COMO0B1-0
Mode 00 Normal port operation, OCOB disconnected
01 Reserved
10 Non-inverting mode (Clear OCOB on compare match when up-counting).
11 Inverting mode (Set OCOB on Compare Match. Clear at BOTTOM).

For COM bits in the other modes, refer to the datasheet of ATmega328P.

70

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology

Electrical Engineering Department

5) TCCROB (Timer/Counter0 Control Register B)
The different bits of this register used for controlling Timer0 are explained below.

7 6 5 4 3 2 1 0
FOCOA | FOCOB - - WGMO02 | CS02 CS01 CS00
FOCO0A Force Output Compare for Channel A and B
FOCO0B When operating in PWM mode, these are set to 0. These are active in non-PWM mode
only.
WGMO02 | Waveform Generation Mode
This bit along with WGM01-00 in TCCROA set waveform generation mode.
CS02-00 | Clock Select

Set the clock source to be used by Timer/Counter.

000 No clock source (Timer/Counter stopped)
001 clkyjo/1 (No pre-scaling)

010 clky;o/8 (From pre-scaler)

011 clky;0/64 (From pre-scaler)

100 clkyjo /256 (From pre-scaler)

101 clky;0 /1024 (From pre-scaler)

110 External clock source on TO pin. Clock on falling edge.

111 External clock source on TO pin. Clock on rising edge.

Timer2 Registers and Programming
The Timer2 is also an 8-bit timer, therefore, it has the same registers with similar functionality as explained
for the TimerQ above. The register and corresponding bits are named with 2 (for Timer2) instead of 0. The
clock-select or pre-scalar combinations are different than that of Timer0Q. These are listed below.

e TCNT2 - Timer/Counter2 Register

e OCR2A - Output Compare2 Register A (OC2A = PB3)
e OCRZ2B - Output Compare2 Register B (OC2B = PD3)
e TCCROA (Timer/Counter2 Control Register A)

7 6 5 4 3 2 1 0
COM2A1 | COM2A0 | COM2B1 | COM2B0 - - WGM21 | WGM20
e TCCR2B (Timer/Counter2 Control Register B)
7 6 5 4 3 2 1 0
FOC2A FOC2B - - WGM22 | CS22 CS21 CS20
CS22 | CS21 | CS20 Pre-scalar
0 0 0 No Clock Source
0 0 1 1 (System Clock)
0 1 0 8
0 1 1 32
1 0 0 64
1 0 1 128
1 1 0 256
1 1 1 1024

Timerl Registers and Programming
Timerl is the only 16-bit timer in ATmega328P. It has 16-bit wide registers (TCNT1, OCR1A and OCR1B)
and 3 8-bit wide control registers (TCCR1A, TCCR1B and TCCR1C). Timerl unit allows accurate program
execution timing (event management), wave generation, and signal timing measurement (input capture).

71

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers
NED University of Engineering & Technology Electrical Engineering Department

1) TCNT1 - Timer/Counterl Register
The 16-bit timer/counterl register is represented as:

TCNT1H TCNTIL
A A

2) OCR1A and OCRI1B (Output Compare Registerl A and B)

The Output Compare Register A contains a 16-bit value that is continuously compared with the counter
value TCNT1. A match can be used to generate an Output Compare interrupt or to generate a waveform
output on the OC1A = PBL.

The Output Compare Register B contains a 16-bit value that is continuously compared with the counter
value TCNT1. A match can be used to generate an Output Compare interrupt or to generate a waveform
output on the OC1B = PB2.

3) TCCRI1A (Timer/Counterl Control Register A)
7 6 5 4 3 2 1 0
COM1Al1 | COM1AO | COM1B1 | COM1BO0 - - WGM11 | WGM10

WGM11-0 | Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control
the counting sequence of the counter, the source for maximum (TOP) counter value,
and what type of waveform generation to be used.

OCRI1x TOVi

WGM13-0 Mode TOP Update Flag Set
0000 Normal 0xFFFF | Immediate | OxFFFF
0001 Phase Correct 8-bit PWM 0x00FF TOP 0x0000
0010 Phase Correct 9-bit PWM 0x01FF TOP 00000
0011 Phase Correct 10-bit PWM 0x03FF TOP 0x0000
0100 CTC OCRI1A | Immediate | OxFFFF
0101 Fast 8-bit PWM Ox00FF 0x0000 TOP
0110 Fast 9-bit PWM 0x01FF 0x0000 TOP
0111 Fast 10-bit PWM 0x03FF 0x0000 TOP

1000 Phase/Frequency Correct PWM ICR1 00000 0x0000
1001 Phase/Frequency Correct PWM | OCRI1A | 0x0000 0x0000

1010 Phase Carrect PWM ICR1 TOP 00000
1011 Phase Correct PWM OCRI1A TOP 0x0000
1100 CTC ICR1 Immediate | OxFFFF
1101 Reserved - - -
1110 Fast PWM ICR1 0x0000 TOP
1111 Fast PWM OCR1A 0x0000 TOP

COM1A1-0 | Compare Output Mode for Channel A

These control the output-compare pin (OC1A = PB1) behavior.

COM1B1-0 | Compare Output Mode for Channel B

These bits control the output compare pin (OC1B = PB2) behavior.
COM1x1:0 bit functionality depends on the WGM13:0 bit setting.

COM1x1-0 Description
00 Normal port operation, 0C1x disconnected
WGM13:0 01 WGM13:0 # 14,15: Normal Port Operation, 0C1x disconnected
set to Fast WGM13:0 = 14,15: Toggle 0C1A on Compare Match, 0C1B disconnected
PWM 10 Clear 0C1x on Compare Match, set 0C1x at 0x0000,
Modes (non-inverting mode).
11 Set 0C1x on Compare Match, clear 0C1x at (x0000,
(inverting mode).

72

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers
NED University of Engineering & Technology Electrical Engineering Department

4) TCCR1B (Timer/Counterl Control Register B)

7 6 5 4 3 2 1 0
ICNC1 ICES1 - WGM13 | WGM12 | CS12 CS11 CS10
INC1 Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler which filters Input
Capture Pin input (ICP1=PB0).

ICES1 Input Capture Edge Select

0: Falling edge is used to trigger capture event at ICP1.

1: Rising edge is used.

WGM13-2 | Waveform Generation Mode(Combined with WGM11-0 in TCCR1A)

CS12-10 Clock Select:

C512-0 Description

000 No clock source (Timer/Counter stopped)

001 clky ;o /1 (No pre-scaling)

010 clky;o/8 (From pre-scaler)

011 clkyo/64 (From pre-scaler)

100 clky /256 (From pre-scaler)

101 clkj;o/1024 (From pre-scaler)

110 External clock source on T1 pin. Clock on falling edge.

111 External clock source on T1 pin. Clock on rising edge.

5) TCCRI1C (Timer/Counterl Control Register C)

7 6 5 4 3 2 1 0
FOC1A FOC1B - - -
FOC1A and FOC1B: Force Output Compare for Channel A and B
These are active in non-PWM mode.

6) ICR1 (Input Capture Registerl)

The Input Capture Register can be used for defining counter TOP value. Otherwise, it shows the count of
event occurrence on the Input Capture Pin (ICP1=PB0).

[6CRiAH | ocriAL || |[TcNTiH | TcNTiL || |[OCRIBH | OCRABL |
U —= !
| =(16-bitcomparator) | | = (16-bit comparator) |
OCF1A <—] —» OCF1B

OC1A OC1B
Waveform Generator A OTTOM Waveform Generator B

— WGM13:0 4

COM1A1:0 COM1B1:0

Figure 7: Representation of 16-bit Timer Module and Associated Signals and Pins

Programming 8-Bit Timers (Timer0/2) in Fast PWM Mode for PWM Signal

Generation
1) Select modes using COM and WGM bits, for example; fast PWM (mode 3 or 7) and non-inverting
(COMO0x10= 0b10).
2) Select a pre-scalar by CS bits.
3) In Fast PWM mode, use the pins associated with the timer. Configure them as output pins.
73

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers
NED University of Engineering & Technology Electrical Engineering Department

e Timer0: OCOA (=PD6, Arduino Pin 6) / OCOB (=PD5, Arduino Pin 5)
e Timer2: OC2A (=PB3, Arduino Pin 11) / OC2B (=PD3, Arduino Pin 3)
4) The frequency of generated PWM signal is calculated as:

system_clock

prescalar (1 + TOP)

5) TOP is dependent on Mode. In Mode 3, it is fixed to 255 (OxFF).
6) In Mode 7, PWM mode works with a Compare Match. Top is the value stored in OCRxA. Calculate
TOP i.e., OCRXA.

f desired =

The PWM wave of set frequency will be generated at OCxB as per the value of OCRXB.

Mode 7 allows you to set frequency easily through OCRXA for a given pre-scalar. In mode 3, the
frequency is fixed for any given pre-scalar as TOP is fixed.

7) Set OCRxA or OCRXB registers to achieve required duty-cycle. Lowering the top value can increase
the PWM base frequency, but reduces the resolution. It’s easier to set duty-cycle in mode 3.
For COM=10, the output will be set high for N+1, where N is value of OCR. Total cycles are determined
by TOP+1. Where, TOP = 0xFF (255) in mode 3 and TOP=OCRXA in mode 7.

OCRx+ 1
TOP +1

Example 1: Generating PWM Signal Using Timer2

The example code given here generates a square wave signal with a frequency of 1 kHz at OC2B. In each
cycle, the signal will be high 20% of the time and 80% low. Another expression for this is: the duty cycle
is 20%.

CODE SAMPLE OUTPUT

// Period = 1 ms => Frequenz = 1lkHz

#include <avr/io.h>

int main(void) 1ﬁF

{ .
// WGM22/WGM21/WGM20 all set (ociy
//Mode 7, fast PWM

TCCR2A = (1<<COM2B1l) | (1<<WGM21) |

(1<<WGM20) ;

// Set OC2B at bottom, . it

//clear OC2B at compare match High
TCCR2B = (1<<CS22) | (1<<WGM22) ; _W —1 _W

Duty Cycle =

OCR2B

// prescaler = 64;
249;

OCR2A
OCR2B 49;
DDRD |= (1<<PD3);
while (1) {};
}
Note: Observe that in the above code, the timer registers are once initialized for PWM generation outside

the while loop. In comparison to that, one can use the digital 1/0 pins for generation of PWM signal by
setting them high for certain time and then low, using the delay functions repeatedly in the while loop. But
that approach will use CPU itself to create the equivalent of PWM outputs. The advantage of using the
built-in PWM feature of the AVR is that it gives us the option of programming the period and duty cycle,
therefore relieving the CPU to do other important things.

74

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers
NED University of Engineering & Technology Electrical Engineering Department

PWM Signals for DC Motor Speed Control and Servo Motor Position Control

Pulse-width modulation (PWM) is a technique for controlling the speed of a DC motor by varying the width
of the pulses that are applied to the motor's power supply. The duty cycle determines the average voltage
that is applied to the motor. A higher duty cycle results in a higher average voltage, which in turn results in
a higher motor speed.

A servo motor is a motor whose shaft position can be controlled precisely. The motor has an internal
servomechanism that provides feedback about the position of shaft. SG90 is a small “Servo Motor” whose
position can be controlled by a PWM signal. The required duty-cycle for different positions of this servo
motor are given in Table below. The power requiements of SG90 can be met by Arduino Uno board.
Utilizing the timers of ATmega328P, you can easily generate the required PWM signals for controlling the
position of SG90.

e Required 20ms
Frequency=50 Hz -
e At Duty cylce ~ 5 %, ” w -‘ -‘ } o‘@
Shaft Position = 0° iy
e Duty cycle ~ 7.5%, T e
$GY0 Shaft Position = 90° L—LLL—L @
s
' « Duty cycle ~ 10%, 2oms
2 @ a Shaft Position = 180° r)
—

Figure 8: SG90 Servo-Motor Pinout and PWM Signal Requirements
Programming 16-Bit Timer (Timerl) in Fast PWM Mode

1) Select the mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, by
the combination of the waveform generation mode (WGM13:0) and compare output mode (COM1x1:0)
bits.

Note:

Fast PWM modes (WGM13:0 =5, 6, 7, 14, or 15): In fast PWM mode the counter is incremented until
the counter value matches either one of the fixed values 0x00FF, OXO1FF, or OX03FF (WGM13:0 =5,
6, or 7), the value in ICR1 (WGM13:0 = 14), or the value in OCR1A (WGM13:0 = 15).

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or
OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum
resolution is 16-bit (ICR1 or OCR1A set to MAX).

Using the ICR1 register for defining TOP works well when using fixed TOP values. By using ICR1,
the OCR1A register is free to be used for generating a PWM output on OC1A. However, if the base
PWM frequency is actively changed (by changing the TOP value), using the OCR1A as TOP is clearly
a better choice due to its double buffer feature which allows it to be written anytime.

2) Set TCCR1A and TCCR1B according to the selected modes.

3) Configure the associated OC1x pin as output pin.

4) Set the TOP by initializing ICR1 or OCR1A as per the selected modes and required frequency.

system_clock

prescalar (1 4+ TOP)

faesired =

75

Embedded Systems Lab Lab 07 PWM Generation using AVR Timers

NED University of Engineering & Technology Electrical Engineering Department
5) Set the duty-cycle by initializing OCR1A / OCR1B.
Dutv Cvel __OCR1x4—1
WYLy = 1 v Top)

Example 2: Generating PWM Signal using Timer 1 for Servo-Motor Position Control

#include <avr/io.h>
#include <util/delay.h>
int main(void)

{

DDRB |= (1<<PBl); // Set PBl as output
TCCR1A |= (1<<COM1Al) | (1<<WGM1ll); // Fast PWM, non-inverting mode
TCCR1B |= (1<<WGM13) | (1<<WGM1l2) | (1<<Cs11);

// Fast PWM, prescaler = 8
ICR1=39999; //20ms PWM period - TOP
while (1) {

OCR1A = 1999; // Set position to 0 degrees
_delay ms(1000);

OCR1A = 2999; // Set position to 90 degrees
_delay ms(1000) ;

OCR1A = 3999; // Set position to 180 degrees
_delay ms(1000);

}

LAB TASKS

TASK 1: To verify PWM signal generation by 8-bit Timers using Example 1

1)

2)
3)

Create an AVR project and build the code given in Example 1. Program the microcontroller with it and
test the PWM signal generated at PD3 using an Oscilloscope.

Measure the frequency, time-period and duty-cycle of the generated waveform for verification.
Modify the code to generate a waveform at 2k Hz frequency with duty-cycle of 50% using TimerO.
Show the modified code and results.

TASK 2: To test Example 2 for servo-motor position control using Timerl PWM signal

1)
2)

3)
4)

Create an AVR project and build the code given in Example 2. Program the microcontroller with it.
Make appropriate connections to power up the SG90 servo-motor and to provide PWM signal for
control.

Observe the position of motor-shaft. Does it rotate by 90 degrees after every 1 second?

Can you control the SG90 servo motor using Timer0 or Timer2? What is the minimum frequency
achievable by Timer0, 1 and 2 in Fast PWM Modes? Consider the higher pre-scalar.

76

Course Code: EE-354
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Embedded Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration

Equipment Identification | Completely Ability to identify Ability to identify
and Handling: unable to equipment but equipment and
Sensory skill to identify | identify makes mistakes in recognises all
equipment and its | equipment and recognising components,
components along with | components _ components, _ practices careful
adherence to safe | and no regard demonstrates and safe handling
handling to safe handling decent equipment

handling capacity
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to establish successfully
between computer and | connection _ software _ establishes
hardware kit and establish | verification connection software
connectivity with verification connection
software verification
Following step-by-step | Inability to | Able to recognise | Able to recognise | Able to recognise | Able to recognise

procedure to complete
lab work:

Observe, _imitate _and
operate hardware in

conjunction with software
to complete the provided
sequence of steps

recognise and
perform given
lab procedures

given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

given lab
procedures and
perform them by
following

prescribed order of
steps, with

frequent mistakes

given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

given lab
procedures and
perform them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Controller for given | selection and | of programming | and use of | and use of | and use of
Embedded System | use of | constructs and | programming programming programming
Problem: programming instructions but | constructs and | constructs and | constructs and
Imitate and practice given | constructs and | their use is | instructions with | instructions with | instructions with
embedded C instructions | instructions incorrect many syntax/logical | little to no | no syntax/logical

for implementing specific

errors

syntax/logical

errors

control strategy and store errors

required variables

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

many mistake

lesser mistakes

no major mistakes

occasional use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions in | and detect | messages in | messages in | messages in | messages in
Hardware and Software: | error messages | software but no | software and | software and | software and
Detect Errors/Exceptions | in software and | sense of | recognise them on | recognise them | recognise them on
and manipulate, under | hardware hardware error | hardware. Still | on hardware. | hardware.
supervision, to rectify the identification unable to | Moderately able | Reasonably ablein
embedded C program understand the | in understanding | understanding
error type and | error type and | error type and
possible causes possible causes possible causes
Visualisation, Unable to | Ability to | Ability to | Ability to | Ability to
Comparison and analysis | understand and | understand and | understand and | understand and | understand and
of results: utilise utilise utilise visualisation | utilise utilise
Copy or enter results in | visualisation, visualisation and | and plotting | visualisation and | visualisation and
analysis software to | plotting and | plotting instructions with | plotting plotting
visualise and compare | analysis instructions with | occasional errors. | instructions with | instructions
them with inputs. Use | software errors. Unable to | Able to partially | no errors. Able to | without errors.

analysis tools to compute
standard indices from
result

compute
standard indices

compute standard
indices

partially compute
standard indices

Able to compute
standard indices
completely

Page 2 of 2

Embedded Systems Lab Lab 08 OEL.: Voltage Measurement using ZMPT101 Module
NED University of Engineering & Technology Electrical Engineering Department

| LAB SESSION 08 |
OEL (Open Ended Lab)

OBJECTIVE:

To interface analog voltage sensor ZMPT101B for measurement of phase voltage and display its true RMS
(Root Mean Square) value on LCD (Liquid Crystal Display) screen.

DELIVERABLES:

e Report
e C-Code
e Complete hardware setup (ZMPT101B module and LCD interfaced with Microprocessor)

77

Course Code: EE-354
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Embedded Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration

Equipment Identification | Completely Ability to identify Ability to identify
and Handling: unable to equipment but equipment and
Sensory skill to identify | identify makes mistakes in recognises all
equipment and its | equipment and recognising components,
components along with | components _ components, _ practices careful
adherence to safe | and no regard demonstrates and safe handling
handling to safe handling decent equipment

handling capacity
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to establish successfully
between computer and | connection _ software _ establishes
hardware kit and establish | verification connection software
connectivity with verification connection
software verification
Following step-by-step | Inability to | Able to recognise | Able to recognise | Able to recognise | Able to recognise

procedure to complete
lab work:

Observe, _imitate _and
operate hardware in

conjunction with software
to complete the provided
sequence of steps

recognise and
perform given
lab procedures

given lab
procedures and
perform them but
could not follow
the prescribed
order of steps

given lab
procedures and
perform them by
following

prescribed order of
steps, with

frequent mistakes

given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

given lab
procedures and
perform them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Controller for given | selection and | of programming | and use of | and use of | and use of
Embedded System | use of | constructs and | programming programming programming
Problem: programming instructions but | constructs and | constructs and | constructs and
Imitate and practice given | constructs and | their use is | instructions with | instructions with | instructions with
embedded C instructions | instructions incorrect many syntax/logical | little to no | no syntax/logical

for implementing specific

errors

syntax/logical

errors

control strategy and store errors

required variables

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

many mistake

lesser mistakes

no major mistakes

occasional use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions in | and detect | messages in | messages in | messages in | messages in
Hardware and Software: | error messages | software but no | software and | software and | software and
Detect Errors/Exceptions | in software and | sense of | recognise them on | recognise them | recognise them on
and manipulate, under | hardware hardware error | hardware. Still | on hardware. | hardware.
supervision, to rectify the identification unable to | Moderately able | Reasonably ablein
embedded C program understand the | in understanding | understanding
error type and | error type and | error type and
possible causes possible causes possible causes
Visualisation, Unable to | Ability to | Ability to | Ability to | Ability to
Comparison and analysis | understand and | understand and | understand and | understand and | understand and
of results: utilise utilise utilise visualisation | utilise utilise
Copy or enter results in | visualisation, visualisation and | and plotting | visualisation and | visualisation and
analysis software to | plotting and | plotting instructions with | plotting plotting
visualise and compare | analysis instructions with | occasional errors. | instructions with | instructions
them with inputs. Use | software errors. Unable to | Able to partially | no errors. Able to | without errors.

analysis tools to compute
standard indices from
result

compute
standard indices

compute standard
indices

partially compute
standard indices

Able to compute
standard indices
completely

Page 2 of 2

Embedded Systems Lab Lab 09 AVR 12C Interface (TWI)
NED University of Engineering & Technology Electrical Engineering Department

| LAB SESSION 09 |
OBJECTIVE:

To set up Inter-Integrated Circuit (12C) communication on Atmega328P micro-controller for controlling a
16x2 LCD screen through PCF8574 12C 1/O (Input/Output) expander

LAB OUTCOMES:
By the end of this lab, you will be able to:

1) Explain the Inter-Integrated Communication (12C) protocol

2) ldentify the AVR ATmega328P pins associated with 12C interface (Two-Wire Interface TWI)

3) Identify the purpose of different fields of TWI registers

4) Program ATmega328P TWI in master and slave modes for single-byte and multiple-byte burst
read/write

5) Operate a 16x2 LCD in 4-bit mode

6) Identify the pins of PCF8574 12C 1/0O expander module

7) Program ATmega328P TWI for controlling 16x2 LCD screen through PCF8574 expander

“A lack of communication breeds assumptions of what the other is thinking or feeling; and assumptions
are, more often than not incorrect” — Misty Lynn Walker

INTRODUCTION:

The Inter-Integrated Circuit (12C or 12C or 1IC) serial communication protocol was created by Philips to
attach low-speed peripherals to an embedded micro-processor for reliable short-distance communication.
12C is a multi-point protocol in which more than two devices are able to communicate along the serial
interface. It uses only 2 pins for data transfer. They are called:

e SCL (Serial Clock), which synchronizes the data transfer between two chips
e SDA (Serial Data), which carries the data.

These two pins, SDA and SCK, make the 12C a 2-wire interface. In many application notes, including AVR
datasheets, 12C is referred to as Two-Wire Serial Interface (TWI). We will be using 12C and TWI
interchangeably.

VCC
— o o
(1)) (o)) @
o =) o
> > >
i) () (4]
0 O 0O
SDA
-4 -
- p SCL

Figure 1: 12C Bus Interface Representation
78

Embedded Systems Lab Lab 09 AVR 12C Interface (TWI)
NED University of Engineering & Technology Electrical Engineering Department

The 2 pins are bidirectional open-drain pins which means that a 4.7 kilo Ohm pull-up resistor for each of
line is needed as shown in Figure 1. If one or more devices pull the line to low (zero) level, the line state is
zero and otherwise the line state remains high (one).

Each of the devices connected with 12C multipoint bus interface is called a node. Each node can operate as
either master or slave.

e Master is a device that generates the clock for the system; it also initiates and terminates a transmission.
e Slave is the node that receives the clock and is addressed by the master.

In 12C, both master and slave can receive or transmit data, so there are four modes of operation.

e Master transmitter
e Master receiver

e Slave transmitter
e Slave receiver.

Notice that each node can have more than one mode of operation at different times, but it has only one
mode of operation at a given time.

Working of 12C Protocol

12C is a synchronous serial protocol; each data bit transferred on the SDA line is synchronized by a high-
to-low pulse of clock on the SCL line. The data line cannot change when the clock line is high; it can change
only when the clock line is low. The START and STOP conditions are the only exceptions to this rule.

- / X \ SDA __/_J’s__/_

SCL T N
! ' : SCL I [
Data Data Data
Stable Change Stable START STOP
Figure 2: 12C Bit Format Figure 3: 12C Start and Stop Conditions

Each transmission is initiated by a START condition and is terminated by a STOP condition. The START
and STOP conditions are generated by the master. START and STOP conditions are generated by keeping
the level of the SCL line high and then changing the level of the SDA line. The START condition is
generated by a high-to-low change in the SDA line when SCL is high. The STOP condition is generated by
a low-to-high change in the SDA line when SCL is low. The bus is considered busy between each pair of
START and STOP conditions, and no other master tries to take control of the bus when it is busy.

START Adr Adr ACK/ ACK/ .
MSB LSB NACK NACK i
MUXX\/XGUXX;;

SCL

Figure 4: 12C Typical Transmission (Start + Address Packet + Data Packet(s) + Stop)

e InI2C, normally, a transmission is started by a START condition.
79

Embedded Systems Lab

Lab 09 AVR I12C Interface (TWI)

NED University of Engineering & Technology

Electrical Engineering Department

e This is followed by an address packet (SLA + R/W). Address packet consists 8 or 9 bits. The first 7-
bits are slave address (which allows connection of 128 devices). The 8™ bit shows operation (1 for read,
0 for write). The 9™ bit is an ACK (acknowledge - 0) or NACK (not acknowledge - 1) by the receiver.
ACK means that it is ready to receive the data byte.

Operation Address Bits + Control (SLA+R/W)
. SLA +W
Master writes data to SDA (sent to slave) As As As As Ay A Ag O
SLA+R
Master reads from data from SDA (sent by slave) As As Au As Ay Ar A 1

e The address packet is followed by one or more data packets which are also 9 bits long. The first 8 bits
are a byte of data to be transmitted, and the 9th bit is ACK/NACK.
e The transmission is finished by a STOP condition.

AVR ATmega328P Two-Wire Interface (TWI) Module

The TWI module in the AVR is composed of four submodules: bit rate generation unit, bus interface unit,
address match unit, and control unit. The bit rate generation unit controls the frequency of the system clock
(SCL) when operating in a master mode. The bus interface unit detects and generates START, REPEATED
START and STOP conditions. It also detects arbitration, controls sending or receiving ACK, and also
transfers packets of data or address. The address match unit compares the received address byte with the 7-
bit address in TWI address register and informs the control unit upon an address match. The control unit
controls the TWI module and generates responses according to settings in the TWI control register. It also
sets the contents of the status register according to current state.

Bit Rate Generator

Bit Rate Register
TWBR
A

A
/

Control Unit L]

Status Hegister Control Register
(TWSR) (TWCR)

scL} }spA
5 StarUStop Arbitration
3 control detection
o
'
2 | Address/Data Shift] Ack
@ Register (TWDR)
o

A A

-) J Y
=4
> =
= Address Hegister
2 (TWAR)
= -
% Address
5 Comprator
2

State Machine and
Status control

Figure 5: TWI (12C) Module in AVR

o—{rcs { painry |- RG-S

e—| PC4 — PCINT12 |

Figure 6: ATmega328P TWI SDA and SCL Pins
The ATmega328P uses pins 27 and 28 for the TWI data (SDA) and clock (SCL), respectively.

80

Embedded Systems Lab

Lab 09 AVR 12C Interface (TWI)

NED University of Engineering & Technology

Electrical Engineering Department

ATmega328P TWI Registers
1) TWBR (TWI Bit Rate Register)

TWBR (8-bit register) selects the division factor for the bit rate generator. The bit rate generator is a
frequency divider which generates the SCL clock frequency in the Master modes.

B 16 MHz
Jser = 16 + 2(TWBR)(Prescalar Value)

2) TWDR (TWI Bit Data Register)

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR contains
the last byte received.

3) TWCR (TWI Control Register)

[7] [6] [5] [4] [3] [2] [1] [0]
TWINT TWEA TWSTA | TWSTO | TWWC TWEN - TWIE
TWINT | TWI Interrupt Flag
This bit is set by hardware when the TWI has finished its current job (like start, stop,
transmit, receive, etc.). The TWINT flag must be cleared by software by writing a
logic one to it. Clearing this flag starts the operation of the TWI.

TWEA | TWI Enable Acknowledge Bit
If the TWEA bit is written to one, the ACK pulse is generated on the TWI bus if the
device’s own slave address has been received.

TWSTA | TWI START Condition Bit
To initiate master mode, TWSTA bit is written 1. The TWI hardware checks if the bus is
available and generates a START condition on the bus if it is free.

TWSTO | TWI STOP Condition Bit
Writing the TWSTO bit to one in Master mode will generate a STOP condition. When
the STOP condition is executed on the bus, the TWSTO bit is cleared automatically.

TWWC | TWI Write Collision Flag
It is set when attempting to write to the TWI Data Register (TWDR) when TWINT is
low.

TWEN | TWI Enable Bit
It enables TWI operation and activates the TW1 interface. When TWEN is written to
one, the TWI takes control over the 1/O pins connected to the SCL and SDA pins.

TWIE TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request
will be activated for as long as the TWINT flag is high.

4) TWSR (TWI Status Register)

[7] [6] [5] [4] [3] [2] [1] [0]
TWS7 TWS6 TWS5 TWS4 TWS4 - TWPS1 TWPSO0
TWS [7-3] | TWI Status Bits
These 5 bits reflect the status of the TWI logic and the 2-wire serial bus. Different status
codes are assigned for different conditions.
TWPS [1-0] | TWI Pre-scalar Bits

These bits set pre-scalar value for clock frequency SCL.

81

Embedded Systems Lab Lab 09 AVR 12C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department
TWPSJ[1:0] Pre-scalar Value
00 1
01 4
10 16
11 64

Other Registers

There are 2 other registers; TWAR (TWI Slave Address Register) and TWAMR — TWI (Slave) Address
Mask Register. These are used for programming ATmega328P as 12C slave. Since, we will be operating
out microcontroller in master mode, so these two will not be used. Refer to the datasheet for further
description.

Programming ATmega328P Two-Wire Interface (TWI or 12C) in Master
Mode

In this section we will discuss the steps of programming our microcontroller ATmega328P in master mode.
Here we will focus on the simplest form of TWI programming without checking the status register. In most
applications, if you are not dealing with critical systems and there is not more than one master on a single
bus, you can use this method. If you want to deal with multi-master or critical designs you must check the
value of the status register.

To program ATmega328P in master operating mode, the steps are explained below. For each individual
step, a sub-routine is created to make the complete process easier. Here we have discussed single byte read
and write only. Multiple byte burst read and write operations are also supported in 12C communication.

Initialization
To initialize the TWI module to operate in master operating mode, we should do the following steps:

1) Set the TWI module clock frequency by setting the values of the TWBR register and the TWPS bits in
the TWSR register.
2) Enable the TWI module by setting the TWEN bit in the TWCR register to one.

void i2c_init (void)

{
TWSR=0x00; //set pre-scaler bits to zero
TWBR=0x62; // 75 kHz for XTAL=16MHz
TWCR=0x04; //enable the TWI module

Transmit a START Condition
START condition is sent by setting the TWEN, TWSTA, and TWINT bits of TWCR to one.

1) Setting the TWEN bit to one enables the TWI module.

2) Setting the TWSTA bit to one tells the TWI to initiate a START condition when the bus is free.

3) Setting the TWINT bit to one clears the interrupt flag to initiate operation of the TWI module to transmit
the START condition.

4) Then we should poll the TWINT flag in the TWCR register to see whether the START condition
transmitted completely.

82

Embedded Systems Lab Lab 09 AVR 12C Interface (TWI)
NED University of Engineering & Technology Electrical Engineering Department

void i2c_start (void)

{
TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN) ;
while ((TWCR & (1 << TWINT)) == 0);

}

Send Device Address

After START condition, device address is sent with a control bit. SLA + W (Slave Address + Write) or
SLA + R (Slave Address + Read). To transmit SLA + R or SLA + W, a byte is sent to the slave. To write
the address byte, the same steps described for sending data byte are followed.

Send Data
These steps are followed for sending a byte (data or address) to slave

1) Copy the data byte to the TWDR.
2) Setthe TWEN and TWINT bits of the TWCR register to one to start sending the byte.
3) Poll the TWINT flag in the TWCR register to see whether the byte is transmitted completely.

void i2c_write(unsigned char data)

{
TWDR = data ;
TWCR = (1<< TWINT) | (1<<TWEN) ;
while ((TWCR & (1 <<TWINT)) == 0);

t

Receive Data
After transmitting SLA+R, the following steps are followed to receive data byte

1) Set the TWEN and TWINT bits of the TWCR register to one to start receiving a byte. To return ACK
after receiving data, the TWEA bit of the TWCR register is also set to one.

2) Poll the TWINT flag in the TWCR register to see whether a byte has been received completely.

3) Copy the received byte from the TWDR to another register to save it.

unsigned char i2c_read(unsigned char isLast)
{
if (isLast == 0) //if want to read more than 1 byte
TWCR = (1<< TWINT) | (1<<TWEN) | (1<<TWEA) ;
else //if want to read only one byte
TWCR = (1<< TWINT) | (1<<TWEN) ;
while ((TWCR & (1 <<TWINT)) == 0);
return TWDR ;
}

Transmit a STOP Condition
To stop data transfer, we must transmit a STOP condition. This is done by setting the TWEN, TWSTO, and
TWINT bits of the TWCR register to one.

void i2c_stop ()

{
TWCR = (1<< TWINT) | (1<<TWEN) | (1<<TWSTO) ;

}

83

Embedded Systems Lab Lab 09 AVR I12C Interface (TWI)
NED University of Engineering & Technology Electrical Engineering Department

PCF8574 12C 1/0 Expander Module
PCF8574 is an IC that can be used as 12C to Parallel-Port Expander. The device features an 8-bit quasi-

bidirectional I/0O port (PO-P7). It has SDA and SCL for 12C inputs for interface.

A0] 1 16 [] Vg
12C or SMBus Master Al E 2 15] SDA
(e-g. Processor) Peripheral Devices A2 [3 14] SCL
RESET, ENABLE, PO [] 4 13[]] INT
or control inputs

e P INT or status P1 [9 12] P7

outputs P2 [6 1] P6

LEDs P3[]7 10[lPs

GND [| 8 9]l P4

Figure 7: PCF8574 IC Pinout

Table 3: Functions of PCF8574 Pins
A0-A2 | Address Pins (All connected to ground corresponds to device address 000. All connected to
VCC corresponds to the device address 111)
Vcce Voltage Supply
GND | Ground
P7-P0 | P-port input/output.
INT Interrupt output.
SDA | Serial data line. Connect to VCC through a pullup resistor
SCL | Serial clock line. Connect to VCC through a pullup resistor
The 7-bit slave address of this IC (PCF8574) is 010 0AA1A; which is 0x20 for the connections shown
above. This corresponds to the slave address SLA+W =010 0000 + 0 = 0100 0000 =0x40.

Example 1: Using PCF8574 IC as 12C to 8-Bit Output Expander for Controlling LEDs

To demonstrate the programming of ATmega328P two-wire interface (12C) and required connections
with PCF8574 IC, consider the example code and circuit shown in Figure 8.

$include <avr/io.h>

4 int main (woid)

iEc_init {);
iZ¢_start(}); //transmit

12 while(1l); //sta;

Figure 8: Example 1 Code and Connections

84

Embedded Systems Lab Lab 09 AVR 12C Interface (TWI)
NED University of Engineering & Technology Electrical Engineering Department

The slave address with control bit is sent after calling i2c_init() and i2c_start() sub-routines. After sending
the address byte, data byte is sent (0b00110011). This is received by the PCF8574 IC and given at output
through its output port (P7 to P0). The output drives 8 LEDs. Simulate the circuit to verify output and
understand connections. Note that the pull-up resistors are connected with SDA and SCL pins (as needed
for 12C interface). The resistors with LEDs are simply current limiting resistors.

LCD HEADER

0000000000 0DO0DO0D0O0O|0

16 CONTRAST 1

JUMPER

= ll[i
]

o =
BACKLIGHT ! I I .
L

GND

— \/CC

——— SDA

= SCL
POWER EEN
HE = = nnn
A0 A1 A2
www.robotics.org.za 12C ADDRESS

(OPEN DEFAULT)
Figure 9: PCF8574 12C Expander Module

Using PCF8574 IC, an expander module for LCD connection through 12C interface is available. It is also
known as Serial LCD 12C Module. This expander module provides ease of connection with the 16 pins of
LCD. However, the PCF8574 IC has only 8 1/0O pins, therefore, out of the 11 (D0-D7, RS, EN and RW)
LCD pins, only 8 are internally connected and can be controlled. The connections listed below. This is the
reason we have to operate the LCD in 4-bit mode with this expander instead of the earlier utilized 8-bit
mode.

Table 4: Connections of Expander Module with LCD Pins

PO P1 P2 P3 P4-P7 A0-A2
RS | RW E - D4-D7 | 111 (Default)
SLA+W =010 0111 +0 = OX4E

With this module, pull-up resistors for SDA and SCL are not needed externally. The rest of the pins of
LCD for power supply and backlight LEDs are connected with PCF8574 power pins. The contrast control
pin is connected with on-board potentiometer. Some LCDs have this module already connected to them as
backpack since it is compatible with HD44780.

4-bit Mode Operation of 16x2 LCD Screen

Previously we used LCD in 8-bit mode. To utilize the PCF8574 module for controlling the LCD screen
through 12C interface, we first need to understand the 4-bit mode operation of 16x2 LCD and its
requirements.

e Sending data/command in 4-bit Mode
In 4-bit mode the data is sent in nibbles (nibble is group of 4 bits). First the higher nibble and then the
lower nibble. To send both; command or data, higher 4-bits are separately sent and then the lower 4-
bits.
The common steps are:
1. Mask lower 4-bits
2. Send to the LCD port

85

Embedded Systems Lab Lab 09 AVR 12C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department
3. Toggle enable signal (send a pulse at enable to latch the data sent)
4. Mask higher 4-bits
5. Send to LCD port
6. Toggle enable signal (send a pulse at enable to latch the data sent)

e Resetting or Initializing the LCD:
To enable the 4-bit mode of LCD, follow special sequence of initialization that tells the LCD controller
that user has selected 4-bit mode of operation. Following is the reset sequence of LCD.
1. Wait for about 20msec initially after powering-up the LCD
Send the first initial value (0x30)
Wait for about 4.1msec
Send second initial value (0x30)
Wait for about 100usec
Send third initial value (0x30)
Wait for 100usec
Send (0x02) to switch to the four-bit mode. This is not Function Set instruction (0x38 for 8-bit
mode or 0x28 for 4-bit mode), but it signals that a real Function Set instruction will be sent
after it.
9. Wait for 100usec
10. Select bus width by sending command (0x28) for function set: 4-bit mode and 2 line display
11. Wait for 1msec

NG~ LN

Subroutines for LCD Control in 4-bit Mode through the 12C Interface

A few subroutines are created for initializing the LCD, sending data and commands, sending a pulse at
Enable pin, and for printing message strings on LCD in 4-bit mode. These sub-routines utilize the earlier
mentioned i2c_write() function repeatedly, since we are interfacing the LCD through 12C expander
module.

PCF8574 P7 P6 P5 P4 P3 P2 P1 PO
LCD D7 D6 D5 D4 - E R/W RS
Functions |Data or command bits (4-bits at a time) - After 0: Write 0: Command
placing data, | Mode Mode
a pulse is 1:Read 1: Data
sent to latch |Mode Mode

The power pins of LCD and backlight are powered through expander module.

Subroutine for Sending Pulse at Enable
void toggle ()
{

i2c_write ((TWDR |= 0x04)); //E=1, E is at bit 2 (P2)

_delay us(1l); //Enable pulse for short time

i2c write ((TWDR &= ~0x04)); // E=0

_delay us(100); //make pulse longer wait for at least 100usec

86

Embedded Systems Lab Lab 09 AVR I12C Interface (TWI)

NED University of Engineering & Technology Electrical Engineering Department

Subroutine for Sending Command

void led cmd(char v2)

{
i2c_write ((TWDR&=~0x03)); //RW =0 for Read, RS=0 for Command Mode

i2c _write ((TWDR &= 0xOF)); // clear the 4bits (D7-D4)before
//sending any new data or command

i2c write ((TWDR |= (v2 & OxFO))); // place command at TWDR and mask
//the lower 4bits, to send higher nibble

toggle(); // send pulse at E

i2c write ((TWDR &= 0xO0F)); // clear the 4 bits (D7-D4)

i2c_write ((TWDR |= ((v2 & O0x0F)<<4)));//command’s lower nibble sent

toggle(); //send pulse at E

Subroutine for Data Write

void lcd_dwr(char v3)
{
i2c write ((TWDR|=0x01)); //RS=1 for Data Mode
i2c write ((TWDR &= O0xO0F)); //Clear data pins (D7-D4)

i2c write ((TWDR |= (v3 & OxFO))); //mask lower nibble & send data

toggle(); //Pulse at E

i2c write ((TWDR &= OxOF)); //clear data pins (D7-D4)
i2c write ((TWDR |= ((v3 & O0x0F)<<4))); //mask higher nibble and
//send lower nibble
toggle () ;
}

Subroutine for LCD Initialization

void lcd_init()

{
_delay ms (100); //wait before sending initialization
lcd cmd (0x30);)/ —=——= Sequence for initializing LCD
_delay ms (10);
lcd cmd (0x30);

_delay ms (5);

lcd cmd (0x30); // " "

_delay ms(5);

lcd cmd (0x02);

_delay ms(1);

lcd cmd (0x28) ; /=== Selecting 16 x 2 LCD in 4Bit mode
_delay ms(1);

lcd cmd (0x0C) ; //—-———- Display ON Cursor OFF

lcd cmd (0x06) ; /) ====- Cursor Auto Increment

lced cmd (0x01) ; //——==- Clear display

_delay ms(4); //2msec delay required after initialization

}

87

Embedded Systems Lab

Lab 09 AVR 12C Interface (TWI)

NED University of Engineering & Technology

Electrical Engineering Department

Subroutine for Printing Strings / Messages

void led msg(char *c)
{
while(*c != 0)
lcd dwr (*c++) ;

//--—--Wait till all String char are passed
//--Send the char to LCD & inc c¢ for next char

LAB TASKS

TASK 1: To interface LCD in 4-Bit Mode with ATmega328P through 12C Expander

1) Program Atmega328P for controlling 16x2 LCD screen in 4-bit mode using 12C interface. A sample
program is given at the end of this lab. This code uses the functions given in previous sections.
2) Make appropriate hardware connections of ATmega328P (TWI) with PCF8574 module. Connect the

module with 16x2 LCD screen.
3) Test your setup and observe output at LCD.

4) Modify the code to make the display blink with a certain delay. You can refer to the Lab 05 manual for

LCD related commands.

TASK 2: To compare communication through UART, SPI and 12C

You have studied and practiced communication of ATmega328P through different synchronous and
asynchronous methods. Compare UART, SPI, and I12C. List differences.

Sample Code for Task 1

#include <avr/io.h>
#include <util/delay.h>
#include <stdlib.h>

//Including 12C functions

void i2c_init()

{
TWBR = 0x62; //Setting bit rate
TWCR = (1<<TWEN); //Enable 12C
TWSR = 0x00; //Prescaler set to 1

}

//Start condition
void i2c_start()
{
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
//start condition
while (I(TWCR & (1<<TWINT)));
//check for start condition

}

void lcd_init()
{
_delay_ms(100);
lcd_cmd(0x30);
_delay_ms(10);
lcd_cmd(0x30);
_delay_ms(5);
lcd_cmd(0x30);
_delay_ms(5);
lcd_cmd(0x02);
_delay_ms(1);
lcd_cmd(0x28);
_delay_ms(1);
lcd_cmd(0x0C); //-----Display ON Cursor OFF
lcd_cmd(0x06); //-----Cursor Auto Increment
lcd_cmd(0x01); //-----Clear display
_delay_ms(4); //2msec delay

//wait initialization
//-----Sequence for initializing LCD

88

Embedded Systems Lab

Lab 09 AVR 12C Interface (TWI)

NED University of Engineering & Technology

Electrical Engineering Department

//12C write (for sending address and data)
void i2c_write(char x)

{
TWDR =x; //Move value to 12C
TWCR = (1<<TWINT) | (1<<TWEN);
//Enable 12C and clear interrupt
while (/(TWCR &(1<<TWINT)));

}

//-----LCD 4-bit Mode functions using 12C------- //

void toggle()
{
i2c_write((TWDR |= 0x04));
_delay_us(1); //Enable pulse
i2c_write((TWDR &= ~0x04));
_delay_us(100); //make pulse longer or wait
//for at least 100usec after sending each command

}

void lcd_cmd(char v2)

{
i2c_write((TWDR&="~0x03));
i2c_write((TWDR &= 0xO0F));
i2c_write((TWDR |= (v2 & 0xF0)));

toggle();

i2c_write((TWDR &= 0xO0F));
i2c_write((TWDR |=((v2 & 0x0F)<<4)));
toggle();

}

void lcd_dwr(char v3)

{
i2c_write((TWDR|=0x01));
i2c_write((TWDR &= 0xO0F));

i2c_write((TWDR |=(v3 & 0xF0)));

toggle();

i2c_write((TWDR &= 0x0F));
i2c_write((TWDR |=((v3 & 0x0F)<<4)));
toggle();

void lcd_msg(char *c)
{
while(*c !=0) //Wait till all String are passed
lcd_dwr(*c++); //----Send the String to LCD

}
int main (void)

{

i2c_init();

i2c_start();

i2c_write(Ox4E);
//01001110=4E

//initialize i2c
// start i2c

//(Device Address)
lcd_init(); //initialize LCD
float Percentage=75.5; //Message %
char buffer_str[10]; //buffer
dtostrf(Percentage,5,1, buffer_str);

// converting float to string

lcd_cmd(@x8@); //Cursor start of Line 1
lcd_msg("Expected ES Lab"); //Message
lcd_cmd(0xCO); //Move cursor to Line 2
lcd_msg("Result ");
lcd_msg(buffer_str);

lcd _msg("% :)");

while(1)
{}

89

Embedded Systems Lab

Lab 09 AVR 12C Interface (TWI)

NED University of Engineering & Technology

Electrical Engineering Department

90

