1921-2021

NED University of Engineering & Technology

Department of Electrical Engineering

LAB MANUAL

Data Structures and Algorithms

(EE-264)
For
SE Electrical
Instructor name:
Student name:
Roll no: Batch:

Semester: Year:

"W1SAS SNl Ul AJ1UD 3034402 40} G Jo 3|diynw JaySiy IXau 33 Ul 3q ISNW S2402S dLIgNY ||V :910N

0T ‘6 ‘8 ‘S ‘v ‘€ :sqeq paseg duqny vSA ¥9¢-33

G jo 9|dinw
J9y31y Ixau 03 punoy
s¢/[(0)s+(g)oT+(v)oT]
wa1sAs SIN

10} 9409S pajy3iam |euld

2

98ejuadiad
9JUBPUINY

d

24025
a1gny
av jeutd

v

902§
ougny
19d4/130

IAge
paseq
ougny

A gel
paseq
augny

Alge [qeq I1gel 19e
paseq paseq paseq paseq
augny augny uqny ougny | “oN ||oY

193ys 24025 ge1

Joonaisu| geq Aq pajjiy aq o1

93e3U9249d dduUepuany
SuOISS3s e J0 1IN0 JUSS3Ud :92UBPUIY

ueipIuYI3} qe| Aq pa||y 3q o1

LAB MANUAL

Data Structures and Algorithms
(EE-264)

For
SE Electrical

Content Revision Team: Dr. Riaz Uddin and Dr. Mirza Muhammad Ali Baig

Last Revision Date: 28™ December 2020

Approved By

The Board of Studies of Department of Electrical Engineering

CONTENTS

CLO (Psychomotor, Level 3): Students should build various basic algorithms, analyze empirically their
growth of computational tim;e and formulate object-oriented programming to develop basic data-structures

CLO (Affective, Level 2): Students should build various basic algorithms, analyze empirically their
growth of computational time and formulate object-oriented programming to develop basic data-structures

. . Total .
S.No. | Date Title of Experiment Marks Signature

1 Introduction to programming with Python
2 Developing and executing algorithms using Python
3 To analyze the efficiency of sorting algorithms
4 To develop and apply the recursive divide and conquer

approach in sorting
5 Extending the divide-and-conquer approach on sorting

and searching problems
6 Apply Asymptotic Notations to the Sorting Algorithms.
7 Introduction to object oriented programming.
3 Develop a system which can perform basic banking

related tasks

To implement fundamental data structures in Python
9 (using list)

a) Stack
b) Queue
Accomplish the following open-ended tasks:
Using Node class, develop
10
1. Stacks
2. Queue

Accomplish the open-ended task:

11

Using Node class, develop Singly connected
linked-list

Laboratory Session No. 01

tive:
To get introduced with fundamentals of programming with Python
Qutcomes:
By the end of this lab, student should be able to

a) Correctly code algorithms in python which may include
1) Loops
2) Conditions
3) Lists
4) User defined functions
5) Importing libraries to program

1) Loops:

In Python, for and while loops follows the following syntax.

WHILE LOOP:-

In [1@]: | a,b=0,1
while b<1088:
print (b)
a,b=b,a+b

Ca il R

13
21
34
55
89
144
233
377
gle
957

while loop in Python

FOR LOOP:-

In [1]:|for 1 in range{d,18):
print(i)
print{'Marwa Ashfagin')

5]
Marwa Ashfag

1
Marwa Ashfag

Marwa ashftag

3
Marwa Ashfag

4
Marwa Ashfag

5
Marwa Ashtag

[
Marwa ashftag

7
Marwa Ashfag

8
Marwa ashtag

a
Marwa ashftag

for loop in Python

2) Conditions:

M In [2]:|a=int{input('please enter a walue:'})
please enter a value:lad
In [2]: | if a<12:
print({'value is less than 12')
else:

print('value is greater than 12")

value is greater tham 12

if-else condition in Python

3) Lists:
A list is created by placing all items in “square brackets []”.
Elements can be added/appended in a list as well.

In [1]: #Defining a list
list=[8,1,2,3]

In [2]: | list

out[2]: T[e, 1, 2, 3]

In [3]: | #Adding elements in a List
list=list + [4]

In [4]: | list

out[4]: [e, 1, 2, 3, 4]

In [12]: #Appending a list
list.append(5)

In [11]: list

ut[11]: [e, 1, 2, 3, 4, 5]

list example

4) User defined Functions:
Functions in Python can be created by using the syntax shown below. A function is a
block of code which only runs when it is called. Defining and calling a function are
explained as follows:

In [1]: |#D
d

Defining Functions
ef fib(n):
a, b=8,1
while b<n:
print(b)
a,b = b, ath

In [2]: | def fib2(n):
result=[]
a,b = 8,1
while a<n:
result.append(a)
a,b= b, atbh
return result

In [3]: |fib(1ea)

[R N

8

12
21
34
55
88

In [4]: | fib2(128)

Out[4]: [e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Working with functions in Python

Saving and Importing user-defined function to a program:

e Copy your desired code in notepad.

IFiIe Edit Format View Help

#Defining Functions ~
def fib(n):
a, b=10,1
while b<n:
print({b)
a,b = b, a+b
def fib2(n):
result=[]
a,b = 8,1
while a<n:
result. append(a)
a,b=b, a+b
return r‘esult‘

e Save it as .py file.

At L. » Python Scripts v & Search Python Scripts P
Organize * Mew folder == =
s
~ Mame Date modified Type
18 This PC))
D fibo.py 11/5/2018 7:58 PM PY File
¥ Autodesk 360
,_E Desktop
.EI Documents
j Downloads
,_ﬂ Music
ﬁ Pictures
|8 Videos
i, Local Disk (C:)
== ABEER (D)
_ v £ >
File name: | fibo.py v
Save as type: | All Files W
{Aj Hide Folders Encoding: |ANSI v| | Save | | Cancel

e Change its extension from.txt to .py.
e Import as follows:

In [2]: | impert fibo

In [3]: fibo.fib(18@)

In [4]: from fibo import fib2

In [5]: fib2(1@0)

out[5]: [e, 1, 1, 2, 3, 5, 8, 13,

In [6]: from fibo import fib

In [7]: fib(100)

In [8]: f=fib2(1000)

In [9]: f

out[9]: [e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

Calling user-defined function in Python

5) Importing libraries to program:

Python library is a collection of functions and methods that allows you to perform lots of
actions without writing your own code. For importing libraries, the “import” command is
used.

Once the library is imported, its different functions can be called. Following is an example
which makes use of a library

In [1]: dimport math

In [2]: math.sqrt(121)

out[2]: 11.8

In [4]: math.factorial(6)

out[4]: 728

In [5]: math.acos(1l)

Out[5]: @.6

In [&]: math.asin(l)

out[a]: 1.57@7963267948966

In [8]: math.pi

Out[&]: 3.141592653589793

Making use of libraries in Python

Laboratory Session No. 02

Objective:

To developing and execute basic algorithms using Python

Qutcomes:

By the end of this lab, student should be able to implement following
exercises in Python

1) Write a program which could generate the following pattern. [hint: use ‘end’ option in pri
nt command]

*

* %k

% %k %k

% sk sk ok

% sk sk ok %

%k %k %k ok 3k ok

% sk sk sk ok ok ok

% sk sk sk ok ok ok ok
%k %k sk ok ok ok ok ok ok
k %k sk ok ok ok ok ok ok ok
% sk sk sk ok ok sk sk sk
%k %k sk ok ok ok ok ok
%k %k %k ok ok ok ok

% sk sk sk ok ok

% sk sk ok %

% %k 3k ok

* %k %k

* %k

*

2)

3)

4)
5)

6)

7)

Write a program which can generate the following

Input a number: 10

10x1=10
10x2=20
10x 3 =30
10x4 =40
10x 5 =50
10x 6 =60
10x7=70
10x8 =380
10x 9 =90
10x10=100

Write a program to prompt for a score between 0.0 and 1.0. If the score is out of range,
print an error message. If the score is between 0.0 and 1.0, print a grade using the
following table:

>=09 A
>=0.8B
>=0.7C
>=0.6D
<0.6F

Enter score: 0.95
A

Enter score: perfect
Bad score

Enter score: 10.0

Bad score

Enter score: 0.75
C

Enter score: 0.5
F

Re-write the above program using functions
Write a Python function to calculate the factorial of a number. [use recursive approach]

Write a function which can search for an entry in a list. Also show the entry count in the list.

Develop code in python for sorting a list using selection sort approach. In selection sort
you find the minimum value first and place it at the end of the list.

Laboratory Session No. 03

Objective:

To analyze and evaluate experimentally the running time of

1) Selection Sort
2) Bubble Sort
3) Insertion Sort

Special Instructions

1) You are supposed to translate pseudocodes of the above mentioned

codes in Python.
2) Show in tabulated form, the analytical expressions of
computational times for the above algorithms based on RAM model
3) Now, evaluate the run time using time library functions
4) You would need to discuss the average run time of each algorithm

for best and worst cases

1. Selection Sort:

fori=1to Alength
min_pos =i
forj =i+1 to length_of list
if list[min_pos] > list[j]
min_pos =j
temp = list[i]
list[i] = list[min_pos]

list[min_pos] = temp

Pseudocode of Selection Sort

def Selection_Sort(M):
for i in range(0,len(M)):
min_pos=i
for j in range (i+1,len(M)):
if M[min_pos]> M[j]:
min_pos=j
temp=M[i]
M[i]=M[min_pos]
M[min_pos]=temp
return(M)
7=[10,12,6,89,43]
Selection_Sort(Z)

[6,10,12,43,89]

Out[2]:

Python Code

Analysis of Selection Sort

Pseudocode Cost Time Time
(Worst) (Best)
1 | fori=1 to length_of_list C1 n+1 n+1
2 | min_pos=i C2 n n
3 | for j=i+1 to length_of list Cs n =t n =ty
4 | if list[min_pos] > list[j] Ca PRSI PRI
5 | min_pos =j Cs PRV 0
6 | else 0 n n
7 | temp = list[i] C7 n n
8 | list[i] = list[min_pos] Cs n n
9 | list[min_pos] = temp Co n n

Analysis of Selection Sort

Run time of Selection Sort

def Selection_Sort(M):
for i in range(®@,len(M)):
min_pos=i
for j in range (i+1,len(M)):
if M[min_pos]> M[j]:
min_pos=j
temp=M[1i]
M[i]=M[min_pos]
M[min_pos]=temp
return(M)
Z=[10,12,6,89,43]

Selection_Sort(Z)

(6, 10, 12, 43, 89]

import time

a=time.time()
Selection_Sort(list(range(6@@e,1,-1)))
b=time.time()

c=b-a

print('run time=",c)

Python implementation for runtime assessment for a worst case

Tabulated run-time of Selection Sort:

After experimenting with the python code for five different sizes of inputs, following run-times were
recorded.

S.No Number of elements in array Time of Best Time of worst
case(sec) case(sec)
1 2000 0.4653 0.4973
2 4000 1.9898 1.9856
3 6000 4.3554 4.6329
4 8000 7.7099 7.7937
5 10000 11.792 12.696

Growth Plot:

14

12

10

Time in sec
S

2000 4000 6000 8000 10000

>

Best case Worst case Input size

Note:

Student is supposed to repeat similar exercise, for bubble and insertion sort algorithms.

*keep in mind that your reading will depend on your computer’s speed. The above tables and graphs are

just for the verification of concepts

Course Code: EE-264
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Data Structures and Algorithms

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration
[10% 9
Input/Output Variable | Incorrect Correctly Correctly perceives | Correctly Correctly
Recognition, Definition | perception for | perceives the | the required | perceives the | perceives the
and Initialisation: both required Input/Output required required
Recognise and perceive | Input/Output Input/Output variables and data | Input/Output Input/Output
correct input/output | variables and | variablesand data | types and only | variables and data | variables and data
variables along with data | data types types but fails to | initialises them | types and | types and
types for testing a specific initialise variables | partially initialises them | initialises them
algorithm/data structure altogether completely but | with complete
with errors success
[15% 9
Procedural Programming | Little to no | Slight ability to | Mostly correct | Correctly Correctly
of given Algorithm: understanding use procedural | recognition and | recognises and | recognises and
Practice procedural | of procedural | programming application of | uses procedural | uses procedural
programming techniques | programming techniques for | procedural programming programming
including recursion, in | techniques coding given | programming techniques with | techniques with
order to code specific algorithm techniques but | no errors but | noerrorsand runs
algorithms from their makes crucial | unable to run | algorithm
pseudo code errors for the given | algorithm successfully
algorithm successfully

5% 0
Object Oriented | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Programming for given | selection and | of programming | and use of | and use of | and use of
Algorithm and Data | use of | constructs and | programming programming programming
Structure programming instructions but | constructs and | constructs and | constructs and
Implementation: constructs and | their use is | instructions with | instructions with | instructions with
Imitate and practice given | instructions incorrect many little to no | no

for
data

OOP instructions
making specific
structure/algorithm

[15%

syntax/semantic
errors

syntax/semantic
errors

syntax/semantic
errors

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

[15%

o

many mistake

lesser mistakes

no major mistakes

frequent use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions: and detect | messages in | messages in | messages in | messages in
Detect Errors/Exceptions | error messages | software but no | software as well as | software as well | software along
and manipulate, under | in software understanding of | understanding of | as understanding | with the
supervision, to rectify the detecting those | detecting some of | of detecting all of | understanding to
Code errors and their | those errors and | those errors and | detect and rectify
types their types their types them
[1o%] o
Debugging and | Unable to | Little ability to | Ability to recognise | Ability to | Ability to
Troubleshooting: recognise and | recognise and use | and use debugging | recognise and use | recognise,
Recognise and__Practice | use debugging | debugging and | and debugging and | describe, and use
Debugging and | options in | troubleshooting troubleshooting troubleshooting debugging and
Troubleshooting steps | software options in | options with little | options with | troubleshooting
through line-by-line code software ability to rectify | ability to rectify | with ability to
execution code and step-through | rectify and step-
code through code
104 o
Graphical visualisation | Unable to | Ability to | Ability to | Ability to | Ability to
and comparison of time | understand and | understand and | understand and | understand and | understand and
complexity of algorithms: | utilise utilise utilise visualisation | utilise utilise
Manipulate given | visualisation or | visualisation and | and plotting | visualisation and | visualisation and
Code/Instructions under | plotting plotting instructions plotting plotting
supervision, in order to | instructions instructions with | successfully but | instructions instructions
produce graphs for errors unable to draw | successfully, successfully, also
comparing time results from them partially able to | able to draw
complexity of algorithms draw results from | complete results
them from them

[10%

o

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Laboratory Session No. 04

Objective:

To develop and apply the recursive divide and conquer approach in sorting
(using debugging tools in Python)

Debugging:

Debugging is a process which involves identifying a problem, isolating the source of the
problem and then either correcting the problem or determining a way to look around it. In
debugging process, we run the program step-by-step and keep a look on the variables. To
invoke the option for debugging in spyder IDE we take following steps:

Debug Consalas Projects Tools Yiew Help

Ml - Debug Ctri+F5 l
L Step Ctrl+F10 |
= Step Into Ctri+F11
r £= Step Return Ctri+Shift+F11 |
[PP Continue Ctrl+F12 k
'E Stop Ctrl+Shift+F12 |
| @ set/Clear breakpoint IF12
© Set/Edit conditional breakpoint Shift+F12

Clear breakpoints in all files
List breakpoints

Del g wWith winj el b

Debugging tools in Spyder

Here, the DEBUG option, starts debugging. The STEP option, steps to next line of the code. The
STEP INTO option, takes you inside the function’s body. The STEP RETURN option, steps to
return the function call. The CONTINUE option, continues with debugging mode. The STOP
option, forces the current debugging to stop.

Merge-sort Algorithm:

Merge Sort is based on the approach of Divide and Conquer. It divides input array in two halves,
calls itself for the two halves and then merges the two sorted halves. The merge() function is used
for merging two halves.

Following is the python-code for mergesort algorithm :

def MergeSort(A):

n=len(A)

s=list()

if n==1:
s=A

else:
a=(n//2)
s1=MergeSort(A[0:a])
s2=MergeSort(A[a:n])
s=merge(s1,s2)

def merge(A,B):
nl=len(A)
n2=len(B)
A=A+[float('inf")]
B=B+[float('inf")]
i=0
j=0
1=list()
for kin range(0,n1+n2):
if A[i]<=B[j]:
1=1+[A[i]]
i=i+1
else:
I=1+[Bj]]
j=i+1
return |

Megesort in Python

https://www.geeksforgeeks.org/divide-and-conquer-introduction/

In the following section, we see how variables can be watched while running program in debugging
mode.

In the following exercise, we see how we can merge two arrays of two and one elements through
debugging mode.

D BESREQ@ P @ E‘| DG M G = = R X Fe € - [c:\Users\danie\Deskiop

Editor - C:\Users\danie\Desktop\lab4.py & X variable explorer
0 lebpy @ & L oE -

= =

/ ~|| Name Type Size

8

9 def merge(A, B): A list 2 [18, 38]

10 nl=len(A) .

11 n2=len(B) B list 1 [2e]

12 A=A+[float('inf")]
13 B=B+[float('inf')]

14 i=0

15 i=0

16 1=1ist()

17 for k in range(@, nl+n2):
18 if A[i]«=B[]j]:

19 1=1+[A[1]] y
20 i=i+1

21 else:

22 1=1+[B[j1]

23 j=j+1

24 return 1

25

26merge([18, 381, [2@])

@Ies are shown here, before the start of the loop ex@

& Spyder (Python 3.7)

File Edit Search Source Run Debug Consoles Projects Tools View Help

D B ESREQ) @ ﬂ [][3 c ”' . = =P . x f' e € 2 ‘C:\uaers\dame\[]eskmp

Editor - C:\Users\danie\Desktop\lab4.py & X Variable explorer
O laapy @ & 2B -
g ~ |l Name Type Size
8
o def merge(A, B): A list 3 [1@, 38, inf]
10 nl=len(A) .)
11 n2=1en(B) B list 2 [2@, inf]
12 A=A+[float(inf")] .)
1 e
13 B=B+[float(inf')] b int
u 10 j int 1@
15 j=a
16 1=1ist() 1 list B 0
17| for k in range(®, nl+n2):
18 if A[i1<=B[3]: m fine |1 B
19 1=1+[A[i]]
20 i=i+1 n2 int 1 1
71 alca-

Running merge procedure in debugging mode

1stiteration of k:

@ Spyder (Python 3.7)

File Edit Search Source Run Debug Consoles Projects Tools View Help

D = RHEOQ P Q‘l a‘l G Mee=EE=E=pnwp B X K2 €& [cr\sers\danie\Desktop

Editor - C:\Users\danie\Desktop\lab4.py & X Variable explorer
) lebdpy= B # 55~
7 ~|| Name Type Size
2 def merge(A, B):
9 nl=len(A) A list 3 [18, 38, inf]
10 n2=len(B) . .
1 A=A+[float('inf')] B list 2 [28, inf]
ﬁ gigﬁfloat(inf")] 1 me |1 P
4 j=e j int 1 [
15 1=1ist()
16 for k in range(®, nl+n2): k int 1 ')
17 if A[i]<=B[]j]:
18 1=1+[A[i]] 1 list 1 [1e]
19 i=i+1
20 else: nl int 1 2
gl 1=1+[B[]]1]
22 j=3+1 Variable explorer File explorer Help Frofiler
23 return 1 e LoD

2nd jteration of k:

@ Spyder (Python 3.7)

File Edit Search Source Run Debug Consoles Projects Tools View Help

D = BHEOQ P Q-I a'l G P b= =» B X P e | C:\Users\danie\Desktop

Editor - C:\Users\danie\Desktop\lab4.py & X Variable explorer
[labdpy= B -3 & OB
& def merge(A, B): ~ || Name Type Size

9 nl=len(A)

10 n2=1en(B) A list 3 [1@, 30, inf]
11 A=A+[float('inf")] . List |2 o int

12 B=B+[float(inf")] = [28, inf]

13 i=0 s .

14) i int 1 1

15 1=1ist()

3 int 1]
16 for k in range(@, nl+n2):

17 if A[i]<=B[j]: k int 1 1

18 1=1+[A[1]]

19 i=i+l 1 list 2 [10, 28]

20 else:

21 1=1+[B[j]] nl int 1 2

22 j=j+1

23 return 1 Variable explorer File explorer Help Profiler

24 o Tee

3rd jteration of k:
Editor - C:\Users\danie\Desktop\lab4.py

& X Variable explorer

O lab4py @ #a L0685
6""" ~|| Name Type Size
7
3 def merge(A, B): A list 3 [1e, 38, inf]
9 nl=len(A) i .
10 n2=len(B) B list 2 [28, inf]
11 A=A+[float('inf')] . :
12 BeB+[float('inf')] S e
13 i=0 i it 1 1
14 j=0
15 1=1ist() k int 1 2
16 for k in range(@, nl+n2):
17 if A[i]<=B[j]: 1 list 3 [1@, 20, 30]
18 1=1+[A[i]]
19 i=i+1 nl int 1 2
20 else:
End of for...loop:
EUIUI = L. \USET S UGIHIE\URSALUP JaLM . py oA vanauie eapiuie
0O leapy B (-3 L B8 -
3 Created on Wed Dec 5 @8:13:41 2018 ~ Najl\'ne Type Size Value
4
5 @author: danie A list 3 [1e, 3@, inf]
; B list 2 [28, inf]
3 def merge(A, B): . .
9 nl=len(A) B int |1 2
10 n2=len(B) 5 int 1 1
11 A=A+[float('inf")]
12 B=B+[float('inf"')] K int 1 2)
13 i=0
14 i=0 1 list 3 [1e, 20, 38]
15 1=1list()
16 for k in range(@, nl+n2): nl int 1 2
17 if A[i]<=B[j]:
18 1=1+[A[i]] Variable explorer File explorer Help Profiler
19 i=i+l IFythan console
0 aleca-
Sorted List returned:
D = Eh — Q p a'l a'l II} e HI c: = = » . x }' a (- -) ‘C:\uaers\dame\Desktop
Editor - C:\Users\danie\Desktop\lab4.py & X Variable explorer
3 labspy* B -3 L 55 -
1e n2=len(B) Al Name Type Size Value
11 A=A+[float('inf")]
12 B=B+[float('inf')] A list 3 [18, 38, inf]
13 i=0
14 j=0 B list 2 [28, inf]
15 1=1list() \ \
16 for k in range(®, nl+n2): B int 11 2
17 if A[i]<=B[3j]: i int 1 1
18 1=1+[A[1]]
19 i=1+1 k int 1 2
20 else:
21 1=1+[B[3]1] 1 list 3 [1e, 2@, 38]
22 j=j+1
23 return 1 nl int 1 2
24
25 Variable explorer File explorer Help Profiler
26 merge([108, 30], [20]) TPython console

Task:

There are going to be recursive calls in the mergesort procedure given above. Student is supposed to
note the values of different variables during each recursive call and record their observations.

Further, student is supposed to compare the run-time of mergesort algorithm, with the sorting
algorithms covered in lab session 03.

Course Code: EE-264
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Data Structures and Algorithms

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration
[10% 9
Input/Output Variable | Incorrect Correctly Correctly perceives | Correctly Correctly
Recognition, Definition | perception for | perceives the | the required | perceives the | perceives the
and Initialisation: both required Input/Output required required
Recognise and perceive | Input/Output Input/Output variables and data | Input/Output Input/Output
correct input/output | variables and | variablesand data | types and only | variables and data | variables and data
variables along with data | data types types but fails to | initialises them | types and | types and
types for testing a specific initialise variables | partially initialises them | initialises them
algorithm/data structure altogether completely but | with complete
with errors success
[15% 9
Procedural Programming | Little to no | Slight ability to | Mostly correct | Correctly Correctly
of given Algorithm: understanding use procedural | recognition and | recognises and | recognises and
Practice procedural | of procedural | programming application of | uses procedural | uses procedural
programming techniques | programming techniques for | procedural programming programming
including recursion, in | techniques coding given | programming techniques with | techniques with
order to code specific algorithm techniques but | no errors but | noerrorsand runs
algorithms from their makes crucial | unable to run | algorithm
pseudo code errors for the given | algorithm successfully
algorithm successfully

5% 0
Object Oriented | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Programming for given | selection and | of programming | and use of | and use of | and use of
Algorithm and Data | use of | constructs and | programming programming programming
Structure programming instructions but | constructs and | constructs and | constructs and
Implementation: constructs and | their use is | instructions with | instructions with | instructions with
Imitate and practice given | instructions incorrect many little to no | no

for
data

OOP instructions
making specific
structure/algorithm

[15%

syntax/semantic
errors

syntax/semantic
errors

syntax/semantic
errors

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

[15%

o

many mistake

lesser mistakes

no major mistakes

frequent use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions: and detect | messages in | messages in | messages in | messages in
Detect Errors/Exceptions | error messages | software but no | software as well as | software as well | software along
and manipulate, under | in software understanding of | understanding of | as understanding | with the
supervision, to rectify the detecting those | detecting some of | of detecting all of | understanding to
Code errors and their | those errors and | those errors and | detect and rectify
types their types their types them
[1o%] o
Debugging and | Unable to | Little ability to | Ability to recognise | Ability to | Ability to
Troubleshooting: recognise and | recognise and use | and use debugging | recognise and use | recognise,
Recognise and__Practice | use debugging | debugging and | and debugging and | describe, and use
Debugging and | options in | troubleshooting troubleshooting troubleshooting debugging and
Troubleshooting steps | software options in | options with little | options with | troubleshooting
through line-by-line code software ability to rectify | ability to rectify | with ability to
execution code and step-through | rectify and step-
code through code
104 o
Graphical visualisation | Unable to | Ability to | Ability to | Ability to | Ability to
and comparison of time | understand and | understand and | understand and | understand and | understand and
complexity of algorithms: | utilise utilise utilise visualisation | utilise utilise
Manipulate given | visualisation or | visualisation and | and plotting | visualisation and | visualisation and
Code/Instructions under | plotting plotting instructions plotting plotting
supervision, in order to | instructions instructions with | successfully but | instructions instructions
produce graphs for errors unable to draw | successfully, successfully, also
comparing time results from them partially able to | able to draw
complexity of algorithms draw results from | complete results
them from them

[10%

o

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Laboratory Session No. 05

Objective:

Extending the divide-and-conquer approach on sorting and searching problems

We first start with the analysis and experimental verification of the run-time of linear search algorithm.
The linear search algorithm looks for an entry present in the array sequentially. In the second stage, we
apply divide and conquer based approach for searching problem and compare the running time of both
linear search and binary search analytically as well as empirically.

The linear search Algorithm

def linearsearch(x, key):
count=0
flag=0
for iin range(len(x)):
count=count+1
if x[i]==key:
flag=1
return flag

Code of linear search algorithm in Python

Analysis of Linear Search (perform for best and worst cases)

Pseudocode

frequency

Time

1 | def linearsearch(x, y):

2 count=0

3 flag=0

4 for iin range(len(x)):

5 count=count+1

6 if x[i]==y:

7 flag=1

8 return flag

Code of linear search algorithm in Python

Best case

Worst case

Binary Search

Binary search is done on already sorted array. Program compares the value to be searched from
the value present at the mid in the list. If value is lesser than value at mid in the list it looks for
the value in the same way in the list on the left of mid. If value is larger than value at mid, it
looks in the list on the right of mid. When the value is found it generates an output flag that
value is found.

def bsearch(A, key):
f_index=0
I_index=len(A)-1
flag=0
while f_index<=I_index and flag==0:
mid=(f_index+l_index)//2
if Almid]==key:
flag=1
elif key<A[mid]:
|_index=mid-1
else:
f_index=mid+1
return flag

Code of binary search algorithm in Python

Analysis of Binary Search

Pseudocode Frequency Time
1 | def bsearch(A, key):
2 f_index=0
3 I_index=len(A)-1
4 flag=0
5 while f_index<=I_index and flag==0:
6 mid=(f_index+l_index)//2
7 if Almid]==key:
8 flag=1
9 elif key<A[mid]:
10 I_index=mid-1
11 else:
12 f_index=mid+1
13 return flag
Best case

Worst case

Compare the running times of linear search and binary search

Task:

Student is supposed to implement both searching algorithms and test them for different sizes of inputs.
To summaries the observations, growth plots should be made.

Course Code: EE-264
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Data Structures and Algorithms

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration
[10% 9
Input/Output Variable | Incorrect Correctly Correctly perceives | Correctly Correctly
Recognition, Definition | perception for | perceives the | the required | perceives the | perceives the
and Initialisation: both required Input/Output required required
Recognise and perceive | Input/Output Input/Output variables and data | Input/Output Input/Output
correct input/output | variables and | variablesand data | types and only | variables and data | variables and data
variables along with data | data types types but fails to | initialises them | types and | types and
types for testing a specific initialise variables | partially initialises them | initialises them
algorithm/data structure altogether completely but | with complete
with errors success
[15% 9
Procedural Programming | Little to no | Slight ability to | Mostly correct | Correctly Correctly
of given Algorithm: understanding use procedural | recognition and | recognises and | recognises and
Practice procedural | of procedural | programming application of | uses procedural | uses procedural
programming techniques | programming techniques for | procedural programming programming
including recursion, in | techniques coding given | programming techniques with | techniques with
order to code specific algorithm techniques but | no errors but | noerrorsand runs
algorithms from their makes crucial | unable to run | algorithm
pseudo code errors for the given | algorithm successfully
algorithm successfully

5% 0
Object Oriented | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Programming for given | selection and | of programming | and use of | and use of | and use of
Algorithm and Data | use of | constructs and | programming programming programming
Structure programming instructions but | constructs and | constructs and | constructs and
Implementation: constructs and | their use is | instructions with | instructions with | instructions with
Imitate and practice given | instructions incorrect many little to no | no

for
data

OOP instructions
making specific
structure/algorithm

[15%

syntax/semantic
errors

syntax/semantic
errors

syntax/semantic
errors

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

[15%

o

many mistake

lesser mistakes

no major mistakes

frequent use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions: and detect | messages in | messages in | messages in | messages in
Detect Errors/Exceptions | error messages | software but no | software as well as | software as well | software along
and manipulate, under | in software understanding of | understanding of | as understanding | with the
supervision, to rectify the detecting those | detecting some of | of detecting all of | understanding to
Code errors and their | those errors and | those errors and | detect and rectify
types their types their types them
[1o%] o
Debugging and | Unable to | Little ability to | Ability to recognise | Ability to | Ability to
Troubleshooting: recognise and | recognise and use | and use debugging | recognise and use | recognise,
Recognise and__Practice | use debugging | debugging and | and debugging and | describe, and use
Debugging and | options in | troubleshooting troubleshooting troubleshooting debugging and
Troubleshooting steps | software options in | options with little | options with | troubleshooting
through line-by-line code software ability to rectify | ability to rectify | with ability to
execution code and step-through | rectify and step-
code through code
104 o
Graphical visualisation | Unable to | Ability to | Ability to | Ability to | Ability to
and comparison of time | understand and | understand and | understand and | understand and | understand and
complexity of algorithms: | utilise utilise utilise visualisation | utilise utilise
Manipulate given | visualisation or | visualisation and | and plotting | visualisation and | visualisation and
Code/Instructions under | plotting plotting instructions plotting plotting
supervision, in order to | instructions instructions with | successfully but | instructions instructions
produce graphs for errors unable to draw | successfully, successfully, also
comparing time results from them partially able to | able to draw
complexity of algorithms draw results from | complete results
them from them

[10%

o

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Laboratory Session No. 06

Objective:

Apply Asymptotic Notations to the Sorting Algorithms.

© Notation:

The theta notation bounds a function from above and below, so it defines exact asymptotic
behavior.

A simple way to get theta notation of an expression is to drop low order terms and ignore
leading constants.

For a given function g(n), we denote O(g(n)) is following set of functions.
©(g(n)) = {f(n): there exist positive constants c1, c2 and n0 such
that 0 <= c1*g(n) <= f(n) <= c2*g(n) for all n >= n0}

The above definition means, if f(n) is theta of g(n), then the value f(n) is always between
cl*g(n) and c2*g(n) for large values of n (n >= n0). The definition of theta also requires that f(n)
must be non-negative for values of n greater than n0.

O Notation for Insertion Sort:

In order to apply theta notation for insertion sort we have to bound the time T(n) graph of
insertion sort between two graphs of the same nature that of T(n) but with different constant
terms C; and C, . The analysis is given by:

S.no n T(n) T(n)/n? Cin? Cn’

C,=0.000000056

1 1000 0.06 0.056 0.064
0.00000006

2 5000 1.57 1.5 1.625
0.00000006

3 10000 6.37 6 6.5
0.00000006

4 15000 14.32 135 14.62
C,=0.000000976

5 20000 25.5 24.4 26.5

Tabulation of Upper and lower bound asymptotes

Here n = no of elements
T(n) = Time Complexity
C,n*= Lower Bound
C,n” = Upper Bound

Growth Curves with Asymptotes

Growth Curves
30

25

20

15 e T ()

Time

e C1g(n)

10 C2g(n)

1000 5000 10000 15000 5000
No of Elements (n)

0O Notation for Merge Sort:

In order to apply theta notation for merge sort we have to bound the time T(n) graph of merge
sort between two graphs of the same nature that of T(n) but with different constant terms C; and
C, . The analysis is given by:

n T(n) T(n)/nlogn Ci(nLogn) C,(nlogn)
C,=7.80E-07
1000 0.008 0.007773 0.008272
7.90E-07
5000 0.05 0.048536 0.051608
C,=8.22E-07
10000 0.1152 0.109225 0.118261
8.10E-07
15000 0.1761 0.168553 0.181038
8.20E-07
20000 0.2477 0.234318 0.25375

Tabulation of Upper and lower bound asymptotes

Time in sec

Here n = no of elements
T(n) = Time Complexity
Cinlogn = Lower Bound
C,nlogn = Upper Bound

Growth Curves

AO.S

D.25
0.2
D.15
0.1

D.05

0 5000 10000 15000 20000 o, 25000
Input size

T(n) == C1(nlogn) C2(nlogn)

*keep in mind that your reading will depend on your computer’s speed. The above tables and graphs are
just for the verification of concepts

Laboratory Session No. 07

Objective:
Introduction to object oriented programming (OOP), creating classes and objects

SIGNIFICANCE of OOP:

Object-oriented programming is often the most natural approach, once we get the hang of it. OOP
languages allow us to break down our software into bite-sized problems that we then can solve —
one object at a time. This isn’t to say that OOP is the One True Way. However, the advantages
of object-oriented programming are many. When you need to solve complex programming
challenges and want to add code tools to your skill set, OOP is your friend and has much greater
longevity and utility. The concept of data classes allows a programmer to create any new data
type that is not already defined in the language itself. The concept of a data class makes it
possible to define subclasses of data objects that share some or all of the main class
characteristics called inheritance, this property of OOP forces a more thorough data analysis,
reduces development time, and ensures more accurate coding.

CONCEPT OF CLASS AND OBJECT:

A class is a template or set of instructions to build a specific type of object. Every object is built
from a class. Each class should be designed and programmed to accomplish one, and only one,
thing. An object’s properties are what it knows and its methods are what it can do.

2) CLASSES IN PYTHON:
We can use classes in python in order to save data. We can also access or call the data from
different operation when needed.

M In [4]: class Student():
""*'A student with name, roll number and CGPA"""
pass

In [7]: t=Student()

In [8]: type (t)

Out[2]: _ main__ .Student

Class creation in Python

https://whatis.techtarget.com/definition/inheritance

In the above the making of a general class is shown. Now we are going to use data in the class.
The following shows the calling and saving of the data.

In [2]: tTt.name="Subhan’

n [18]: | t.roll=156

n [11]: | t.cgpa==.8

nm [12]: T.name,t.roll,t.cgpa

{"Subhan', 1545, 3.8)

Assigning attributes

3) USE OF _init__ FUNCTION IN PYTHON:

When a new instance of a python class is created, it is the __init__ method which is called and
proves to be a very good place where we can modify the object after it has been created. There
is no explicit variable declaration in Python. They spring into action on the first assignment. The
use of self makes it easier to distinguish between instance attributes from local variables.
Normal attributes are introduced in the __init__ method, but some attributes of a class hold
for all instances in all cases. Following example can be used to understand __init__ and self
construct:

M In [14]: class Student():
def _ init_ (5tudent, nam, cgp, rol):
Student.name = nam
Student.cgpa = cgp
Student.rell = rol
def name_print(Student):
""'Print the name of the student.'"’
print("The name assigned is",self.name)
def cgpa_print(Student):
""'Print the name of the student.'"’
print(“The cgpa of",self.name, 'is’', Student.cgpa)
def 3ll_print(Student):
""'Print the name of the student.'"’
print(Student.name, 'has roll #',Student.roll, "and cgpa equals to', Student.cgpa)

__inint__ function usage

https://www.journaldev.com/14628/python-class-definition-variables-constructor-method-object

Now after using the constructor the making and calling of the data become easier.

M In [15]: a=S5tudent(Subhan’,3.8,156)
b= Student('Humayun',4.8,158)
C Student('Osama’,2.5,148)
d = Student('Bilal’,2.8,167)

In [16]: | b.all print()

Humayun has roll # 15@ and cgpa equals to 4.@

In [17]: | a.all_print()

Subhan has roll # 156 and cgpa equals to 3.8

Creating objects with attributes

Laboratory Session No. 08

Objective:
To implement the following open-ended problem in python

Develop a system which can perform following basic banking related tasks

a) Customer account could be created with name, NIC, account number
and initial balance. All such attributes should be placed in a class

b) Balance of any costumer could be updated

¢) Customer data could be sorted name wise and balance wise(any
previously used sorting procedure may be applied)

Course Code: EE-264
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Data Structures and Algorithms

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration
[10% 9
Input/Output Variable | Incorrect Correctly Correctly perceives | Correctly Correctly
Recognition, Definition | perception for | perceives the | the required | perceives the | perceives the
and Initialisation: both required Input/Output required required
Recognise and perceive | Input/Output Input/Output variables and data | Input/Output Input/Output
correct input/output | variables and | variablesand data | types and only | variables and data | variables and data
variables along with data | data types types but fails to | initialises them | types and | types and
types for testing a specific initialise variables | partially initialises them | initialises them
algorithm/data structure altogether completely but | with complete
with errors success
[15% 9
Procedural Programming | Little to no | Slight ability to | Mostly correct | Correctly Correctly
of given Algorithm: understanding use procedural | recognition and | recognises and | recognises and
Practice procedural | of procedural | programming application of | uses procedural | uses procedural
programming techniques | programming techniques for | procedural programming programming
including recursion, in | techniques coding given | programming techniques with | techniques with
order to code specific algorithm techniques but | no errors but | noerrorsand runs
algorithms from their makes crucial | unable to run | algorithm
pseudo code errors for the given | algorithm successfully
algorithm successfully

5% 0
Object Oriented | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Programming for given | selection and | of programming | and use of | and use of | and use of
Algorithm and Data | use of | constructs and | programming programming programming
Structure programming instructions but | constructs and | constructs and | constructs and
Implementation: constructs and | their use is | instructions with | instructions with | instructions with
Imitate and practice given | instructions incorrect many little to no | no

for
data

OOP instructions
making specific
structure/algorithm

[15%

syntax/semantic
errors

syntax/semantic
errors

syntax/semantic
errors

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

[15%

o

many mistake

lesser mistakes

no major mistakes

frequent use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions: and detect | messages in | messages in | messages in | messages in
Detect Errors/Exceptions | error messages | software but no | software as well as | software as well | software along
and manipulate, under | in software understanding of | understanding of | as understanding | with the
supervision, to rectify the detecting those | detecting some of | of detecting all of | understanding to
Code errors and their | those errors and | those errors and | detect and rectify
types their types their types them
[1o%] o
Debugging and | Unable to | Little ability to | Ability to recognise | Ability to | Ability to
Troubleshooting: recognise and | recognise and use | and use debugging | recognise and use | recognise,
Recognise and__Practice | use debugging | debugging and | and debugging and | describe, and use
Debugging and | options in | troubleshooting troubleshooting troubleshooting debugging and
Troubleshooting steps | software options in | options with little | options with | troubleshooting
through line-by-line code software ability to rectify | ability to rectify | with ability to
execution code and step-through | rectify and step-
code through code
104 o
Graphical visualisation | Unable to | Ability to | Ability to | Ability to | Ability to
and comparison of time | understand and | understand and | understand and | understand and | understand and
complexity of algorithms: | utilise utilise utilise visualisation | utilise utilise
Manipulate given | visualisation or | visualisation and | and plotting | visualisation and | visualisation and
Code/Instructions under | plotting plotting instructions plotting plotting
supervision, in order to | instructions instructions with | successfully but | instructions instructions
produce graphs for errors unable to draw | successfully, successfully, also
comparing time results from them partially able to | able to draw
complexity of algorithms draw results from | complete results
them from them

[10%

o

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Laboratory Session No. 09

Objective:
To implement fundamental data structures in Python (using list)

Note:
Using list in python, implement the following

a) Stacks(push and pop operations)
b) Queues(enqueue and dequeuer operations)
c) A dynamic set ‘S’ having following functionalities
a. Search (S, key)
b. Insert (an object)
c. Delete (an object)
d. Minimum(S)
e. Maximum(S)

a) Stacks (push and pop operations):

Stack is a linear data structure which follows a particular order in which the operations are
performed. The order may be LIFO (Last in First Out) or FILO (First in Last Out). The code of the
stack is given below for push and pop operations.

Implementation in Python

class stack():
def __init__(self):
self.stack=list()
def push(self,data):
self.stack.insert(0,data)
def pop(self):
print(self.stack[0])

self.stack.remove(self.stack[0])

Python code for class STACK

b) Queues (enqueue and dequeuer operations):
A Queue is a linear structure which follows a particular order in which the operations are
performed. The order is First-In-First-Out (FIFO). A good example of a queue is any queue
of consumers for a resource where the consumer that came first is served first. The
difference between stacks and queues is in removing. In a stack we remove the item the
most recently added; in a queue, we remove the item the least recently added. The code of
queue is given under

Implementation in Python

class queue():

def __init_ (self):
self.queue=list()

def enqueue(self,data):
self.queue.insert(0,data)

def dequeue(self):
n=len(self.queue)
print(self.queue[n-1])

self.queue.remove(self.queue[n-1])

Python code for QUEUE

https://www.geeksforgeeks.org/stack-data-structure/

c) A dynamic Set
Dynamic set may refer to: A set (abstract data type) that supports insertion and/or deletion of
elements. This data structure is frequently used in database access. The code for various
performing operation of the dynamic set is provided below

Implementation in Python

class ds():
1=list()
def add(self,data):
ds.l.append(data)
print(ds.l)
def delete(self,data):
ds.l.remove(data)
print(ds.l)
def search(self key):
flag=0
for i in range(len(ds.l)):
if ds.J[i]==key:
flag=1
return flag
def min(self):
for j in range(1,len(ds.1)):
key=ds.I[j]
i=j-1
while i>-1 and ds.1l[i]>key:
ds.1[i+1]=ds.1[i]
i=i-1
ds.I[i+1]=key
print(ds.1[0])
def max(self):
n=len(ds.l)
for j in range(1,len(ds.l)):
key=ds.l[j]
i=j-1

while i>-1 and ds.I[i]>key:
ds.I[i+1]=ds.1[i]
i=i-1
ds.I[i+1]=key
print(ds.l[n-1])

Python code for DYNAMIC SET

Note:

Student is now supposed to create objects and perform relevant tasks using those objects for the above
classes.

Course Code: EE-264
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Data Structures and Algorithms

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration
[10% 9
Input/Output Variable | Incorrect Correctly Correctly perceives | Correctly Correctly
Recognition, Definition | perception for | perceives the | the required | perceives the | perceives the
and Initialisation: both required Input/Output required required
Recognise and perceive | Input/Output Input/Output variables and data | Input/Output Input/Output
correct input/output | variables and | variablesand data | types and only | variables and data | variables and data
variables along with data | data types types but fails to | initialises them | types and | types and
types for testing a specific initialise variables | partially initialises them | initialises them
algorithm/data structure altogether completely but | with complete
with errors success
[15% 9
Procedural Programming | Little to no | Slight ability to | Mostly correct | Correctly Correctly
of given Algorithm: understanding use procedural | recognition and | recognises and | recognises and
Practice procedural | of procedural | programming application of | uses procedural | uses procedural
programming techniques | programming techniques for | procedural programming programming
including recursion, in | techniques coding given | programming techniques with | techniques with
order to code specific algorithm techniques but | no errors but | noerrorsand runs
algorithms from their makes crucial | unable to run | algorithm
pseudo code errors for the given | algorithm successfully
algorithm successfully

5% 0
Object Oriented | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Programming for given | selection and | of programming | and use of | and use of | and use of
Algorithm and Data | use of | constructs and | programming programming programming
Structure programming instructions but | constructs and | constructs and | constructs and
Implementation: constructs and | their use is | instructions with | instructions with | instructions with
Imitate and practice given | instructions incorrect many little to no | no

for
data

OOP instructions
making specific
structure/algorithm

[15%

syntax/semantic
errors

syntax/semantic
errors

syntax/semantic
errors

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

[15%

o

many mistake

lesser mistakes

no major mistakes

frequent use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions: and detect | messages in | messages in | messages in | messages in
Detect Errors/Exceptions | error messages | software but no | software as well as | software as well | software along
and manipulate, under | in software understanding of | understanding of | as understanding | with the
supervision, to rectify the detecting those | detecting some of | of detecting all of | understanding to
Code errors and their | those errors and | those errors and | detect and rectify
types their types their types them
[1o%] o
Debugging and | Unable to | Little ability to | Ability to recognise | Ability to | Ability to
Troubleshooting: recognise and | recognise and use | and use debugging | recognise and use | recognise,
Recognise and__Practice | use debugging | debugging and | and debugging and | describe, and use
Debugging and | options in | troubleshooting troubleshooting troubleshooting debugging and
Troubleshooting steps | software options in | options with little | options with | troubleshooting
through line-by-line code software ability to rectify | ability to rectify | with ability to
execution code and step-through | rectify and step-
code through code
104 o
Graphical visualisation | Unable to | Ability to | Ability to | Ability to | Ability to
and comparison of time | understand and | understand and | understand and | understand and | understand and
complexity of algorithms: | utilise utilise utilise visualisation | utilise utilise
Manipulate given | visualisation or | visualisation and | and plotting | visualisation and | visualisation and
Code/Instructions under | plotting plotting instructions plotting plotting
supervision, in order to | instructions instructions with | successfully but | instructions instructions
produce graphs for errors unable to draw | successfully, successfully, also
comparing time results from them partially able to | able to draw
complexity of algorithms draw results from | complete results
them from them

[10%

o

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Laboratory Session No. 10

Objective:
Accomplish the following open ended tasks

Using Node class, develop

1. Stack
2. Queues
3. Singly connected linked-list with following features
a. Add nodes
b. Traverse all nodes starting from top node
c. Search any key value in all nodes
d. Insert node between any two nodes

Course Code: EE-264
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Data Structures and Algorithms

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration
[10% 9
Input/Output Variable | Incorrect Correctly Correctly perceives | Correctly Correctly
Recognition, Definition | perception for | perceives the | the required | perceives the | perceives the
and Initialisation: both required Input/Output required required
Recognise and perceive | Input/Output Input/Output variables and data | Input/Output Input/Output
correct input/output | variables and | variablesand data | types and only | variables and data | variables and data
variables along with data | data types types but fails to | initialises them | types and | types and
types for testing a specific initialise variables | partially initialises them | initialises them
algorithm/data structure altogether completely but | with complete
with errors success
[15% 9
Procedural Programming | Little to no | Slight ability to | Mostly correct | Correctly Correctly
of given Algorithm: understanding use procedural | recognition and | recognises and | recognises and
Practice procedural | of procedural | programming application of | uses procedural | uses procedural
programming techniques | programming techniques for | procedural programming programming
including recursion, in | techniques coding given | programming techniques with | techniques with
order to code specific algorithm techniques but | no errors but | noerrorsand runs
algorithms from their makes crucial | unable to run | algorithm
pseudo code errors for the given | algorithm successfully
algorithm successfully

5% 0
Object Oriented | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Programming for given | selection and | of programming | and use of | and use of | and use of
Algorithm and Data | use of | constructs and | programming programming programming
Structure programming instructions but | constructs and | constructs and | constructs and
Implementation: constructs and | their use is | instructions with | instructions with | instructions with
Imitate and practice given | instructions incorrect many little to no | no

for
data

OOP instructions
making specific
structure/algorithm

[15%

syntax/semantic
errors

syntax/semantic
errors

syntax/semantic
errors

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

[15%

o

many mistake

lesser mistakes

no major mistakes

frequent use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions: and detect | messages in | messages in | messages in | messages in
Detect Errors/Exceptions | error messages | software but no | software as well as | software as well | software along
and manipulate, under | in software understanding of | understanding of | as understanding | with the
supervision, to rectify the detecting those | detecting some of | of detecting all of | understanding to
Code errors and their | those errors and | those errors and | detect and rectify
types their types their types them
[1o%] o
Debugging and | Unable to | Little ability to | Ability to recognise | Ability to | Ability to
Troubleshooting: recognise and | recognise and use | and use debugging | recognise and use | recognise,
Recognise and__Practice | use debugging | debugging and | and debugging and | describe, and use
Debugging and | options in | troubleshooting troubleshooting troubleshooting debugging and
Troubleshooting steps | software options in | options with little | options with | troubleshooting
through line-by-line code software ability to rectify | ability to rectify | with ability to
execution code and step-through | rectify and step-
code through code
104 o
Graphical visualisation | Unable to | Ability to | Ability to | Ability to | Ability to
and comparison of time | understand and | understand and | understand and | understand and | understand and
complexity of algorithms: | utilise utilise utilise visualisation | utilise utilise
Manipulate given | visualisation or | visualisation and | and plotting | visualisation and | visualisation and
Code/Instructions under | plotting plotting instructions plotting plotting
supervision, in order to | instructions instructions with | successfully but | instructions instructions
produce graphs for errors unable to draw | successfully, successfully, also
comparing time results from them partially able to | able to draw
complexity of algorithms draw results from | complete results
them from them

[10%

o

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Laboratory Session No. 11

Objective:

Accomplish the open-ended task:

Using Node class, develop singly connected linked-list

Course Code: EE-264
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Data Structures and Algorithms

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration
[10% 9
Input/Output Variable | Incorrect Correctly Correctly perceives | Correctly Correctly
Recognition, Definition | perception for | perceives the | the required | perceives the | perceives the
and Initialisation: both required Input/Output required required
Recognise and perceive | Input/Output Input/Output variables and data | Input/Output Input/Output
correct input/output | variables and | variablesand data | types and only | variables and data | variables and data
variables along with data | data types types but fails to | initialises them | types and | types and
types for testing a specific initialise variables | partially initialises them | initialises them
algorithm/data structure altogether completely but | with complete
with errors success
[15% 9
Procedural Programming | Little to no | Slight ability to | Mostly correct | Correctly Correctly
of given Algorithm: understanding use procedural | recognition and | recognises and | recognises and
Practice procedural | of procedural | programming application of | uses procedural | uses procedural
programming techniques | programming techniques for | procedural programming programming
including recursion, in | techniques coding given | programming techniques with | techniques with
order to code specific algorithm techniques but | no errors but | noerrorsand runs
algorithms from their makes crucial | unable to run | algorithm
pseudo code errors for the given | algorithm successfully
algorithm successfully

5% 0
Object Oriented | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Programming for given | selection and | of programming | and use of | and use of | and use of
Algorithm and Data | use of | constructs and | programming programming programming
Structure programming instructions but | constructs and | constructs and | constructs and
Implementation: constructs and | their use is | instructions with | instructions with | instructions with
Imitate and practice given | instructions incorrect many little to no | no

for
data

OOP instructions
making specific
structure/algorithm

[15%

syntax/semantic
errors

syntax/semantic
errors

syntax/semantic
errors

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

[15%

o

many mistake

lesser mistakes

no major mistakes

frequent use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions: and detect | messages in | messages in | messages in | messages in
Detect Errors/Exceptions | error messages | software but no | software as well as | software as well | software along
and manipulate, under | in software understanding of | understanding of | as understanding | with the
supervision, to rectify the detecting those | detecting some of | of detecting all of | understanding to
Code errors and their | those errors and | those errors and | detect and rectify
types their types their types them
[1o%] o
Debugging and | Unable to | Little ability to | Ability to recognise | Ability to | Ability to
Troubleshooting: recognise and | recognise and use | and use debugging | recognise and use | recognise,
Recognise and__Practice | use debugging | debugging and | and debugging and | describe, and use
Debugging and | options in | troubleshooting troubleshooting troubleshooting debugging and
Troubleshooting steps | software options in | options with little | options with | troubleshooting
through line-by-line code software ability to rectify | ability to rectify | with ability to
execution code and step-through | rectify and step-
code through code
104 o
Graphical visualisation | Unable to | Ability to | Ability to | Ability to | Ability to
and comparison of time | understand and | understand and | understand and | understand and | understand and
complexity of algorithms: | utilise utilise utilise visualisation | utilise utilise
Manipulate given | visualisation or | visualisation and | and plotting | visualisation and | visualisation and
Code/Instructions under | plotting plotting instructions plotting plotting
supervision, in order to | instructions instructions with | successfully but | instructions instructions
produce graphs for errors unable to draw | successfully, successfully, also
comparing time results from them partially able to | able to draw
complexity of algorithms draw results from | complete results
them from them

[10%

o

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Course Code: EE-264
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Data Structures and Algorithms

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to recognise | Able to recognise | Able to recognise | Able to recognise
and Configuration: unable to | initialisation but | initialisation but | initialisation and | initialisation and
Set up and recognise | recognise could not | configuration is | configuration configuration with
software initialisation and | initialisation configure erroneous with minimal | complete success
configuration steps and errors

configuration
[10% 9
Input/Output Variable | Incorrect Correctly Correctly perceives | Correctly Correctly
Recognition, Definition | perception for | perceives the | the required | perceives the | perceives the
and Initialisation: both required Input/Output required required
Recognise and perceive | Input/Output Input/Output variables and data | Input/Output Input/Output
correct input/output | variables and | variablesand data | types and only | variables and data | variables and data
variables along with data | data types types but fails to | initialises them | types and | types and
types for testing a specific initialise variables | partially initialises them | initialises them
algorithm/data structure altogether completely but | with complete
with errors success
[15% 9
Procedural Programming | Little to no | Slight ability to | Mostly correct | Correctly Correctly
of given Algorithm: understanding use procedural | recognition and | recognises and | recognises and
Practice procedural | of procedural | programming application of | uses procedural | uses procedural
programming techniques | programming techniques for | procedural programming programming
including recursion, in | techniques coding given | programming techniques with | techniques with
order to code specific algorithm techniques but | no errors but | noerrorsand runs
algorithms from their makes crucial | unable to run | algorithm
pseudo code errors for the given | algorithm successfully
algorithm successfully

5% 0
Object Oriented | Incorrect Correct selection | Correct selection | Correct selection | Correct selection
Programming for given | selection and | of programming | and use of | and use of | and use of
Algorithm and Data | use of | constructs and | programming programming programming
Structure programming instructions but | constructs and | constructs and | constructs and
Implementation: constructs and | their use is | instructions with | instructions with | instructions with
Imitate and practice given | instructions incorrect many little to no | no

for
data

OOP instructions
making specific
structure/algorithm

[15%

syntax/semantic
errors

syntax/semantic
errors

syntax/semantic
errors

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and Usage: | understand and | understanding of | and understanding | understanding of | command over
Ability to operate | use software | software menu | of software menu | software menu | software menu
software environment | menu operation, makes | operation, makes | operation, makes | usage with

under supervision, using
menus, shortcuts,
instructions etc.

[15%

o

many mistake

lesser mistakes

no major mistakes

frequent use of
advance menu
options

Detecting and Removing

Unable to check

Able to find error

Able to find error

Able to find error

Able to find error

Errors/Exceptions: and detect | messages in | messages in | messages in | messages in
Detect Errors/Exceptions | error messages | software but no | software as well as | software as well | software along
and manipulate, under | in software understanding of | understanding of | as understanding | with the
supervision, to rectify the detecting those | detecting some of | of detecting all of | understanding to
Code errors and their | those errors and | those errors and | detect and rectify
types their types their types them
[1o%] o
Debugging and | Unable to | Little ability to | Ability to recognise | Ability to | Ability to
Troubleshooting: recognise and | recognise and use | and use debugging | recognise and use | recognise,
Recognise and__Practice | use debugging | debugging and | and debugging and | describe, and use
Debugging and | options in | troubleshooting troubleshooting troubleshooting debugging and
Troubleshooting steps | software options in | options with little | options with | troubleshooting
through line-by-line code software ability to rectify | ability to rectify | with ability to
execution code and step-through | rectify and step-
code through code
104 o
Graphical visualisation | Unable to | Ability to | Ability to | Ability to | Ability to
and comparison of time | understand and | understand and | understand and | understand and | understand and
complexity of algorithms: | utilise utilise utilise visualisation | utilise utilise
Manipulate given | visualisation or | visualisation and | and plotting | visualisation and | visualisation and
Code/Instructions under | plotting plotting instructions plotting plotting
supervision, in order to | instructions instructions with | successfully but | instructions instructions
produce graphs for errors unable to draw | successfully, successfully, also
comparing time results from them partially able to | able to draw
complexity of algorithms draw results from | complete results
them from them

[10%

o

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

