
 
 
 

 

 

 

 

 

 

NED University of Engineering & Technology 

Department of Electrical Engineering 

 

LAB MANUAL 

 

Data Structures and Algorithms 

(EE-264) 
For 

SE Electrical 
 

 

Instructor name:__________________________________ 

Student name:____________________________________ 

Roll no:      Batch:___________________ 

Semester:      Year:________________ 

 



 
 
 

LAB MANUAL 

 

Data Structures and Algorithms 

(EE-264) 
For 

SE Electrical 
 

 

 

 

Content Revision Team: Dr. Riaz Uddin and Dr. Mirza Muhammad Ali Baig  

Last Revision Date: 28
th

 December 2020 

 

 

 

Approved By 

 

The Board of Studies of Department of Electrical Engineering 

 

____________________                                     ____________________ 

 

____________________                                      ___________________ 

 

____________________                                     ____________________  

Rectangle

Rectangle

Rectangle

FreeText
Ms Aiman Najeeb, Dr Mirza Muhammad Ali Baig

FreeText
13th March 2023



To
 b

e 
fi

lle
d

 b
y 

la
b

 t
ec

h
n

ic
ia

n
 

A
tt

en
d

an
ce

: P
re

se
n

t 
o

u
t 

o
f 

_
__

__
 L

ab
 s

es
si

o
n

s 

A
tt

en
d

an
ce

 P
er

ce
n

ta
ge

 _
__

_
__

__
 

To
 b

e 
fi

lle
d

 b
y 

La
b

 In
st

ru
ct

o
r 

La
b

 S
co

re
 S

h
ee

t 
 

R
o

ll 
N

o
. 

R
u

b
ri

c 
b

as
ed

 
La

b
 I 

 

R
u

b
ri

c 
b

as
ed

 
La

b
 II

 

R
u

b
ri

c 
b

as
ed

 
La

b
 II

I 

R
u

b
ri

c 
b

as
ed

 
La

b
 IV

 

R
u

b
ri

c 
b

as
ed

 
La

b
  V

 

R
u

b
ri

c 
b

as
ed

 
La

b
 V

I 

O
EL

/P
B

L 
R

u
b

ri
c 

Sc
o

re
 

A
 

Fi
n

al
 L

A
B

 
R

u
b

ri
c 

Sc
o

re
 

B
 

A
tt

en
d

an
ce

 
P

er
ce

n
ta

ge
 

 C
 

Fi
n

al
 w

e
ig

h
te

d
 S

co
re

 f
o

r 
M

IS
 S

ys
te

m
 

[1
0

(A
)+

1
0

(B
)+

5
(C

)]
/2

5
 

R
o

u
n

d
 t

o
 n

ex
t 

h
ig

h
er

 
m

u
lt

ip
le

 o
f 

5
 

 
 

 
 

 
 

 
 

 
 

 

 EE
-2

64
 D

SA
 R

u
b

ri
c 

B
as

ed
 L

ab
s:

 3
, 4

, 5
, 8

, 9
, 1

0
 

N
o

te
: A

ll 
R

u
b

ri
c 

Sc
o

re
s 

m
u

st
 b

e 
in

 t
h

e 
n

ex
t 

h
ig

h
er

 m
u

lt
ip

le
 o

f 
5

 f
o

r 
co

rr
ec

t 
e

n
tr

y 
in

 M
IS

 s
ys

te
m

. 

 



S. No.  Date  Title of Experiment  Signature  

1    Introduction to programming with Python    

2    Developing and executing algorithms using Python    

3    To analyze the efficiency of sorting algorithms    

4    To develop and apply the recursive divide and conquer 

approach in sorting   

  

5    Extending the divide-and-conquer approach on sorting 

and searching problems  

  

6    Apply Asymptotic Notations to the Sorting Algorithms.     

7    Introduction to object oriented programming.     

8    Develop a system which can perform basic banking related 

tasks  

  

9    To implement fundamental data structures in Python  
(using list)  

a) Stack  
b) Queue  

  

10    Using Node class, develop Stacks and Queue       

11    Accomplish the open-ended task:  

 Using Node class, develop Singly connected linked-list  

  

 



 
 
 

 

Objective:  

To get introduced with fundamentals of programming with Python 

Outcomes: 

By the end of this lab, student should be able to  

a) Correctly code algorithms in python which may include  
1) Loops 
2) Conditions 
3) Lists 
4) User defined functions 
5) Importing libraries to program  

 

1) Loops: 
 
In Python, for and while loops follows the following syntax. 

WHILE LOOP:- 

Laboratory Session No. 01 

 

 

while loop in Python 



 
 
 

 

FOR LOOP:- 

 

 

 

 

 

 

 

 

 

 

 

for loop in Python 



 
 
 

 

2) Conditions: 
 

 

 

3) Lists: 
A list is created by placing all items in “square brackets []”. 
Elements can be added/appended in a list as well. 

 
 

 

if-else condition in Python 

 

list example 



 
 
 

 

4) User defined Functions: 
Functions in Python can be created by using the syntax shown below. A function is a 
block of code which only runs when it is called. Defining and calling a function are 
explained as follows:  

 

 

 

 

 

 

 

 

 

 

Working with functions in Python 



 
 
 

 

Saving and Importing user-defined function to a program: 
 

 Copy your desired code in notepad. 

 
 
 

 Save it as .py file. 

 
 

 Change its extension from.txt to .py. 

 Import as follows: 
 



 
 
 

 
 
 
 

 

 

Calling user-defined function in Python 



 
 
 

5) Importing libraries to program: 
 
Python library is a collection of functions and methods that allows you to perform lots of 
actions without writing your own code. For importing libraries, the “import” command is 
used.  
Once the library is imported, its different functions can be called. Following is an example 
which makes use of a library 

 

 

 

 

 

 

 

 

 

 

 

 

Making use of libraries in Python 



 
 
 

 

 

Objective:  

To developing and execute basic algorithms using Python 

 

Outcomes: 

By the end of this lab, student should be able to implement following 

exercises in Python  

 

1) Write a program which could generate the following pattern. [hint: use ‘end’ option in pri

nt command] 
 

*  

* *  

* * *  

* * * *  

* * * * *  

* * * * * *  

* * * * * * *  

* * * * * * * *  

* * * * * * * * *  

* * * * * * * * * *  

* * * * * * * * *  

* * * * * * * *  

* * * * * * *  

* * * * * *  

* * * * *  

* * * *  

* * *  

* *  

*  

 

 

 

 

 

Laboratory Session No. 02 



 
 
 

2) Write a program which can generate the following 

 

Input a number: 10 

10 x 1 = 10 

10 x 2 = 20 

10 x 3 = 30 

10 x 4 = 40 

10 x 5 = 50 

10 x 6 = 60 

10 x 7 = 70 

10 x 8 = 80 

10 x 9 = 90 

10 x 10 = 100 

 

3) Write a program to prompt for a score between 0.0 and 1.0. If the score is out of range, 

print an error message. If the score is between 0.0 and 1.0, print a grade using the 

following table: 

>= 0.9 A 

>= 0.8 B 

>= 0.7 C 

>= 0.6 D 

< 0.6 F 

 

Enter score: 0.95 

A 

 

Enter score: perfect 

Bad score 

 

Enter score: 10.0 

Bad score 

Enter score: 0.75 

C 

 

Enter score: 0.5 

F 

 

4) Re-write the above program using functions 

5) Write a Python function to calculate the factorial of a number. [use recursive approach] 

6) Write a function which can search for an entry in a list. Also show the entry count in the list. 

7) Develop code in python for sorting a list using selection sort approach. In selection sort 

you find the minimum value first and place it at the end of the list.  



 
 
 

 

 

Objective: 

 

To analyze and evaluate experimentally the running time of 

1) Selection Sort 

2) Bubble Sort 

3) Insertion Sort  

 

Special Instructions 

1) You are supposed to translate pseudocodes of the above mentioned 
codes in Python .  

2) Show in tabulated form, the analytical expressions of 
computational times for the above algorithms based on RAM model  

3) Now, evaluate the run time using time  library functions 
4) You would need to discuss the average run time of each algorithm 

for best and worst cases   
 

1. Selection Sort: 

Laboratory Session No. 03 

for i = 1 to A.length 

min_pos = i 

for j = i+1 to length_of_list 

if list[min_pos] > list[j] 

min_pos = j 

temp = list[i] 

list[i] = list[min_pos] 

list[min_pos] = temp 

Pseudocode of Selection Sort 



 
 
 
 

 

 

 

 

 

 

 

 

 

 

def Selection_Sort(M): 

    for i in range(0,len(M)): 

        min_pos=i 

        for j in range (i+1,len(M)): 

            if M[min_pos]> M[j]: 

                 min_pos=j 

        temp=M[i] 

        M[i]=M[min_pos] 

        M[min_pos]=temp 

    return(M) 

Z=[10,12,6,89,43] 

Selection_Sort(Z) 

[6,10,12,43,89] 

   

 Out[2]: 

[6, 10, 12, 43, 89] 

Python Code 



 
 
 
Analysis of Selection Sort 

 

 

Pseudocode Cost 

 

Time 

(Worst) 

Time 

(Best) 

1 for i=1 to length_of_list C1 n+1 n+1 

2 min_pos=i C2 n n 

3 for j=i+1 to length_of_list C3 ∑ 𝑗𝑛
𝑗=1 =

𝑛(𝑛+1)

2
 ∑ 𝑗𝑛

𝑗=1 =
𝑛(𝑛+1)

2
 

4 if list[min_pos] > list[j] C4 ∑ (𝑗 − 1)
𝑛

𝑗=1
=
𝑛(𝑛−1)

2
 ∑ (𝑗 − 1)

𝑛

𝑗=1
=
𝑛(𝑛−1)

2
 

5 min_pos = j C5 ∑ (𝑗 − 1)
𝑛

𝑗=1
=
𝑛(𝑛−1)

2
 0 

6 else 0 n n 

7 temp = list[i] C7 n n 

8 list[i] = list[min_pos] C8 n n 

9 list[min_pos] = temp C9 n n 

Analysis of Selection Sort 



 
 
 

Run time of Selection Sort 

 

Tabulated run-time of Selection Sort: 

After experimenting with the python code for five different sizes of inputs, following run-times were 

recorded.  

S. No Number of elements in array 
Time of Best 

case(sec) 
Time of worst 

case(sec) 

1 2000 0.4653 0.4973 

2 4000 1.9898 1.9856 

3 6000 4.3554 4.6329 
4 8000 7.7099 7.7937 

5 10000 11.792 12.696 
 

 

 

 

Python implementation for runtime assessment for a worst case 



 
 
 

 

Growth Plot: 

 

14     

12     

10     

8     

6     

4     

2     

0     

2000 4000 6000 8000 10000 

  Best case Worst case  

 

 

 

Note:  

Student is supposed to repeat similar exercise, for bubble and insertion sort algorithms.  

 

 

 

 

*keep in mind that your reading will depend on your computer’s speed. The above tables and graphs are 

just for the verification of concepts 

 

 

 

 

 

Input size 

Ti
m

e
 in

 s
ec

 



Page 1 of 2 
 

 

 

NED University of Engineering & Technology 

 Department of Electrical Engineering  

 
 
 
 

  
Course Code: EE-264 Course Title: Data Structures and Algorithms 
Laboratory Session No.: ________________________ Date: ______________________________ 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Initialisation 
and Configuration: 
Set up and recognise 
software initialisation and 
configuration steps 
 

10% 

Completely 
unable to 
recognise 
initialisation 
and 
configuration 

0 

Able to recognise 
initialisation but 
could not 
configure 
 
 

10 

Able to recognise 
initialisation but 
configuration is 
erroneous  
 
 

20 

Able to recognise 
initialisation and 
configuration 
with minimal 
errors 
 

30 

Able to recognise 
initialisation and 
configuration with 
complete success 
 
 

40 

Input/Output Variable 
Recognition, Definition 
and Initialisation: 
Recognise and perceive 
correct input/output 
variables along with data 
types for testing a specific 
algorithm/data structure 
 

15% 

Incorrect 
perception for 
both 
Input/Output 
variables and 
data types 
 
 
 

0 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types but fails to 
initialise variables 
altogether 
 

15 

Correctly perceives 
the required 
Input/Output 
variables and data 
types and only 
initialises them 
partially 
 
 

30 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
completely but 
with errors 

45 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
with complete 
success 

60 

Procedural Programming 
of given Algorithm: 
Practice procedural 
programming techniques 
including recursion, in 
order to code specific 
algorithms from their 
pseudo code 
 

15% 

Little to no 
understanding 
of procedural 
programming 
techniques 
 
 
 
 

0 

Slight ability to 
use procedural 
programming 
techniques for 
coding given 
algorithm  
 
 
 

15 

Mostly correct 
recognition and 
application of 
procedural 
programming 
techniques but 
makes crucial 
errors for the given 
algorithm 

30 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors but 
unable to run 
algorithm 
successfully 

45 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors and runs 
algorithm 
successfully 
 

60 

Object Oriented 
Programming for given 
Algorithm and Data 
Structure 
Implementation: 
Imitate and practice given 
OOP instructions for 
making specific data 
structure/algorithm 

15% 

Incorrect 
selection and 
use of 
programming 
constructs and 
instructions 
 
 
 

0 

Correct selection 
of programming 
constructs and 
instructions but 
their use is 
incorrect 
 
 
 

15 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
many 
syntax/semantic 
errors 
 

30 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
little to no 
syntax/semantic 
errors 
 

45 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
no 
syntax/semantic 
errors 
 

60 

 

 

 

 



Page 2 of 2 
 

 

 

 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Menu 
Identification and Usage: 
Ability to operate 
software environment 
under supervision, using 
menus, shortcuts, 
instructions etc. 

15% 

Unable to 
understand and 
use software 
menu  
 
 
 

0 

Little ability and 
understanding of 
software menu 
operation, makes 
many mistake 
 
 

15 

Moderate ability 
and understanding 
of software menu 
operation, makes 
lesser mistakes 
 
 

30 

Reasonable 
understanding of 
software menu 
operation, makes 
no major mistakes 
 
 

45 

Demonstrates 
command over 
software menu 
usage with 
frequent use of 
advance menu 
options 

60 

Detecting and Removing 
Errors/Exceptions: 
Detect Errors/Exceptions 
and manipulate, under 
supervision, to rectify the 
Code 
 

10% 

Unable to check 
and detect 
error messages 
in software 
 
 
 

0 

Able to find error 
messages in 
software but no 
understanding of 
detecting those 
errors and their 
types 

10 

Able to find error 
messages in 
software as well as 
understanding of 
detecting some of 
those errors and 
their types 

20 

Able to find error 
messages in 
software as well 
as understanding 
of detecting all of 
those errors and 
their types 

30 

Able to find error 
messages in 
software along 
with the 
understanding to 
detect and rectify 
them 

40 

Debugging and 
Troubleshooting: 
Recognise and Practice  
Debugging and 
Troubleshooting steps 
through line-by-line code 
execution   
 

10% 

Unable to 
recognise and 
use debugging 
options in 
software 
 
 
 

0 

Little ability to 
recognise and use 
debugging and 
troubleshooting 
options in 
software 
 
 

10 

Ability to recognise 
and use debugging 
and 
troubleshooting 
options with little 
ability to rectify 
code 
 

20 

Ability to 
recognise and use 
debugging and 
troubleshooting 
options with 
ability to rectify 
and step-through 
code 

30 

Ability to 
recognise, 
describe,  and use 
debugging and 
troubleshooting 
with ability to 
rectify and step-
through code 

40 

Graphical visualisation 
and comparison of time 
complexity of algorithms: 
Manipulate given 
Code/Instructions under 
supervision, in order to 
produce graphs for 
comparing time 
complexity of algorithms 
 

10% 

Unable to 
understand and 
utilise 
visualisation or 
plotting 
instructions  
 
 
 
 

0 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions with 
errors  
 
 
 

10 

Ability to 
understand and 
utilise visualisation 
and plotting 
instructions 
successfully but 
unable to draw 
results from them 
 
 

20 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, 
partially able to 
draw results from 
them 

30 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, also 
able to draw 
complete results 
from them 

40 

 

Total Points (out of 400)  

Weighted CLO (Psychomotor Score) (Points/4) 

Remarks  

Instructor’s Signature with Date  

 



 
 
 

 

 

Objective: 

 

To develop and apply the recursive divide and conquer approach in sorting 

(using debugging tools in Python) 

 

Debugging: 

Debugging is a process which involves identifying a problem, isolating the source of the 

problem and then either correcting the problem or determining a way to look around it. In 

debugging process, we run the program step-by-step and keep a look on the variables. To 

invoke the option for debugging in spyder IDE we take following steps: 

 

Here, the DEBUG option, starts debugging. The STEP option, steps to next line of the code. The 
STEP INTO option, takes you inside the function’s body.  The STEP RETURN option, steps to 
return the function call. The CONTINUE option, continues with debugging mode. The STOP 
option, forces the current debugging to stop. 

 

Laboratory Session No. 04 

 

Debugging tools in Spyder 



 
 
 
 

Merge-sort Algorithm: 

Merge Sort is based on the approach of Divide and Conquer. It divides input array in two halves, 

calls itself for the two halves and then merges the two sorted halves. The merge() function is used 

for merging two halves. 

 

Following is the python-code for mergesort algorithm : 

 

 

 

def MergeSort(A): 
n=len(A)  

s=list( )  

if n==1: 
s=A  

else: 
a=(n//2)  

s1=MergeSort(A[0:a]) 
s2=MergeSort(A[a:n]) 
s=merge(s1,s2) 

 

def merge(A,B): 
n1=len(A)  

n2=len(B) 
A=A+[float('inf')]  

B=B+[float('inf')]  

i=0 
j=0 
l=list( )  

for k in range(0,n1+n2): 
if A[i]<=B[j]:  

l=l+[A[i]] 
i=i+1 

else:  

l=l+[B[j]] 
j=j+1 

return l 
Megesort in Python 

https://www.geeksforgeeks.org/divide-and-conquer-introduction/


 
 
 
In the following section, we see how variables can be watched while running program in debugging 

mode.  

In the following exercise, we see how we can merge two arrays of two and one elements through 

debugging mode.  

 

 

 

 

 

 
 

Variables are shown here, before the start of the loop execution 

 

Running merge procedure in debugging mode 



 
 
 

1st iteration of k: 

 

2nd iteration of k: 

 

 

 

 

 

 

 

 



 
 
 

3rd iteration of k: 

 

End of for…loop: 

 

Sorted List returned: 

 

 

 

 



 
 
 
Task:  

There are going to be recursive calls in the mergesort procedure given above. Student is supposed to 

note the values of different variables during each recursive call and record their observations.  

Further, student is supposed to compare the run-time of mergesort algorithm, with the sorting 

algorithms covered in lab session 03.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 1 of 2 
 

 

 

NED University of Engineering & Technology 

 Department of Electrical Engineering  

 
 
 
 

  
Course Code: EE-264 Course Title: Data Structures and Algorithms 
Laboratory Session No.: ________________________ Date: ______________________________ 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Initialisation 
and Configuration: 
Set up and recognise 
software initialisation and 
configuration steps 
 

10% 

Completely 
unable to 
recognise 
initialisation 
and 
configuration 

0 

Able to recognise 
initialisation but 
could not 
configure 
 
 

10 

Able to recognise 
initialisation but 
configuration is 
erroneous  
 
 

20 

Able to recognise 
initialisation and 
configuration 
with minimal 
errors 
 

30 

Able to recognise 
initialisation and 
configuration with 
complete success 
 
 

40 

Input/Output Variable 
Recognition, Definition 
and Initialisation: 
Recognise and perceive 
correct input/output 
variables along with data 
types for testing a specific 
algorithm/data structure 
 

15% 

Incorrect 
perception for 
both 
Input/Output 
variables and 
data types 
 
 
 

0 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types but fails to 
initialise variables 
altogether 
 

15 

Correctly perceives 
the required 
Input/Output 
variables and data 
types and only 
initialises them 
partially 
 
 

30 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
completely but 
with errors 

45 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
with complete 
success 

60 

Procedural Programming 
of given Algorithm: 
Practice procedural 
programming techniques 
including recursion, in 
order to code specific 
algorithms from their 
pseudo code 
 

15% 

Little to no 
understanding 
of procedural 
programming 
techniques 
 
 
 
 

0 

Slight ability to 
use procedural 
programming 
techniques for 
coding given 
algorithm  
 
 
 

15 

Mostly correct 
recognition and 
application of 
procedural 
programming 
techniques but 
makes crucial 
errors for the given 
algorithm 

30 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors but 
unable to run 
algorithm 
successfully 

45 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors and runs 
algorithm 
successfully 
 

60 

Object Oriented 
Programming for given 
Algorithm and Data 
Structure 
Implementation: 
Imitate and practice given 
OOP instructions for 
making specific data 
structure/algorithm 

15% 

Incorrect 
selection and 
use of 
programming 
constructs and 
instructions 
 
 
 

0 

Correct selection 
of programming 
constructs and 
instructions but 
their use is 
incorrect 
 
 
 

15 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
many 
syntax/semantic 
errors 
 

30 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
little to no 
syntax/semantic 
errors 
 

45 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
no 
syntax/semantic 
errors 
 

60 

 

 

 

 



Page 2 of 2 
 

 

 

 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Menu 
Identification and Usage: 
Ability to operate 
software environment 
under supervision, using 
menus, shortcuts, 
instructions etc. 

15% 

Unable to 
understand and 
use software 
menu  
 
 
 

0 

Little ability and 
understanding of 
software menu 
operation, makes 
many mistake 
 
 

15 

Moderate ability 
and understanding 
of software menu 
operation, makes 
lesser mistakes 
 
 

30 

Reasonable 
understanding of 
software menu 
operation, makes 
no major mistakes 
 
 

45 

Demonstrates 
command over 
software menu 
usage with 
frequent use of 
advance menu 
options 

60 

Detecting and Removing 
Errors/Exceptions: 
Detect Errors/Exceptions 
and manipulate, under 
supervision, to rectify the 
Code 
 

10% 

Unable to check 
and detect 
error messages 
in software 
 
 
 

0 

Able to find error 
messages in 
software but no 
understanding of 
detecting those 
errors and their 
types 

10 

Able to find error 
messages in 
software as well as 
understanding of 
detecting some of 
those errors and 
their types 

20 

Able to find error 
messages in 
software as well 
as understanding 
of detecting all of 
those errors and 
their types 

30 

Able to find error 
messages in 
software along 
with the 
understanding to 
detect and rectify 
them 

40 

Debugging and 
Troubleshooting: 
Recognise and Practice  
Debugging and 
Troubleshooting steps 
through line-by-line code 
execution   
 

10% 

Unable to 
recognise and 
use debugging 
options in 
software 
 
 
 

0 

Little ability to 
recognise and use 
debugging and 
troubleshooting 
options in 
software 
 
 

10 

Ability to recognise 
and use debugging 
and 
troubleshooting 
options with little 
ability to rectify 
code 
 

20 

Ability to 
recognise and use 
debugging and 
troubleshooting 
options with 
ability to rectify 
and step-through 
code 

30 

Ability to 
recognise, 
describe,  and use 
debugging and 
troubleshooting 
with ability to 
rectify and step-
through code 

40 

Graphical visualisation 
and comparison of time 
complexity of algorithms: 
Manipulate given 
Code/Instructions under 
supervision, in order to 
produce graphs for 
comparing time 
complexity of algorithms 
 

10% 

Unable to 
understand and 
utilise 
visualisation or 
plotting 
instructions  
 
 
 
 

0 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions with 
errors  
 
 
 

10 

Ability to 
understand and 
utilise visualisation 
and plotting 
instructions 
successfully but 
unable to draw 
results from them 
 
 

20 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, 
partially able to 
draw results from 
them 

30 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, also 
able to draw 
complete results 
from them 

40 

 

Total Points (out of 400)  

Weighted CLO (Psychomotor Score) (Points/4) 

Remarks  

Instructor’s Signature with Date  

 



 
 
 

 

Objective:  

Extending the divide-and-conquer approach on sorting and searching problems 

 

 

We first start with the analysis and experimental verification of the run-time of linear search algorithm. 

The linear search algorithm looks for an entry present in the array sequentially. In the second stage, we 

apply divide and conquer based approach for searching problem and compare the running time of both 

linear search and binary search analytically as well as empirically.   

The linear search Algorithm 
 

 

 

 

 

 

 

 

 

 

 

Laboratory Session No. 05 

def linearsearch(x, key): 
    count=0 
    flag=0 
    for i in range(len(x)): 
        count=count+1 
        if x[i]==key: 
            flag=1 
    return flag 

Code of linear search algorithm in Python 



 
 
 

Analysis of Linear Search (perform for best and worst cases) 

 

 

Best case 
 

 

 

 

 

 

Worst case 
 

 

 

 

 

 

Pseudocode frequency 

 

Time 

1 def linearsearch(x, y):   

2     count=0   

3     flag=0   

4     for i in range(len(x)):   

5         count=count+1   

6         if x[i]==y:   

7             flag=1   

8     return flag   

 

Code of linear search algorithm in Python 



 
 
 

Binary Search 
Binary search is done on already sorted array. Program compares the value to be searched from 

the value present at the mid in the list. If value is lesser than value at mid in the list it looks for 

the value in the same way in the list on the left of mid. If value is larger than value at mid, it 

looks in the list on the right of mid. When the value is found it generates an output flag that 

value is found. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

def bsearch(A, key): 
     f_index=0 
     l_index=len(A)-1 
     flag=0 
     while f_index<=l_index and flag==0: 
          mid=(f_index+l_index)//2 
          if A[mid]==key: 
               flag=1 
          elif key<A[mid]: 
               l_index=mid-1 
          else: 
               f_index=mid+1 
     return flag 

Code of binary search algorithm in Python 



 
 
 

Analysis of Binary Search 
 

 

Best case 
 

 

 

 

 

Worst case 
 

 

 

 

Pseudocode Frequency Time 

1 def bsearch(A, key):   

2      f_index=0   

3      l_index=len(A)-1   

4      flag=0   

5      while f_index<=l_index and flag==0:   

6             mid=(f_index+l_index)//2   

7              if A[mid]==key:   

8                        flag=1   

9              elif key<A[mid]:   

10                         l_index=mid-1   

11              else:   

12                         f_index=mid+1   

13       return flag   



 
 
 

Compare the running times of linear search and binary search 
 

Task: 

 

Student is supposed to implement both searching algorithms and test them for different sizes of inputs. 

To summaries the observations, growth plots should be made.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 1 of 2 
 

 

 

NED University of Engineering & Technology 

 Department of Electrical Engineering  

 
 
 
 

  
Course Code: EE-264 Course Title: Data Structures and Algorithms 
Laboratory Session No.: ________________________ Date: ______________________________ 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Initialisation 
and Configuration: 
Set up and recognise 
software initialisation and 
configuration steps 
 

10% 

Completely 
unable to 
recognise 
initialisation 
and 
configuration 

0 

Able to recognise 
initialisation but 
could not 
configure 
 
 

10 

Able to recognise 
initialisation but 
configuration is 
erroneous  
 
 

20 

Able to recognise 
initialisation and 
configuration 
with minimal 
errors 
 

30 

Able to recognise 
initialisation and 
configuration with 
complete success 
 
 

40 

Input/Output Variable 
Recognition, Definition 
and Initialisation: 
Recognise and perceive 
correct input/output 
variables along with data 
types for testing a specific 
algorithm/data structure 
 

15% 

Incorrect 
perception for 
both 
Input/Output 
variables and 
data types 
 
 
 

0 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types but fails to 
initialise variables 
altogether 
 

15 

Correctly perceives 
the required 
Input/Output 
variables and data 
types and only 
initialises them 
partially 
 
 

30 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
completely but 
with errors 

45 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
with complete 
success 

60 

Procedural Programming 
of given Algorithm: 
Practice procedural 
programming techniques 
including recursion, in 
order to code specific 
algorithms from their 
pseudo code 
 

15% 

Little to no 
understanding 
of procedural 
programming 
techniques 
 
 
 
 

0 

Slight ability to 
use procedural 
programming 
techniques for 
coding given 
algorithm  
 
 
 

15 

Mostly correct 
recognition and 
application of 
procedural 
programming 
techniques but 
makes crucial 
errors for the given 
algorithm 

30 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors but 
unable to run 
algorithm 
successfully 

45 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors and runs 
algorithm 
successfully 
 

60 

Object Oriented 
Programming for given 
Algorithm and Data 
Structure 
Implementation: 
Imitate and practice given 
OOP instructions for 
making specific data 
structure/algorithm 

15% 

Incorrect 
selection and 
use of 
programming 
constructs and 
instructions 
 
 
 

0 

Correct selection 
of programming 
constructs and 
instructions but 
their use is 
incorrect 
 
 
 

15 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
many 
syntax/semantic 
errors 
 

30 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
little to no 
syntax/semantic 
errors 
 

45 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
no 
syntax/semantic 
errors 
 

60 

 

 

 

 



Page 2 of 2 
 

 

 

 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Menu 
Identification and Usage: 
Ability to operate 
software environment 
under supervision, using 
menus, shortcuts, 
instructions etc. 

15% 

Unable to 
understand and 
use software 
menu  
 
 
 

0 

Little ability and 
understanding of 
software menu 
operation, makes 
many mistake 
 
 

15 

Moderate ability 
and understanding 
of software menu 
operation, makes 
lesser mistakes 
 
 

30 

Reasonable 
understanding of 
software menu 
operation, makes 
no major mistakes 
 
 

45 

Demonstrates 
command over 
software menu 
usage with 
frequent use of 
advance menu 
options 

60 

Detecting and Removing 
Errors/Exceptions: 
Detect Errors/Exceptions 
and manipulate, under 
supervision, to rectify the 
Code 
 

10% 

Unable to check 
and detect 
error messages 
in software 
 
 
 

0 

Able to find error 
messages in 
software but no 
understanding of 
detecting those 
errors and their 
types 

10 

Able to find error 
messages in 
software as well as 
understanding of 
detecting some of 
those errors and 
their types 

20 

Able to find error 
messages in 
software as well 
as understanding 
of detecting all of 
those errors and 
their types 

30 

Able to find error 
messages in 
software along 
with the 
understanding to 
detect and rectify 
them 

40 

Debugging and 
Troubleshooting: 
Recognise and Practice  
Debugging and 
Troubleshooting steps 
through line-by-line code 
execution   
 

10% 

Unable to 
recognise and 
use debugging 
options in 
software 
 
 
 

0 

Little ability to 
recognise and use 
debugging and 
troubleshooting 
options in 
software 
 
 

10 

Ability to recognise 
and use debugging 
and 
troubleshooting 
options with little 
ability to rectify 
code 
 

20 

Ability to 
recognise and use 
debugging and 
troubleshooting 
options with 
ability to rectify 
and step-through 
code 

30 

Ability to 
recognise, 
describe,  and use 
debugging and 
troubleshooting 
with ability to 
rectify and step-
through code 

40 

Graphical visualisation 
and comparison of time 
complexity of algorithms: 
Manipulate given 
Code/Instructions under 
supervision, in order to 
produce graphs for 
comparing time 
complexity of algorithms 
 

10% 

Unable to 
understand and 
utilise 
visualisation or 
plotting 
instructions  
 
 
 
 

0 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions with 
errors  
 
 
 

10 

Ability to 
understand and 
utilise visualisation 
and plotting 
instructions 
successfully but 
unable to draw 
results from them 
 
 

20 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, 
partially able to 
draw results from 
them 

30 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, also 
able to draw 
complete results 
from them 

40 

 

Total Points (out of 400)  

Weighted CLO (Psychomotor Score) (Points/4) 

Remarks  

Instructor’s Signature with Date  

 



 
 
 

 

Objective: 

Apply Asymptotic Notations to the Sorting Algorithms.  

 

Θ Notation:  
 

The theta notation bounds a function from above and below, so it defines exact asymptotic 

behavior. 

A simple way to get theta notation of an expression is to drop low order terms and ignore 

leading constants. 

For a given function g(n), we denote Θ(g(n)) is following set of functions. 

Θ(g(n)) = {f(n): there exist positive constants c1, c2 and n0 such  

                 that 0 <= c1*g(n) <= f(n) <= c2*g(n) for all n >= n0} 

The above definition means, if f(n) is theta of g(n), then the value f(n) is always between 

c1*g(n) and c2*g(n) for large values of n (n >= n0). The definition of theta also requires that f(n) 

must be non-negative for values of n greater than n0. 

 

 

 

 

 

 

 

 

 

 

 

 

Laboratory Session No. 06 



 
 
 

Θ Notation for Insertion Sort: 
In order to apply theta notation for insertion sort we have to bound the time T(n) graph of 
insertion sort between two graphs of the same nature that of T(n) but with different constant 
terms C1 and C2 . The analysis is given by:  
 

 
Here n = no of elements 
 T(n) = Time Complexity 
 C1n2 = Lower Bound 
 C2n2 = Upper Bound  
 

Growth Curves with Asymptotes  

 
 

 

 

 

0

5

10

15

20

25

30

1000 5000 10000 15000 5000

Ti
m

e 

No of Elements (n) 

Growth Curves 

T(n)

C1g(n)

C2g(n)

S.no n T(n) T(n)/n2 C1n
2 C2n

2 

1 1000 0.06 
C1=0.000000056 

0.056 0.064 

2 5000 1.57 
0.00000006 

1.5 1.625 

3 10000 6.37 
0.00000006 

6 6.5 

4 15000 14.32 
0.00000006 

13.5 14.62 

5 20000 25.5 
C2=0.000000976 

24.4 26.5 
 

Tabulation of Upper and lower bound asymptotes  



 
 
 

Θ Notation for Merge Sort: 

In order to apply theta notation for merge sort we have to bound the time T(n) graph of merge 

sort between two graphs of the same nature that of T(n) but with different constant terms C1 and 

C2 . The analysis is given by:  

 

 

Here n = no of elements 
 T(n) = Time Complexity 
 C1nlogn = Lower Bound 
 C2nlogn = Upper Bound 
 

 
 
 

*keep in mind that your reading will depend on your computer’s speed. The above tables and graphs are 

just for the verification of concepts 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000

Growth Curves 

T(n) C1(nlogn) C2(nlogn)

n T(n) T(n)/nlogn C1(nLogn) C2(nlogn) 

1000 0.008 
C1=7.80E-07 

0.007773 0.008272 

5000 0.05 
7.90E-07 

0.048536 0.051608 

10000 0.1152 
C2=8.22E-07 

0.109225 0.118261 

15000 0.1761 
8.10E-07 

0.168553 0.181038 

20000 0.2477 
8.20E-07 

0.234318 0.25375 
 

Tabulation of Upper and lower bound asymptotes  

Input size 

Ti
m

e
 in

 s
ec

 



 
 
 

 

Objective: 

Introduction to object oriented programming (OOP), creating classes and objects 

SIGNIFICANCE of OOP: 
Object-oriented programming is often the most natural approach, once we get the hang of it.  OOP 

languages allow us to break down our software into bite-sized problems that we then can solve — 

one object at a time. This isn’t to say that OOP is the One True Way. However, the advantages 

of object-oriented programming are many. When you need to solve complex programming 

challenges and want to add code tools to your skill set, OOP is your friend and has much greater 

longevity and utility. The concept of data classes allows a programmer to create any new data 

type that is not already defined in the language itself. The concept of a data class makes it 

possible to define subclasses of data objects that share some or all of the main class 

characteristics called inheritance, this property of OOP forces a more thorough data analysis, 

reduces development time, and ensures more accurate coding. 

CONCEPT OF CLASS AND OBJECT: 
A class is a template or set of instructions to build a specific type of object. Every object is built 

from a class. Each class should be designed and programmed to accomplish one, and only one, 

thing.  An object’s properties are what it knows and its methods are what it can do.  

2) CLASSES IN PYTHON: 
We can use classes in python in order to save data. We can also access or call the data from 

different operation when needed. 

 

 

Laboratory Session No. 07 

 
Class creation in Python 

https://whatis.techtarget.com/definition/inheritance


 
 
 

In the above the making of a general class is shown. Now we are going to use data in the class. 

The following shows the calling and saving of the data. 

 

 

3) USE OF __init__ FUNCTION IN PYTHON: 

When a new instance of a python class is created, it is the __init__ method which is called and 
proves to be a very good place where we can modify the object after it has been created. There 
is no explicit variable declaration in Python. They spring into action on the first assignment. The 
use of self makes it easier to distinguish between instance attributes from local variables. 
Normal attributes are introduced in the __init__ method, but some attributes of a class hold 
for all instances in all cases. Following example can be used to understand __init__ and self 
construct: 

 

 

 
Assigning attributes  

 
__inint__ function usage  

https://www.journaldev.com/14628/python-class-definition-variables-constructor-method-object


 
 
 

Now after using the constructor the making and calling of the data become easier. 

 

 

  

 
Creating objects with attributes  



LAB SESSION 08 

OBJECTIVE: To apply the Object-Oriented Programming in Python for solution of real-life 

examples by creating class with appropriate attributes and methods 

INTRODUCTION: In the last lab, you have been introduced to the concept of Object-Oriented 

Programming (OOP). Creating objects using the defined classes have been practiced. In this lab, 

you will practice it further by creating classes with the required attributes and adding methods to 

model behaviors. 

Creating a list of Objects in Python class 

We can create a list of objects in Python by appending class instances to the list. By this, every 

index in the list can point to a certain instance, through which the attributes and methods become 

easily accessible. 

Consider the following code. A class named geeks is defined with attributes name and roll. Then 

an empty list is created list. Different objects are created using the class for example 

geeks(‘Adil’,2)) and this is appended to the list using the append method. After adding 4 elements 

to the list, a for loop is used to print attributed of each one by one. Understand and observe  the 

syntax and try such an example. 

 

# Python3 code here creating class 

#Reference: https://www.geeksforgeeks.org/ 
class geeks: 
    def __init__(self, name, roll): 
        self.name = name 
        self.roll = roll 
  
# creating list 
list = [] 
  
# appending instances to list 
list.append(geeks('Adil', 2)) 
list.append(geeks('Dawood', 40)) 
list.append(geeks('Rayan', 44)) 
list.append(geeks('Ali', 67)) 
  
# Accessing object value using a for loop 
for i in list: 
    print(i.name, i.roll) 
  
# Accessing individual elements 
print(list[0].name) 
print(list[1].name) 
print (list[2].name) 
print(list[3].name) 



Task 1: To model the Weather conditions of a city  

Create a class named Weather. The class has 4 attributes: 

• City Name 

• Humidity Level 

• Temperature (in Centigrade) 

• Atmospheric Pressure 

The class should have following methods or behaviors: 

• Convert and print the temperature in Fahrenheit 

• Print all Weather Conditions 

• Advice: If the temperature is above 40C, display a warning message and suggest 

precautions. 

Create 3 objects using the class (for 3 different cities), and test the methods. Show your codes and 

results. 

Task 2: To develop a system which can perform following basic banking related tasks 

• Customer account could be created with name, NIC, account number and initial balance. 

All such attributes should be placed in a class. 

• Balance of any customer could be updated 

• Customer data could be sorted name-wise and balance-wise (any previously used sorting 

procedure may be applied). 



Page 1 of 2 
 

 

 

NED University of Engineering & Technology 

 Department of Electrical Engineering  

 
 
 
 

  
Course Code: EE-264 Course Title: Data Structures and Algorithms 
Laboratory Session No.: ________________________ Date: ______________________________ 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Initialisation 
and Configuration: 
Set up and recognise 
software initialisation and 
configuration steps 
 

10% 

Completely 
unable to 
recognise 
initialisation 
and 
configuration 

0 

Able to recognise 
initialisation but 
could not 
configure 
 
 

10 

Able to recognise 
initialisation but 
configuration is 
erroneous  
 
 

20 

Able to recognise 
initialisation and 
configuration 
with minimal 
errors 
 

30 

Able to recognise 
initialisation and 
configuration with 
complete success 
 
 

40 

Input/Output Variable 
Recognition, Definition 
and Initialisation: 
Recognise and perceive 
correct input/output 
variables along with data 
types for testing a specific 
algorithm/data structure 
 

15% 

Incorrect 
perception for 
both 
Input/Output 
variables and 
data types 
 
 
 

0 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types but fails to 
initialise variables 
altogether 
 

15 

Correctly perceives 
the required 
Input/Output 
variables and data 
types and only 
initialises them 
partially 
 
 

30 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
completely but 
with errors 

45 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
with complete 
success 

60 

Procedural Programming 
of given Algorithm: 
Practice procedural 
programming techniques 
including recursion, in 
order to code specific 
algorithms from their 
pseudo code 
 

15% 

Little to no 
understanding 
of procedural 
programming 
techniques 
 
 
 
 

0 

Slight ability to 
use procedural 
programming 
techniques for 
coding given 
algorithm  
 
 
 

15 

Mostly correct 
recognition and 
application of 
procedural 
programming 
techniques but 
makes crucial 
errors for the given 
algorithm 

30 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors but 
unable to run 
algorithm 
successfully 

45 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors and runs 
algorithm 
successfully 
 

60 

Object Oriented 
Programming for given 
Algorithm and Data 
Structure 
Implementation: 
Imitate and practice given 
OOP instructions for 
making specific data 
structure/algorithm 

15% 

Incorrect 
selection and 
use of 
programming 
constructs and 
instructions 
 
 
 

0 

Correct selection 
of programming 
constructs and 
instructions but 
their use is 
incorrect 
 
 
 

15 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
many 
syntax/semantic 
errors 
 

30 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
little to no 
syntax/semantic 
errors 
 

45 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
no 
syntax/semantic 
errors 
 

60 

 

 

 

 



Page 2 of 2 
 

 

 

 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Menu 
Identification and Usage: 
Ability to operate 
software environment 
under supervision, using 
menus, shortcuts, 
instructions etc. 

15% 

Unable to 
understand and 
use software 
menu  
 
 
 

0 

Little ability and 
understanding of 
software menu 
operation, makes 
many mistake 
 
 

15 

Moderate ability 
and understanding 
of software menu 
operation, makes 
lesser mistakes 
 
 

30 

Reasonable 
understanding of 
software menu 
operation, makes 
no major mistakes 
 
 

45 

Demonstrates 
command over 
software menu 
usage with 
frequent use of 
advance menu 
options 

60 

Detecting and Removing 
Errors/Exceptions: 
Detect Errors/Exceptions 
and manipulate, under 
supervision, to rectify the 
Code 
 

10% 

Unable to check 
and detect 
error messages 
in software 
 
 
 

0 

Able to find error 
messages in 
software but no 
understanding of 
detecting those 
errors and their 
types 

10 

Able to find error 
messages in 
software as well as 
understanding of 
detecting some of 
those errors and 
their types 

20 

Able to find error 
messages in 
software as well 
as understanding 
of detecting all of 
those errors and 
their types 

30 

Able to find error 
messages in 
software along 
with the 
understanding to 
detect and rectify 
them 

40 

Debugging and 
Troubleshooting: 
Recognise and Practice  
Debugging and 
Troubleshooting steps 
through line-by-line code 
execution   
 

10% 

Unable to 
recognise and 
use debugging 
options in 
software 
 
 
 

0 

Little ability to 
recognise and use 
debugging and 
troubleshooting 
options in 
software 
 
 

10 

Ability to recognise 
and use debugging 
and 
troubleshooting 
options with little 
ability to rectify 
code 
 

20 

Ability to 
recognise and use 
debugging and 
troubleshooting 
options with 
ability to rectify 
and step-through 
code 

30 

Ability to 
recognise, 
describe,  and use 
debugging and 
troubleshooting 
with ability to 
rectify and step-
through code 

40 

Graphical visualisation 
and comparison of time 
complexity of algorithms: 
Manipulate given 
Code/Instructions under 
supervision, in order to 
produce graphs for 
comparing time 
complexity of algorithms 
 

10% 

Unable to 
understand and 
utilise 
visualisation or 
plotting 
instructions  
 
 
 
 

0 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions with 
errors  
 
 
 

10 

Ability to 
understand and 
utilise visualisation 
and plotting 
instructions 
successfully but 
unable to draw 
results from them 
 
 

20 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, 
partially able to 
draw results from 
them 

30 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, also 
able to draw 
complete results 
from them 

40 

 

Total Points (out of 400)  

Weighted CLO (Psychomotor Score) (Points/4) 

Remarks  

Instructor’s Signature with Date  

 



 
 
 

 

Objective: 

To implement fundamental data structures in Python (using list) 

  

Note: 

Using list  in python, implement the following  

a) Stacks(push and pop operations)  
b) Queues(enqueue and dequeuer operations)  
c) A dynamic set ‘S’ having following functionalities  

a. Search (S, key) 
b. Insert (an object) 
c. Delete (an object) 
d. Minimum(S) 
e. Maximum(S)   

 

 

 

 

 

 

 

 

 

 

 

 

 

Laboratory Session No. 09 



 
 
 

a) Stacks (push and pop operations): 
 

Stack is a linear data structure which follows a particular order in which the operations are 

performed. The order may be LIFO (Last in First Out) or FILO (First in Last Out). The code of the 

stack is given below for push and pop operations. 

Implementation in Python 

 

 
 

 

 

 

 

 

 

 

 

 

class stack(): 

   def __init__(self): 

        self.stack=list() 

   def push(self,data): 

        self.stack.insert(0,data) 

   def pop(self): 

           print(self.stack[0])                                  

           self.stack.remove(self.stack[0]) 

Python code for class STACK 



 
 
 

b) Queues (enqueue and dequeuer operations): 
A Queue is a linear structure which follows a particular order in which the operations are 

performed. The order is First-In-First-Out (FIFO). A good example of a queue is any queue 

of consumers for a resource where the consumer that came first is served first. The 

difference between stacks and queues is in removing. In a stack we remove the item the 

most recently added; in a queue, we remove the item the least recently added. The code of 

queue is given under 

Implementation in Python 

 

 

 

 

 
 
 
 
 
 
 
 
 

class queue(): 

    def __init__(self): 

        self.queue=list() 

    def enqueue(self,data): 

        self.queue.insert(0,data) 

    def dequeue(self): 

        n=len(self.queue) 

        print(self.queue[n-1]) 

        self.queue.remove(self.queue[n-1]) 

Python code for QUEUE 

https://www.geeksforgeeks.org/stack-data-structure/


 
 
 

c) A dynamic Set 

Dynamic set may refer to: A set (abstract data type) that supports insertion and/or deletion of 

elements. This data structure is frequently used in database access. The code for various 

performing operation of the dynamic set is provided below 

Implementation in Python 

class ds(): 

    l=list() 

    def add(self,data): 

        ds.l.append(data) 

        print(ds.l) 

    def delete(self,data): 

        ds.l.remove(data) 

        print(ds.l) 

    def search(self,key): 

        flag=0 

        for i in range(len(ds.l)): 

            if ds.l[i]==key: 

                flag=1 

        return flag 

    def min(self): 

        for j in range(1,len(ds.l)): 

            key=ds.l[j] 

            i=j-1 

            while i>-1 and ds.l[i]>key: 

                ds.l[i+1]=ds.l[i] 

                i=i-1 

            ds.l[i+1]=key 

        print(ds.l[0]) 

    def max(self): 

        n=len(ds.l) 

        for j in range(1,len(ds.l)): 

            key=ds.l[j] 

            i=j-1 



 
 
 

 

Note:  

Student is now supposed to create objects and perform relevant tasks using those objects for the above 

classes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            while i>-1 and ds.l[i]>key: 

                ds.l[i+1]=ds.l[i] 

                i=i-1 

                ds.l[i+1]=key 

       print(ds.l[n-1]) 

Python code for DYNAMIC SET 



Page 1 of 2 
 

 

 

NED University of Engineering & Technology 

 Department of Electrical Engineering  

 
 
 
 

  
Course Code: EE-264 Course Title: Data Structures and Algorithms 
Laboratory Session No.: ________________________ Date: ______________________________ 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Initialisation 
and Configuration: 
Set up and recognise 
software initialisation and 
configuration steps 
 

10% 

Completely 
unable to 
recognise 
initialisation 
and 
configuration 

0 

Able to recognise 
initialisation but 
could not 
configure 
 
 

10 

Able to recognise 
initialisation but 
configuration is 
erroneous  
 
 

20 

Able to recognise 
initialisation and 
configuration 
with minimal 
errors 
 

30 

Able to recognise 
initialisation and 
configuration with 
complete success 
 
 

40 

Input/Output Variable 
Recognition, Definition 
and Initialisation: 
Recognise and perceive 
correct input/output 
variables along with data 
types for testing a specific 
algorithm/data structure 
 

15% 

Incorrect 
perception for 
both 
Input/Output 
variables and 
data types 
 
 
 

0 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types but fails to 
initialise variables 
altogether 
 

15 

Correctly perceives 
the required 
Input/Output 
variables and data 
types and only 
initialises them 
partially 
 
 

30 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
completely but 
with errors 

45 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
with complete 
success 

60 

Procedural Programming 
of given Algorithm: 
Practice procedural 
programming techniques 
including recursion, in 
order to code specific 
algorithms from their 
pseudo code 
 

15% 

Little to no 
understanding 
of procedural 
programming 
techniques 
 
 
 
 

0 

Slight ability to 
use procedural 
programming 
techniques for 
coding given 
algorithm  
 
 
 

15 

Mostly correct 
recognition and 
application of 
procedural 
programming 
techniques but 
makes crucial 
errors for the given 
algorithm 

30 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors but 
unable to run 
algorithm 
successfully 

45 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors and runs 
algorithm 
successfully 
 

60 

Object Oriented 
Programming for given 
Algorithm and Data 
Structure 
Implementation: 
Imitate and practice given 
OOP instructions for 
making specific data 
structure/algorithm 

15% 

Incorrect 
selection and 
use of 
programming 
constructs and 
instructions 
 
 
 

0 

Correct selection 
of programming 
constructs and 
instructions but 
their use is 
incorrect 
 
 
 

15 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
many 
syntax/semantic 
errors 
 

30 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
little to no 
syntax/semantic 
errors 
 

45 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
no 
syntax/semantic 
errors 
 

60 

 

 

 

 



Page 2 of 2 
 

 

 

 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Menu 
Identification and Usage: 
Ability to operate 
software environment 
under supervision, using 
menus, shortcuts, 
instructions etc. 

15% 

Unable to 
understand and 
use software 
menu  
 
 
 

0 

Little ability and 
understanding of 
software menu 
operation, makes 
many mistake 
 
 

15 

Moderate ability 
and understanding 
of software menu 
operation, makes 
lesser mistakes 
 
 

30 

Reasonable 
understanding of 
software menu 
operation, makes 
no major mistakes 
 
 

45 

Demonstrates 
command over 
software menu 
usage with 
frequent use of 
advance menu 
options 

60 

Detecting and Removing 
Errors/Exceptions: 
Detect Errors/Exceptions 
and manipulate, under 
supervision, to rectify the 
Code 
 

10% 

Unable to check 
and detect 
error messages 
in software 
 
 
 

0 

Able to find error 
messages in 
software but no 
understanding of 
detecting those 
errors and their 
types 

10 

Able to find error 
messages in 
software as well as 
understanding of 
detecting some of 
those errors and 
their types 

20 

Able to find error 
messages in 
software as well 
as understanding 
of detecting all of 
those errors and 
their types 

30 

Able to find error 
messages in 
software along 
with the 
understanding to 
detect and rectify 
them 

40 

Debugging and 
Troubleshooting: 
Recognise and Practice  
Debugging and 
Troubleshooting steps 
through line-by-line code 
execution   
 

10% 

Unable to 
recognise and 
use debugging 
options in 
software 
 
 
 

0 

Little ability to 
recognise and use 
debugging and 
troubleshooting 
options in 
software 
 
 

10 

Ability to recognise 
and use debugging 
and 
troubleshooting 
options with little 
ability to rectify 
code 
 

20 

Ability to 
recognise and use 
debugging and 
troubleshooting 
options with 
ability to rectify 
and step-through 
code 

30 

Ability to 
recognise, 
describe,  and use 
debugging and 
troubleshooting 
with ability to 
rectify and step-
through code 

40 

Graphical visualisation 
and comparison of time 
complexity of algorithms: 
Manipulate given 
Code/Instructions under 
supervision, in order to 
produce graphs for 
comparing time 
complexity of algorithms 
 

10% 

Unable to 
understand and 
utilise 
visualisation or 
plotting 
instructions  
 
 
 
 

0 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions with 
errors  
 
 
 

10 

Ability to 
understand and 
utilise visualisation 
and plotting 
instructions 
successfully but 
unable to draw 
results from them 
 
 

20 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, 
partially able to 
draw results from 
them 

30 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, also 
able to draw 
complete results 
from them 

40 

 

Total Points (out of 400)  

Weighted CLO (Psychomotor Score) (Points/4) 

Remarks  

Instructor’s Signature with Date  

 



LAB SESSION 10 

OBJECTIVE: To develop Stack and Queues data structures in Python using Node class. 

INTRODUCTION:  

There are situations when the allocation of memory to store the data cannot be in a continuous 

block of memory (as done in arrays-static data structure). Dynamic data structures like linked lists 

allow us to store elements anywhere in the memory, but they are linked together by knowing their 

addresses. We take help of nodes where the along with the data, the address of the next location 

of data element is also stored. So, we know the address of the next node from the current node. 

(In Python we call these nodes) 

Nodes are the foundations on which various other data structures linked-lists and trees can be 

handled in Python. In this lab, you will do dynamic implementation of the Stack and Queues data 

structures using Nodes.  

NODE CLASS: 

The implementation of Node is itself done using a class. The nodes are created by implementing a 

class which will hold the address of the next node along with the data element. 

 

Example: A class named daynames to hold the name of the weekdays. The nextval is initialized to 

null. Four nodes and instantiated with values as shown. The nextval attribute of node e1 points to 

e3 while the nextval of node e3 points to e2 for the required connection. To verify you can print 

the reference or name of a node, for example print(e1). You will get a number in Hexadecimal 

which is neither the value of data nor the nextval of e1. This in fact represents the address of the 

node e1 itself. To get the address of any node, we will be using the name of node. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Stack Implementation in Python using Node Class: 

Here, instead of using Python list or array, the elements of stack will be stored in individual nodes. 

Therefore, Node class must be defined first. After that a separate class Stack is needed which uses 

Node ( ) class for creation of nodes and storing stack elements. The approach is described step-by-

step. This is to be used for the code given in Task 1. 

1. Create a Node Class 

 

The required attributes are data and next.  

#NODE CLASS 
class daynames: 
    def __init__(self, dataval=None): 
        self.dataval = dataval 
        self.nextval = None 

 
#CREATING NODES USING NODE CLASS 
e1 = daynames('Mon')# the node e1 has data “Mon”, since the node is 

independent for now, (not connected to any next node, so by default, the 

nextval (or address field is None) 
 

e2 = daynames('Wed') 
e3 = daynames('Tue') 
e4 = daynames('Thu') 
 

#HOW TO GET NODE’S ADDRESS ? 
 

print(e1) #to verify that e1 gives address of the node e1) 
 

#CONNECTING NODES (ESTABLISH LINKS) 
e1.nextval = e3 #connecting e1 with e3 , so Tue comes after Mon 
e3.nextval = e2 #connecting e3 with e2 
e2.nextval = e4 # connecting e2 with e4 
 

 

# ACCESSING ALL NODES ONE BY ONE  
thisvalue = e1 #address of the starting node 
while thisvalue != None:  

#thisvalue becomes null for the last node so loop terminates 
        print(thisvalue.dataval)  
        thisvalue = thisvalue.nextval 
        #print(thisvalue)  

 



2. Create a Class Stack (to define a new DS stack, 

create a class) 

Add an Attribute (only 1) - TOP or HEAD (points 

to address of the top-most element of stack) 

For our Stack implementation, we need one 

reference object called top (representing the top of 

the stack). This will allow us to pop and push from 

the top of the stack. 

 

3. Add a method Push (Add an item to stack) 

• Create a NODE (with data that is to be pushed 

in Stack) 

• Store previous or existing TOP to the address 

field of new node 

• Update TOP (with address of the new node) 

To push a Node on top of the Stack, first we must 

create a new node new_data = Node(data). We then 

check to see if a top node exists, if not the new node 

becomes the top Node. If the top node does exist, the 

new node will point to the old top value 

new_data.next = self.top and then we refer to the new 

node as the top value self.top = new_data. 
 

4. Add a method Pop (Remove an item from the stack) 

• Data of the top most node (indicated by the TOP) is 

needed 

• Update the stack’s TOP (the next node now 

becomes top of the stack, so TOP will be updated by 

address of next node, that was already stored in the 

previous top node’s address field) 

 

To pop a node from the top of a Stack, first you 

want to return the old head’s data, so first we need 

to get that data  

data = self.top.data. Then top should be moved and 

pointed to the next element down top = top.next. 

Then we just need to return that data return data 

 



Task 1: The code for Stack implementation using node class is given in the next slide. Complete 

the functionality of Pop ( ), isEmpty( ) and Peek( ) methods. 

 

Test the stack DS by creating a stack object and verify the relevant methods. Push, pop, isempty 

and peek (like the last lab). 

 
TASK 2: STRING REVERSAL USING STACK 

Consider a string, “BALLOON” 

class Node: 

    def __init__(self, data): 

       self.data = data 

       self.next = None 

class Stack: 

    def __init__(self): #top or Head is the only attribute needed to keep track of stack’s recently created node  

        self.top = None     #initially the stack is empty so head is None 

    def push(self, data):  #adding an item to stack 

        if self.top is None: #just create a node, and make head of stack = nodes address 

            self.top= Node(data) 

        else: #if the stack is not empty 

            new_node = Node(data) #create a node 

            new_node.next = self.top #connect the newly created node to the node present in stack (i.e. = top or head of 
stack) 

            self.top = new_node #update head of stack with the address of newly created node 

    def pop(self): #removing an item from stack 

        if self.top is None: #if stack is empty (return none)  

            return None 

        else:  #stack is not empty 

           # Complete this method for pop 

 def isempty(self): #complete the method (return true if stack is empty) 

 def peek(self): #complete the method (return top most element’s data without updating stack) 

 
  

 

 



Perform string reversal using Stack Operations. 

Hint: Keep pushing characters one by one, once all characters are pushed. Start popping 

elements.  

The string will get reversed as PUSH-POP follows FILO =LIFO 

Queue Implementation in Python using Node Class: 

Like class Stack( ), create a class Queue( ). The class has 2 attributes: head or front and tail or 

rear to keep track of Queue (first added and last added elements).  

 

Initially when the queue is empty, front and tail both are None.  

 

Enqueue: When a Node is added to an empty Queue; the front and tail both will point to it.  

 



When a Node is added to a Queue that already has some nodes, then the new node should be 

connected to the last node (pointed by tail) in Queue, and Tail should be updated.  

 

Dequeue: When a Node is to be removed from the Queue, the front should be used. And Front 

should be updated too (updated front will be the node right next to the previous front node). 

 

 

 

 



TASK 3: Implementation of Queue Data Structure in Python using Node Class 

Complete the methods of enqueue and dequeue for the Queue class define below. 

 

Create instance (object) using the defined DS of Queue and test it’s methods for verification as 

done in the Lab 09. 

class Node: 
    def __init__(self, data): 
       self.data = data 
       self.next = None 

 
class Queue: 
    def __init__(self): 
        self.head = None 
        self.last = None 
    def enqueue(self, data): 
        if self.last is None: #empty QUEUE 

            #complete the logic 

        else:      #Queue is not empty, already has node(s) 

            #complete the logic 

   def dequeue(self): 
        if self.head is None: #empty QUEUE  
            return None 
        else:     #Queue is not empty, already has node(s) 

            #complete the logic 

 



Page 1 of 2 
 

 

 

NED University of Engineering & Technology 

 Department of Electrical Engineering  

 
 
 
 

  
Course Code: EE-264 Course Title: Data Structures and Algorithms 
Laboratory Session No.: ________________________ Date: ______________________________ 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Initialisation 
and Configuration: 
Set up and recognise 
software initialisation and 
configuration steps 
 

10% 

Completely 
unable to 
recognise 
initialisation 
and 
configuration 

0 

Able to recognise 
initialisation but 
could not 
configure 
 
 

10 

Able to recognise 
initialisation but 
configuration is 
erroneous  
 
 

20 

Able to recognise 
initialisation and 
configuration 
with minimal 
errors 
 

30 

Able to recognise 
initialisation and 
configuration with 
complete success 
 
 

40 

Input/Output Variable 
Recognition, Definition 
and Initialisation: 
Recognise and perceive 
correct input/output 
variables along with data 
types for testing a specific 
algorithm/data structure 
 

15% 

Incorrect 
perception for 
both 
Input/Output 
variables and 
data types 
 
 
 

0 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types but fails to 
initialise variables 
altogether 
 

15 

Correctly perceives 
the required 
Input/Output 
variables and data 
types and only 
initialises them 
partially 
 
 

30 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
completely but 
with errors 

45 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
with complete 
success 

60 

Procedural Programming 
of given Algorithm: 
Practice procedural 
programming techniques 
including recursion, in 
order to code specific 
algorithms from their 
pseudo code 
 

15% 

Little to no 
understanding 
of procedural 
programming 
techniques 
 
 
 
 

0 

Slight ability to 
use procedural 
programming 
techniques for 
coding given 
algorithm  
 
 
 

15 

Mostly correct 
recognition and 
application of 
procedural 
programming 
techniques but 
makes crucial 
errors for the given 
algorithm 

30 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors but 
unable to run 
algorithm 
successfully 

45 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors and runs 
algorithm 
successfully 
 

60 

Object Oriented 
Programming for given 
Algorithm and Data 
Structure 
Implementation: 
Imitate and practice given 
OOP instructions for 
making specific data 
structure/algorithm 

15% 

Incorrect 
selection and 
use of 
programming 
constructs and 
instructions 
 
 
 

0 

Correct selection 
of programming 
constructs and 
instructions but 
their use is 
incorrect 
 
 
 

15 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
many 
syntax/semantic 
errors 
 

30 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
little to no 
syntax/semantic 
errors 
 

45 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
no 
syntax/semantic 
errors 
 

60 

 

 

 

 



Page 2 of 2 
 

 

 

 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Menu 
Identification and Usage: 
Ability to operate 
software environment 
under supervision, using 
menus, shortcuts, 
instructions etc. 

15% 

Unable to 
understand and 
use software 
menu  
 
 
 

0 

Little ability and 
understanding of 
software menu 
operation, makes 
many mistake 
 
 

15 

Moderate ability 
and understanding 
of software menu 
operation, makes 
lesser mistakes 
 
 

30 

Reasonable 
understanding of 
software menu 
operation, makes 
no major mistakes 
 
 

45 

Demonstrates 
command over 
software menu 
usage with 
frequent use of 
advance menu 
options 

60 

Detecting and Removing 
Errors/Exceptions: 
Detect Errors/Exceptions 
and manipulate, under 
supervision, to rectify the 
Code 
 

10% 

Unable to check 
and detect 
error messages 
in software 
 
 
 

0 

Able to find error 
messages in 
software but no 
understanding of 
detecting those 
errors and their 
types 

10 

Able to find error 
messages in 
software as well as 
understanding of 
detecting some of 
those errors and 
their types 

20 

Able to find error 
messages in 
software as well 
as understanding 
of detecting all of 
those errors and 
their types 

30 

Able to find error 
messages in 
software along 
with the 
understanding to 
detect and rectify 
them 

40 

Debugging and 
Troubleshooting: 
Recognise and Practice  
Debugging and 
Troubleshooting steps 
through line-by-line code 
execution   
 

10% 

Unable to 
recognise and 
use debugging 
options in 
software 
 
 
 

0 

Little ability to 
recognise and use 
debugging and 
troubleshooting 
options in 
software 
 
 

10 

Ability to recognise 
and use debugging 
and 
troubleshooting 
options with little 
ability to rectify 
code 
 

20 

Ability to 
recognise and use 
debugging and 
troubleshooting 
options with 
ability to rectify 
and step-through 
code 

30 

Ability to 
recognise, 
describe,  and use 
debugging and 
troubleshooting 
with ability to 
rectify and step-
through code 

40 

Graphical visualisation 
and comparison of time 
complexity of algorithms: 
Manipulate given 
Code/Instructions under 
supervision, in order to 
produce graphs for 
comparing time 
complexity of algorithms 
 

10% 

Unable to 
understand and 
utilise 
visualisation or 
plotting 
instructions  
 
 
 
 

0 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions with 
errors  
 
 
 

10 

Ability to 
understand and 
utilise visualisation 
and plotting 
instructions 
successfully but 
unable to draw 
results from them 
 
 

20 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, 
partially able to 
draw results from 
them 

30 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, also 
able to draw 
complete results 
from them 

40 

 

Total Points (out of 400)  

Weighted CLO (Psychomotor Score) (Points/4) 

Remarks  

Instructor’s Signature with Date  

 



1 
 

Cover Page for Each PBL/OEL 
Course Code:  EE-264 

Course Name: Data Structures & Algorithms 

Semester:  Fall 

Year:  SE 

Section:   

Batch:   

Lab Instructor name:   

Submission 
deadline:  

 

 

PBL or OEL Statement:  
Accomplish the following open ended tasks 

Using Node class, develop 

1. Stack 

2. Queues 

3. Singly connected linked-list with following features 

a. Add nodes 

b. Traverse all nodes starting from top node 

c. Search any key value in all nodes 

d. Insert node between any two nodes 

 

 

 

 

Deliverables:  
Code for Stack class along with driver code 

Code for Queue class along with driver code 

Code for Linked list class along with driver code 

 

 

 

 



2 
 

 

Methodology:   
On Jupyter notebook / Spyder-IDE write a code for Stack class along with following member 

functions using given Node class: 

Push(), Pop(), top(), is_empty() 

 

On Jupyter notebook / Spyder-IDE write a code for Queue class along with following member 

functions using given Node class: 

Enqueue(), Dequeue(), First(), is_empty() 

 

On Jupyter notebook / Spyder-IDE write a code for Linked List class along with following member 

functions using given Node class: 

Add_node(), remove_node(), traverse_nodes() 

 

 
 

 

 

Guidelines:  
Using Node class below, 

class _Node:  

def __init__(self,element,next):  

             self._element = element self._next = next 

write the above data structures along with their driver codes. Show the use of all member functions 

by taking suitable examples. 

 

 

Rubrics: 
Code for Stack class along with driver code 

Code for Queue class along with driver code 

Code for Linked list class along with driver code 

 

 

 



Page 1 of 2 
 

 

 

NED University of Engineering & Technology 

 Department of Electrical Engineering  

 
 
 
 

  
Course Code: EE-264 Course Title: Data Structures and Algorithms 
Laboratory Session No.: ________________________ Date: ______________________________ 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Initialisation 
and Configuration: 
Set up and recognise 
software initialisation and 
configuration steps 
 

10% 

Completely 
unable to 
recognise 
initialisation 
and 
configuration 

0 

Able to recognise 
initialisation but 
could not 
configure 
 
 

10 

Able to recognise 
initialisation but 
configuration is 
erroneous  
 
 

20 

Able to recognise 
initialisation and 
configuration 
with minimal 
errors 
 

30 

Able to recognise 
initialisation and 
configuration with 
complete success 
 
 

40 

Input/Output Variable 
Recognition, Definition 
and Initialisation: 
Recognise and perceive 
correct input/output 
variables along with data 
types for testing a specific 
algorithm/data structure 
 

15% 

Incorrect 
perception for 
both 
Input/Output 
variables and 
data types 
 
 
 

0 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types but fails to 
initialise variables 
altogether 
 

15 

Correctly perceives 
the required 
Input/Output 
variables and data 
types and only 
initialises them 
partially 
 
 

30 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
completely but 
with errors 

45 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
with complete 
success 

60 

Procedural Programming 
of given Algorithm: 
Practice procedural 
programming techniques 
including recursion, in 
order to code specific 
algorithms from their 
pseudo code 
 

15% 

Little to no 
understanding 
of procedural 
programming 
techniques 
 
 
 
 

0 

Slight ability to 
use procedural 
programming 
techniques for 
coding given 
algorithm  
 
 
 

15 

Mostly correct 
recognition and 
application of 
procedural 
programming 
techniques but 
makes crucial 
errors for the given 
algorithm 

30 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors but 
unable to run 
algorithm 
successfully 

45 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors and runs 
algorithm 
successfully 
 

60 

Object Oriented 
Programming for given 
Algorithm and Data 
Structure 
Implementation: 
Imitate and practice given 
OOP instructions for 
making specific data 
structure/algorithm 

15% 

Incorrect 
selection and 
use of 
programming 
constructs and 
instructions 
 
 
 

0 

Correct selection 
of programming 
constructs and 
instructions but 
their use is 
incorrect 
 
 
 

15 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
many 
syntax/semantic 
errors 
 

30 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
little to no 
syntax/semantic 
errors 
 

45 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
no 
syntax/semantic 
errors 
 

60 

 

 

 

 



Page 2 of 2 
 

 

 

 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Menu 
Identification and Usage: 
Ability to operate 
software environment 
under supervision, using 
menus, shortcuts, 
instructions etc. 

15% 

Unable to 
understand and 
use software 
menu  
 
 
 

0 

Little ability and 
understanding of 
software menu 
operation, makes 
many mistake 
 
 

15 

Moderate ability 
and understanding 
of software menu 
operation, makes 
lesser mistakes 
 
 

30 

Reasonable 
understanding of 
software menu 
operation, makes 
no major mistakes 
 
 

45 

Demonstrates 
command over 
software menu 
usage with 
frequent use of 
advance menu 
options 

60 

Detecting and Removing 
Errors/Exceptions: 
Detect Errors/Exceptions 
and manipulate, under 
supervision, to rectify the 
Code 
 

10% 

Unable to check 
and detect 
error messages 
in software 
 
 
 

0 

Able to find error 
messages in 
software but no 
understanding of 
detecting those 
errors and their 
types 

10 

Able to find error 
messages in 
software as well as 
understanding of 
detecting some of 
those errors and 
their types 

20 

Able to find error 
messages in 
software as well 
as understanding 
of detecting all of 
those errors and 
their types 

30 

Able to find error 
messages in 
software along 
with the 
understanding to 
detect and rectify 
them 

40 

Debugging and 
Troubleshooting: 
Recognise and Practice  
Debugging and 
Troubleshooting steps 
through line-by-line code 
execution   
 

10% 

Unable to 
recognise and 
use debugging 
options in 
software 
 
 
 

0 

Little ability to 
recognise and use 
debugging and 
troubleshooting 
options in 
software 
 
 

10 

Ability to recognise 
and use debugging 
and 
troubleshooting 
options with little 
ability to rectify 
code 
 

20 

Ability to 
recognise and use 
debugging and 
troubleshooting 
options with 
ability to rectify 
and step-through 
code 

30 

Ability to 
recognise, 
describe,  and use 
debugging and 
troubleshooting 
with ability to 
rectify and step-
through code 

40 

Graphical visualisation 
and comparison of time 
complexity of algorithms: 
Manipulate given 
Code/Instructions under 
supervision, in order to 
produce graphs for 
comparing time 
complexity of algorithms 
 

10% 

Unable to 
understand and 
utilise 
visualisation or 
plotting 
instructions  
 
 
 
 

0 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions with 
errors  
 
 
 

10 

Ability to 
understand and 
utilise visualisation 
and plotting 
instructions 
successfully but 
unable to draw 
results from them 
 
 

20 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, 
partially able to 
draw results from 
them 

30 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, also 
able to draw 
complete results 
from them 

40 

 

Total Points (out of 400)  

Weighted CLO (Psychomotor Score) (Points/4) 

Remarks  

Instructor’s Signature with Date  

 



Page 1 of 2 
 

 

 

NED University of Engineering & Technology 

 Department of Electrical Engineering  

 
 
 
 

  
Course Code: EE-264 Course Title: Data Structures and Algorithms 
Laboratory Session No.: ________________________ Date: ______________________________ 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Initialisation 
and Configuration: 
Set up and recognise 
software initialisation and 
configuration steps 
 

10% 

Completely 
unable to 
recognise 
initialisation 
and 
configuration 

0 

Able to recognise 
initialisation but 
could not 
configure 
 
 

10 

Able to recognise 
initialisation but 
configuration is 
erroneous  
 
 

20 

Able to recognise 
initialisation and 
configuration 
with minimal 
errors 
 

30 

Able to recognise 
initialisation and 
configuration with 
complete success 
 
 

40 

Input/Output Variable 
Recognition, Definition 
and Initialisation: 
Recognise and perceive 
correct input/output 
variables along with data 
types for testing a specific 
algorithm/data structure 
 

15% 

Incorrect 
perception for 
both 
Input/Output 
variables and 
data types 
 
 
 

0 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types but fails to 
initialise variables 
altogether 
 

15 

Correctly perceives 
the required 
Input/Output 
variables and data 
types and only 
initialises them 
partially 
 
 

30 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
completely but 
with errors 

45 

Correctly 
perceives the 
required 
Input/Output 
variables and data 
types and 
initialises them 
with complete 
success 

60 

Procedural Programming 
of given Algorithm: 
Practice procedural 
programming techniques 
including recursion, in 
order to code specific 
algorithms from their 
pseudo code 
 

15% 

Little to no 
understanding 
of procedural 
programming 
techniques 
 
 
 
 

0 

Slight ability to 
use procedural 
programming 
techniques for 
coding given 
algorithm  
 
 
 

15 

Mostly correct 
recognition and 
application of 
procedural 
programming 
techniques but 
makes crucial 
errors for the given 
algorithm 

30 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors but 
unable to run 
algorithm 
successfully 

45 

Correctly 
recognises and 
uses procedural 
programming 
techniques with 
no errors and runs 
algorithm 
successfully 
 

60 

Object Oriented 
Programming for given 
Algorithm and Data 
Structure 
Implementation: 
Imitate and practice given 
OOP instructions for 
making specific data 
structure/algorithm 

15% 

Incorrect 
selection and 
use of 
programming 
constructs and 
instructions 
 
 
 

0 

Correct selection 
of programming 
constructs and 
instructions but 
their use is 
incorrect 
 
 
 

15 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
many 
syntax/semantic 
errors 
 

30 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
little to no 
syntax/semantic 
errors 
 

45 

Correct selection 
and use of 
programming 
constructs and 
instructions with 
no 
syntax/semantic 
errors 
 

60 

 

 

 

 



Page 2 of 2 
 

 

 

 

Psychomotor Domain Assessment Rubric for Laboratory (Level P3) 

Skill(s) to be assessed 
Extent of Achievement 

0 1 2 3 4 

Software Menu 
Identification and Usage: 
Ability to operate 
software environment 
under supervision, using 
menus, shortcuts, 
instructions etc. 

15% 

Unable to 
understand and 
use software 
menu  
 
 
 

0 

Little ability and 
understanding of 
software menu 
operation, makes 
many mistake 
 
 

15 

Moderate ability 
and understanding 
of software menu 
operation, makes 
lesser mistakes 
 
 

30 

Reasonable 
understanding of 
software menu 
operation, makes 
no major mistakes 
 
 

45 

Demonstrates 
command over 
software menu 
usage with 
frequent use of 
advance menu 
options 

60 

Detecting and Removing 
Errors/Exceptions: 
Detect Errors/Exceptions 
and manipulate, under 
supervision, to rectify the 
Code 
 

10% 

Unable to check 
and detect 
error messages 
in software 
 
 
 

0 

Able to find error 
messages in 
software but no 
understanding of 
detecting those 
errors and their 
types 

10 

Able to find error 
messages in 
software as well as 
understanding of 
detecting some of 
those errors and 
their types 

20 

Able to find error 
messages in 
software as well 
as understanding 
of detecting all of 
those errors and 
their types 

30 

Able to find error 
messages in 
software along 
with the 
understanding to 
detect and rectify 
them 

40 

Debugging and 
Troubleshooting: 
Recognise and Practice  
Debugging and 
Troubleshooting steps 
through line-by-line code 
execution   
 

10% 

Unable to 
recognise and 
use debugging 
options in 
software 
 
 
 

0 

Little ability to 
recognise and use 
debugging and 
troubleshooting 
options in 
software 
 
 

10 

Ability to recognise 
and use debugging 
and 
troubleshooting 
options with little 
ability to rectify 
code 
 

20 

Ability to 
recognise and use 
debugging and 
troubleshooting 
options with 
ability to rectify 
and step-through 
code 

30 

Ability to 
recognise, 
describe,  and use 
debugging and 
troubleshooting 
with ability to 
rectify and step-
through code 

40 

Graphical visualisation 
and comparison of time 
complexity of algorithms: 
Manipulate given 
Code/Instructions under 
supervision, in order to 
produce graphs for 
comparing time 
complexity of algorithms 
 

10% 

Unable to 
understand and 
utilise 
visualisation or 
plotting 
instructions  
 
 
 
 

0 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions with 
errors  
 
 
 

10 

Ability to 
understand and 
utilise visualisation 
and plotting 
instructions 
successfully but 
unable to draw 
results from them 
 
 

20 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, 
partially able to 
draw results from 
them 

30 

Ability to 
understand and 
utilise 
visualisation and 
plotting 
instructions 
successfully, also 
able to draw 
complete results 
from them 

40 

 

Total Points (out of 400)  

Weighted CLO (Psychomotor Score) (Points/4) 

Remarks  

Instructor’s Signature with Date  

 


