



# **NED University of Engineering & Technology Department of Electrical Engineering**

# LAB MANUAL

# Data Structures and Algorithms (EE-264) For SE Electrical

Instructor name:

Student name:

Roll no:

**Batch:** 

Semester:

\_\_\_\_\_

Year:

# LAB MANUAL

# **Data Structures and Algorithms** (EE-264) For <u>SE Electrical</u>

Content Revision Team: Ms Aiman Najeeb, Dr Mirza Muhammad Ali Baig Last Revision Date: 13th March 2023

Approved By

The Board of Studies of Department of Electrical Engineering

To be filled by lab technician

Attendance: Present out of \_\_\_\_\_ Lab sessions

Attendance Percentage \_

# To be filled by Lab Instructor

Lab Score Sheet

| Final weighted Score for<br>MIS Svstem | [10(A)+10(B)+5(C)]/25 | Round to next higher | multiple of 5 |  |  |  |  |
|----------------------------------------|-----------------------|----------------------|---------------|--|--|--|--|
| Attendance<br>Percentage               | )                     | U                    |               |  |  |  |  |
| Final LAB<br>Rubric                    | Score                 | В                    |               |  |  |  |  |
| OEL/PBL<br>Rubric                      | Score                 | ٩                    |               |  |  |  |  |
| Rubric<br>based                        | Lab VI                |                      |               |  |  |  |  |
| Rubric<br>based                        | Lab V                 |                      |               |  |  |  |  |
| Rubric<br>based                        | Lab IV                |                      |               |  |  |  |  |
| Rubric<br>based                        | Lab III               |                      |               |  |  |  |  |
| Rubric<br>based                        | Lab II                |                      |               |  |  |  |  |
| Rubric<br>based                        | Lab I                 |                      |               |  |  |  |  |
| Roll No.                               |                       |                      |               |  |  |  |  |

EE-264 DSA Rubric Based Labs: 3, 4, 5, 8, 9, 10

Note: All Rubric Scores must be in the next higher multiple of 5 for correct entry in MIS system.

| S. No. | Date | Title of Experiment                                                                        | Signature |
|--------|------|--------------------------------------------------------------------------------------------|-----------|
|        |      |                                                                                            |           |
| 1      |      | Introduction to programming with <i>Python</i>                                             |           |
| 2      |      | Developing and executing algorithms using <i>Python</i>                                    |           |
| 3      |      | To analyze the efficiency of sorting algorithms                                            |           |
| 4      |      | To develop and apply the recursive divide and conquer approach in sorting                  |           |
| 5      |      | Extending the divide-and-conquer approach on sorting and searching problems                |           |
| 6      |      | Apply Asymptotic Notations to the Sorting Algorithms.                                      |           |
| 7      |      | Introduction to object oriented programming.                                               |           |
| 8      |      | Develop a system which can perform basic banking related tasks                             |           |
| 9      |      | To implement fundamental data structures in Python<br>(using list)<br>a) Stack<br>b) Queue |           |
| 10     |      | Using Node class, develop Stacks and Queue                                                 |           |
| 11     |      | Accomplish the open-ended task:<br>Using Node class, develop Singly connected linked-list  |           |

# Laboratory Session No. 01

#### **Objective:**

To get introduced with fundamentals of programming with Python

#### **Outcomes:**

By the end of this lab, student should be able to

- a) Correctly code algorithms in python which may include
  - 1) Loops
  - 2) Conditions
  - 3) Lists
  - 4) User defined functions
  - 5) Importing libraries to program

#### 1) <u>Loops:</u>

In Python, for and while loops follows the following syntax.

WHILE LOOP:-



FOR LOOP:-

```
In [1]: for i in range(0,10):
    print(i)
    print('Marwa Ashfaq\n')
             0
             Marwa Ashfaq
             1
             Marwa Ashfaq
             2
             Marwa Ashfaq
             3
             Marwa Ashfaq
             4
             Marwa Ashfaq
             5
             Marwa Ashfaq
             6
             Marwa Ashfaq
             7
             Marwa Ashfaq
             8
             Marwa Ashfaq
             9
             Marwa Ashfaq
```

for loop in Python

#### 2) <u>Conditions</u>:

#### 3) <u>Lists</u>:

A list is created by placing all items in "square brackets []". Elements can be added/appended in a list as well.

|          | list example                                  |  |
|----------|-----------------------------------------------|--|
| Out[11]: | [0, 1, 2, 3, 4, 5]                            |  |
| In [11]: | list                                          |  |
| In [12]: | <pre>#Appending a list list.append(5)</pre>   |  |
| Out[4]:  | [0, 1, 2, 3, 4]                               |  |
| In [4]:  | list                                          |  |
| In [3]:  | #Adding elements in a list<br>list=list + [4] |  |
| Out[2]:  | [0, 1, 2, 3]                                  |  |
| In [2]:  | list                                          |  |
| In [1]:  | <pre>#Defining a list list=[0,1,2,3]</pre>    |  |
|          |                                               |  |

#### 4) User defined Functions:

Functions in *Python* can be created by using the syntax shown below. A function is a block of code which only runs when it is called. Defining and calling a function are explained as follows:



Working with functions in Python

## Saving and Importing user-defined function to a program:

• Copy your desired code in notepad.

| Untitled - Notepad         | - 🗆 🗙 |
|----------------------------|-------|
| File Edit Format View Help |       |
| #Defining Functions        | ^     |
| def fib(n):                |       |
| d, D= 0,1<br>while har     |       |
| print(b)                   |       |
| a,b = b, a+b               |       |
| def fib2(n):               |       |
| result=[]                  |       |
| while ash:                 |       |
| result.append(a)           |       |
| a,b= b, a+b                |       |
| return result              |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            | ÷.    |
| <                          | >     |

• Save it as .py file.

|                                                                                                                | Save A           | S                                               | × |
|----------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------|---|
| 🔄 🏵 🗉 🕇 🌆                                                                                                      | ▹ Python Scripts | ✓ C Search Python Scripts                       | Q |
| Organize 🔻 Ne                                                                                                  | ew folder        |                                                 | 0 |
| This PC<br>Autodesk 360<br>Desktop<br>Documents<br>Downloads<br>Music<br>Pictures<br>Videos<br>Local Disk (C:) | Name fibo.py     | Date modified Type<br>11/5/2018 7:58 PM PY File |   |
| -                                                                                                              | v <              |                                                 | > |
| File name:                                                                                                     | fibo.py          |                                                 | ~ |
| Save as type:                                                                                                  | All Files        |                                                 | ~ |
| Hide Folders                                                                                                   | Encoding: ANSI   | ✓ Save Cancel                                   |   |

- Change its extension from.txt to .py.
- Import as follows:







#### 5) <u>Importing libraries to program:</u>

**Python library** is a collection of functions and methods that allows you to perform lots of actions without writing your own code. For importing libraries, the "import" command is used.

Once the library is imported, its different functions can be called. Following is an example which makes use of a library

| In [1]: | import math                  |
|---------|------------------------------|
| In [2]: | math.sqrt(121)               |
| Out[2]: | 11.0                         |
| In [4]: | <pre>math.factorial(6)</pre> |
| Out[4]: | 720                          |
| In [5]: | <pre>math.acos(1)</pre>      |
| Out[5]: | 0.0                          |
| In [6]: | <pre>math.asin(1)</pre>      |
| Out[6]: | 1.5707963267948966           |
| In [8]: | math.pi                      |
| Out[8]: | 3.141592653589793            |

Making use of libraries in Python

# Laboratory Session No. 02

**Objective:** 

To developing and execute basic algorithms using Python

#### **Outcomes:**

# By the end of this lab, student should be able to implement following exercises in *Python*

- 1) Write a program which could generate the following pattern. [hint: use 'end' option in pri nt command]
  - \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

2) Write a program which can generate the following

Input a number: 10  $10 \ x \ 1 = 10$   $10 \ x \ 2 = 20$   $10 \ x \ 3 = 30$   $10 \ x \ 4 = 40$   $10 \ x \ 5 = 50$   $10 \ x \ 6 = 60$   $10 \ x \ 7 = 70$   $10 \ x \ 8 = 80$   $10 \ x \ 9 = 90$  $10 \ x \ 10 = 100$ 

3) Write a program to prompt for a score between 0.0 and 1.0. If the score is out of range, print an error message. If the score is between 0.0 and 1.0, print a grade using the following table:

>= 0.9 A >= 0.8 B >= 0.7 C >= 0.6 D < 0.6 FEnter score: 0.95 A
Enter score: perfect Bad score
Enter score: 10.0
Bad score
Enter score: 0.75 C
Enter score: 0.5 F

- 4) Re-write the above program using functions
- 5) Write a Python function to calculate the factorial of a number. [use recursive approach]
- 6) Write a function which can search for an entry in a list. Also show the entry count in the list.
- 7) Develop code in python for sorting a list using selection sort approach. In selection sort you find the minimum value first and place it at the end of the list.

# Laboratory Session No. 03

**Objective:** 

To analyze and evaluate experimentally the running time of

- 1) Selection Sort
- 2) Bubble Sort
- 3) Insertion Sort

#### <u>Special Instructions</u>

- 1) You are supposed to translate pseudocodes of the above mentioned codes in *Python*.
- 2) Show in tabulated form, the analytical expressions of computational times for the above algorithms based on RAM model
- 3) Now, evaluate the run time using time library functions
- 4) You would need to discuss the average run time of each algorithm for best and worst cases

## **1. Selection Sort:**

```
for i = 1 to A.length
    min_pos = i
    for j = i+1 to length_of_list
        if list[min_pos] > list[j]
        min_pos = j
    temp = list[i]
    list[i] = list[min_pos]
    list[min_pos] = temp
```

def Selection\_Sort(M):

for i in range(0,len(M)):

min\_pos=i

**for** j **in** range (i+1,len(M)):

**if** M[min\_pos]> M[j]:

min\_pos=j

temp=M[i]

M[i]=M[min\_pos]

M[min\_pos]=temp

return(M)

```
Z=[10,12,6,89,43]
```

Selection\_Sort(Z)

[6,10,12,43,89]

Out[2]:

[6, 10, 12, 43, 89]

Python Code

#### **Analysis of Selection Sort**

|   | Pseudocode                  | Cost           | Time                                      | Time                                      |
|---|-----------------------------|----------------|-------------------------------------------|-------------------------------------------|
|   |                             |                | (Worst)                                   | (Best)                                    |
| 1 | for i=1 to length_of_list   | C <sub>1</sub> | n+1                                       | n+1                                       |
| 2 | min_pos=i                   | C <sub>2</sub> | n                                         | n                                         |
| 3 | for j=i+1 to length_of_list | C <sub>3</sub> | $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$     | $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$     |
| 4 | if list[min_pos] > list[j]  | C4             | $\sum_{j=1}^{n} (j-1) = \frac{n(n-1)}{2}$ | $\sum_{j=1}^{n} (j-1) = \frac{n(n-1)}{2}$ |
| 5 | min_pos = j                 | C <sub>5</sub> | $\sum_{j=1}^{n} (j-1) = \frac{n(n-1)}{2}$ | 0                                         |
| 6 | else                        | 0              | n                                         | n                                         |
| 7 | temp = list[i]              | C7             | n                                         | n                                         |
| 8 | list[i] = list[min_pos]     | C <sub>8</sub> | n                                         | n                                         |
| 9 | list[min_pos] = temp        | C <sub>9</sub> | n                                         | n                                         |
|   | A                           | nalysis a      | of Selection Sort                         |                                           |

#### **Run time of Selection Sort**

```
def Selection_Sort(M):
    for i in range(0,len(M)):
        min pos=i
        for j in range (i+1,len(M)):
            if M[min_pos]> M[j]:
                 min_pos=j
        temp=M[i]
        M[i]=M[min_pos]
        M[min_pos]=temp
    return(M)
Z=[10,12,6,89,43]
Selection_Sort(Z)
[6, 10, 12, 43, 89]
import time
a=time.time()
Selection_Sort(list(range(6000,1,-1)))
b=time.time()
c=b-a
print('run time=',c)
```

Python implementation for runtime assessment for a worst case

#### **Tabulated run-time of Selection Sort:**

After experimenting with the python code for five different sizes of inputs, following run-times were recorded.

| S. No | Number of elements in array | Time of Best<br>case(sec) | Time of worst<br>case(sec) |
|-------|-----------------------------|---------------------------|----------------------------|
| 1     | 2000                        | 0.4653                    | 0.4973                     |
| 2     | 4000                        | 1.9898                    | 1.9856                     |
| 3     | 6000                        | 4.3554                    | 4.6329                     |
| 4     | 8000                        | 7.7099                    | 7.7937                     |
| 5     | 10000                       | 11.792                    | 12.696                     |

#### **Growth Plot:**



#### Note:

Student is supposed to repeat similar exercise, for *bubble* and *insertion sort* algorithms.

\*keep in mind that your reading will depend on your computer's speed. The above tables and graphs are just for the verification of concepts

#### **NED University of Engineering & Technology Department of Electrical Engineering**



Course Code: EE-264

Course Title: Data Structures and Algorithms Date:

| Laboratory Session No.: _                |                |                      | Date:                 |                    |                    |
|------------------------------------------|----------------|----------------------|-----------------------|--------------------|--------------------|
|                                          | Psychomotor [  | Domain Assessment    | Rubric for Laboratory | (Level P3)         |                    |
| Skill(s) to be assessed                  |                |                      | Extent of Achievemer  | nt                 |                    |
| Skill(s) to be assessed                  | 0              | 1                    | 2                     | 3                  | 4                  |
| Software Initialisation                  | Completely     | Able to recognise    | Able to recognise     | Able to recognise  | Able to recognise  |
| and Configuration:                       | unable to      | initialisation but   | initialisation but    | initialisation and | initialisation and |
| Set up and <u>recognise</u>              | recognise      | could not            | configuration is      | configuration      | configuration with |
| software initialisation and              | initialisation | configure            | erroneous             | with minimal       | complete success   |
| configuration steps                      | and            |                      |                       | errors             |                    |
|                                          | configuration  |                      | <u> </u>              |                    |                    |
| 10%                                      | 0              | 10                   | 20                    | 30                 | 40                 |
| Input/Output Variable                    | Incorrect      | Correctly            | Correctly perceives   | Correctly          | Correctly          |
| Recognition, Definition                  | perception for | perceives the        | the required          | perceives the      | perceives the      |
| and Initialisation:                      | both           | required             | Input/Output          | required           | required           |
| <u>Recognise</u> and <u>perceive</u>     | Input/Output   | Input/Output         | variables and data    | Input/Output       | Input/Output       |
| correct input/output                     | variables and  | variables and data   | types and only        | variables and data | variables and data |
| variables along with data                | data types     | types but fails to   | initialises them      | types and          | types and          |
| types for testing a specific             |                | initialise variables | partially             | initialises them   | initialises them   |
| algorithm/data structure                 |                | altogether           |                       | completely but     | with complete      |
|                                          |                |                      |                       | with errors        | success            |
| 15%                                      | 0              | 15                   | 30                    | 45                 | 60                 |
| Procedural Programming                   | Little to no   | Slight ability to    | Mostly correct        | Correctly          | Correctly          |
| of given Algorithm:                      | understanding  | use procedural       | recognition and       | recognises and     | recognises and     |
| <u>Practice</u> procedural               | of procedural  | programming          | application of        | uses procedural    | uses procedural    |
| programming techniques                   | programming    | techniques for       | procedural            | programming        | programming        |
| including recursion, in                  | techniques     | coding given         | programming           | techniques with    | techniques with    |
| order to code specific                   |                | algorithm            | techniques but        | no errors but      | no errors and runs |
| algorithms from their                    |                |                      | makes crucial         | unable to run      | algorithm          |
| pseudo code                              |                |                      | errors for the given  | algorithm          | successfully       |
|                                          |                |                      | algorithm             | successfully       |                    |
| 15%                                      | 0              | 15                   | 30                    | 45                 | 60                 |
| Object Oriented                          | Incorrect      | Correct selection    | Correct selection     | Correct selection  | Correct selection  |
| Programming for given                    | selection and  | of programming       | and use of            | and use of         | and use of         |
| Algorithm and Data                       | use of         | constructs and       | programming           | programming        | programming        |
| Structure                                | programming    | instructions but     | constructs and        | constructs and     | constructs and     |
| Implementation:                          | constructs and | their use is         | instructions with     | instructions with  | instructions with  |
| <u>Imitate</u> and <u>practice</u> given | instructions   | incorrect            | many                  | little to no       | no                 |
| OOP instructions for                     |                |                      | syntax/semantic       | syntax/semantic    | syntax/semantic    |
| making specific data                     |                |                      | errors                | errors             | errors             |
| structure/algorithm                      |                |                      |                       |                    |                    |
| 15%                                      | 0              | 15                   | 30                    | 45                 | 60                 |

|                                      | Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                    |                       |                     |                    |
|--------------------------------------|----------------------------------------------------------------|--------------------|-----------------------|---------------------|--------------------|
| Skill(c) to be accord                |                                                                |                    | Extent of Achievemer  | nt                  |                    |
| Skiil(s) to be assessed              | 0                                                              | 1                  | 2                     | 3                   | 4                  |
| Software Menu                        | Unable to                                                      | Little ability and | Moderate ability      | Reasonable          | Demonstrates       |
| Identification and Usage:            | understand and                                                 | understanding of   | and understanding     | understanding of    | command over       |
| Ability to <u>operate</u>            | use software                                                   | software menu      | of software menu      | software menu       | software menu      |
| software environment                 | menu                                                           | operation, makes   | operation, makes      | operation, makes    | usage with         |
| <u>under supervision</u> , using     |                                                                | many mistake       | lesser mistakes       | no major mistakes   | frequent use of    |
| menus, shortcuts,                    |                                                                |                    |                       |                     | advance menu       |
| instructions etc.                    |                                                                |                    |                       |                     | options            |
| 15%                                  | 0                                                              | 15                 | 30                    | 45                  | 60                 |
| Detecting and Removing               | Unable to check                                                | Able to find error | Able to find error    | Able to find error  | Able to find error |
| Errors/Exceptions:                   | and detect                                                     | messages in        | messages in           | messages in         | messages in        |
| <u>Detect</u> Errors/Exceptions      | error messages                                                 | software but no    | software as well as   | software as well    | software along     |
| and <u>manipulate,</u> under         | in software                                                    | understanding of   | understanding of      | as understanding    | with the           |
| supervision, to rectify the          |                                                                | detecting those    | detecting some of     | of detecting all of | understanding to   |
| Code                                 |                                                                | errors and their   | those errors and      | those errors and    | detect and rectify |
|                                      | _                                                              | types              | their types           | their types         | them               |
| 10%                                  | 0                                                              | 10                 | 20                    | 30                  | 40                 |
| Debugging and                        | Unable to                                                      | Little ability to  | Ability to recognise  | Ability to          | Ability to         |
| Troubleshooting:                     | recognise and                                                  | recognise and use  | and use debugging     | recognise and use   | recognise,         |
| <u>Recognise</u> and <u>Practice</u> | use debugging                                                  | debugging and      | and                   | debugging and       | describe, and use  |
| Debugging and                        | options in                                                     | troubleshooting    | troubleshooting       | troubleshooting     | debugging and      |
| Troubleshooting steps                | software                                                       | options in         | options with little   | options with        | troubleshooting    |
| through line-by-line code            |                                                                | software           | ability to rectify    | ability to rectify  | with ability to    |
| execution                            |                                                                |                    | code                  | and step-through    | rectify and step-  |
|                                      | _                                                              |                    |                       | code                | through code       |
| 10%                                  | 0                                                              | 10                 | 20                    | 30                  | 40                 |
| Graphical visualisation              | Unable to                                                      | Ability to         | Ability to            | Ability to          | Ability to         |
| and comparison of time               | understand and                                                 | understand and     | understand and        | understand and      | understand and     |
| complexity of algorithms:            | utilise                                                        | utilise            | utilise visualisation | utilise             | utilise            |
| <u>Manipulate</u> given              | visualisation or                                               | visualisation and  | and plotting          | visualisation and   | visualisation and  |
| Code/Instructions under              | plotting                                                       | plotting           | instructions          | plotting            | plotting           |
| supervision, in order to             | instructions                                                   | instructions with  | successfully but      | instructions        | instructions       |
| produce graphs for                   |                                                                | errors             | unable to draw        | successfully,       | successfully, also |
| comparing time                       |                                                                |                    | results from them     | partially able to   | able to draw       |
| complexity of algorithms             |                                                                |                    |                       | draw results from   | complete results   |
| 10%                                  | 0                                                              | 10                 | 20                    | them<br>30          | from them<br>40    |

| Total Points (out of 400)        |            |
|----------------------------------|------------|
| Weighted CLO (Psychomotor Score) | (Points/4) |
| Remarks                          |            |
| Instructor's Signature with Date |            |

# Laboratory Session No. 04

#### **Objective:**

# To develop and apply the recursive divide and conquer approach in sorting (using debugging tools in Python)

#### **Debugging:**

Debugging is a process which involves identifying a problem, isolating the source of the problem and then either correcting the problem or determining a way to look around it. In debugging process, we run the program step-by-step and keep a look on the variables. To invoke the option for debugging in *spyder IDE* we take following steps:

| Deb                      | ug                                           |                                |      | Ctrl+F | 5         |
|--------------------------|----------------------------------------------|--------------------------------|------|--------|-----------|
| C: Step                  | >                                            |                                |      | Ctrl+F | 10        |
| Step                     | Into                                         |                                |      | Ctrl+F | 11        |
| 🚝 Step                   | Return                                       |                                |      | Ctrl+S | Shift+F1  |
| > Con                    | tinue                                        |                                |      | Ctrl+F | 12        |
| Stop                     | 2                                            |                                |      | Ctrl+5 | Shift+F12 |
| <ul> <li>Set/</li> </ul> | Clear breakp                                 | point                          |      | F12    |           |
| Set/<br>Clea<br>List     | Edit conditio<br>ar breakpoin<br>breakpoints | onal breakp<br>ts in all file: | oint | Shift+ | F12       |
| Deb                      | ug with winj                                 | db                             |      |        |           |

Here, the *DEBUG* option, starts debugging. The *STEP* option, steps to next line of the code. The *STEP INTO* option, takes you inside the function's body. The *STEP RETURN* option, steps to return the function call. The *CONTINUE* option, continues with debugging mode. The *STOP* option, forces the current debugging to stop.

#### Merge-sort Algorithm:

Merge Sort is based on the approach of *Divide and Conquer*. It divides input array in two halves, calls itself for the two halves and then merges the two sorted halves. The merge() function is used for merging two halves.

Following is the python-code for mergesort algorithm :

```
def MergeSort(A):
      n=len(A)
       s=list( )
      if n==1:
              s=A
       else:
              a = (n/2)
              s1=MergeSort(A[0:a])
              s2=MergeSort(A[a:n])
              s=merge(s1,s2)
def merge(A,B):
  n1=len(A)
  n2=len(B)
  A=A+[float('inf')]
  B=B+[float('inf')]
  i=0
  j=0
  l=list()
 for k in range(0,n1+n2):
   if A[i]<=B[j]:
      l=l+[A[i]]
      i=i+1
    else:
      l=l+[B[j]]
      j=j+1
         return l
```

Megesort in Python

In the following section, we see how variables can be watched while running program in debugging mode.

In the following exercise, we see how we can merge two arrays of two and one elements through debugging mode.



#### Variables are shown here, before the start of the loop execution

| Spyder (Python 3.7)                                            |        |            |          |      |                        |
|----------------------------------------------------------------|--------|------------|----------|------|------------------------|
| File Edit Search Source Run Debug Consoles Projects Tools      | s Viev | v Help     |          |      |                        |
| 🗋 🖕 🐘 🔚 @ 🕨 🖪 🖬 🕼 두 州 端 🚝 🤅                                    | ≡ ₩    |            |          | J.C. | C:\Users\danie\Desktop |
| Editor - C:\Users\danie\Desktop\lab4.py                        | ₽×     | Variable e | explorer |      |                        |
| 🗅 lab4.py 🗵                                                    | ٥.     | ± 🖪 🛛      | °, /     |      |                        |
| 7                                                              | ^      | Name       | Туре     | Size |                        |
| 8<br>9 def merge(A, B):                                        |        | А          | list     | 3    | [10, 30, inf]          |
| 10 n1=len(A)<br>11 n2=len(B)                                   |        | В          | list     | 2    | [20, inf]              |
| <pre>12 A=A+[float('inf')] 13 B=B+[float('inf')]</pre>         |        | i          | int      | 1    | 0                      |
| 14 i=0<br>15 i=0                                               |        | j          | int      | 1    | 0                      |
| 16 l=list()                                                    |        | 1          | list     | 0    | 0                      |
| 17  tor k in range(0, n1+n2):<br>18 if A[i]<=B[j]:<br>19       |        | n1         | int      | 1    | 2                      |
| $\begin{array}{ccc} 19 & I=I+[A[1]] \\ 20 & i=i+1 \end{array}$ |        | n2         | int      | 1    | 1                      |
| 21 else                                                        |        |            |          |      |                        |

Running merge procedure in debugging mode

#### 1<sup>st</sup> iteration of k:

Spyder (Python 3.7)

| File Edit Search Source Run Debug Consoles Projects Te | ools Vie    | ew He     | lp    |                                  |
|--------------------------------------------------------|-------------|-----------|-------|----------------------------------|
| 🗋 🖕 🖫 🐘 🧱 🖉 🕨 🔛 🛤 🛤 🛤 🛤 🖼                              | i c≡ ))     |           |       | 🔀 🎤 🔷 🗲 🔶 C:\Users\danie\Desktop |
| Editor - C:\Users\danie\Desktop\lab4.py                | Variable    | explorer  |       |                                  |
| 🗋 lab4.py* 🗵 🎗                                         | 🕹 🖹         | B, Ø      |       |                                  |
| 7                                                      | Name        | Туре      | Size  |                                  |
| 9 n1=len(A)                                            | А           | list      | 3     | [10, 30, inf]                    |
| 10 n2=len(B)<br>11 A=A+[float('inf')]                  |             | list      | 2     | [20, inf]                        |
| 12 B=B+[float('inf')]<br>13 i=0                        | i           | int       | 1     | 0                                |
| 14 j=0<br>15 l=list()                                  | j           | int       | 1     | 0                                |
| 16                                                     | k           | int       | 1     | 0                                |
| 18 l=l+[A[i]]                                          | 1           | list      | 1     | [10]                             |
| <b>19</b> i=i+1                                        | <b>n</b> 1  | int       | 1     | 2                                |
| 20 eise:<br>21 l=l+[B[i]]                              |             | THE       | 1     | 2                                |
| 22 j=j+1                                               | Variabl     | e explore | er Fi | ile explorer Help Profiler       |
| 23 return 1                                            | TD also and |           |       |                                  |

#### 2<sup>nd</sup> iteration of k:

Spyder (Python 3.7)

File Edit Search Source Run Debug Consoles Projects Tools View Help

| 🗋 🖕 🖺 🐂 🧮 @ 🕨 🔜 🚱 🗳                                    | N 🕻 🖻 | i c≡ M   |           |       | 🔀 🗲 🔶 🧲 🔶 C:\Users\danie\Desktop |
|--------------------------------------------------------|-------|----------|-----------|-------|----------------------------------|
| Editor - C:\Users\danie\Desktop\lab4.py                | ₽×    | Variable | explorer  |       |                                  |
| 🗅 lab4.py* 🗵                                           | ۵.    | 🛓 🖹      | B, Ø      |       |                                  |
| 8 def merge(A, B):                                     | ^     | Name     | Туре      | Size  |                                  |
| 9 n1=len(A)<br>10 n2=len(B)                            |       | А        | list      | 3     | [10, 30, inf]                    |
| <pre>11 A=A+[float('inf')] 12 B=B+[float('inf')]</pre> |       | В        | list      | 2     | [20, inf]                        |
| 13 i=0<br>14 j=0                                       |       | i        | int       | 1     | 1                                |
| 15 l=list()<br>16 for k in range(0, n1+n2):            |       | j        | int       | 1     | 0                                |
| 17 if A[i]<=B[j]:<br>18 l=l+[A[i]]                     |       | k        | int       | 1     | 1                                |
| 19 i=i+1                                               |       | 1        | list      | 2     | [10, 20]                         |
| 20 []]<br>21 []=]+[B[j]]                               | _     | n1       | int       | 1     | 2                                |
| 22 J=J+1<br>23 return 1<br>24                          |       | Variable | e explore | er Fi | le explorer Help Profiler        |

#### 3<sup>rd</sup> iteration of k:

| Editor - C:\Users\danie\Desktop\lab4.py                                  | ₽× | Variable   | explorer |      |                               |
|--------------------------------------------------------------------------|----|------------|----------|------|-------------------------------|
| 🗅 lab4.py* 🗵                                                             | ٥. | 🛓 🖪        | B, /     |      |                               |
| 6 """                                                                    | ^  | Name       | Туре     | Size |                               |
| 7<br>8 def merge(A, B):                                                  |    | А          | list     | 3    | [10, 30, inf]                 |
| 9 n1=len(A)<br>10 n2=len(B)                                              |    | В          | list     | 2    | [20, inf]                     |
| 11 A=A+[float('inf')]<br>12 B=B+[float('inf')]                           |    | i          | int      | 1    | 1                             |
| 13 i=0<br>14 j=0                                                         |    | j          | int      | 1    | 1                             |
| 15 l=list()                                                              |    | k          | int      | 1    | 2                             |
| 10         TOP K In range(0, fith2):           17         if A[i]<=B[j]: |    | 1          | list     | 3    | [10, 20, 30]                  |
| 19 i=i+1                                                                 |    | n1         | int      | 1    | 2                             |
| 20 else:                                                                 |    | Mania bili |          |      | la ovelarar - Hala - Drafilar |

#### End of for...loop:

| Eultor - C       | (users (uame (besktup (iau4.py          | ۲ ^ U | variable ( | explorei  |       |                           |   |
|------------------|-----------------------------------------|-------|------------|-----------|-------|---------------------------|---|
| 🗅 lab            | 4.py* 🗵                                 | ۰.    | <b>L</b> 🖪 | ®, /      |       |                           |   |
| 3 Cr             | eated on Wed Dec 5 00:13:41 2018        | ^     | Name       | Туре      | Size  | Value                     | е |
| 4<br>5 @a        | uthor: danie                            |       | A          | list      | 3     | [10, 30, inf]             |   |
| 6 ""<br>7        |                                         |       | в          | list      | 2     | [20, inf]                 |   |
| 8 <b>de</b><br>9 | <pre>f merge(A, B):<br/>n1=len(A)</pre> |       | i          | int       | 1     | 2                         |   |
| 10<br>11         | n2=len(B)<br>A=A+[float('inf')]         |       | j          | int       | 1     | 1                         |   |
| 12<br>13         | B=B+[float('inf')]<br>i=0               |       | k          | int       | 1     | 2                         |   |
| 14<br>15         | j=0<br>l=list()                         |       | 1          | list      | 3     | [10, 20, 30]              |   |
| 16               | <pre>for k in range(0, n1+n2):</pre>    |       | n1         | int       | 1     | 2                         |   |
| 17<br>18         | if A[i]<=B[j]:<br>l=l+[A[i]]            |       | Variable   | e explore | er Fi | le explorer Help Profiler |   |
| 19<br>20         | l=1+1<br>else:                          | I     | Python o   | onsole    |       |                           |   |

#### Sorted List returned:

| Editor - C:\Users\danie\Desktop\lab4.py             | ₽× | Variable explorer |           |       |                           |       |  |  |
|-----------------------------------------------------|----|-------------------|-----------|-------|---------------------------|-------|--|--|
| 🗅 lab4.py* 🗵                                        | ٥. | 🛓 🖺               | B, Ø      |       |                           |       |  |  |
| 10 n2=len(B)                                        | ^  | Name              | Туре      | Size  |                           | Value |  |  |
| 11 A=A+[float(1nf)]<br>12 B=B+[float('inf')]        |    | Α                 | list      | 3     | [10, 30, inf]             |       |  |  |
| 13 <b>i</b> =0<br>14 <b>j</b> =0                    |    | в                 | list      | 2     | [20, inf]                 |       |  |  |
| <pre>15 l=list() 16 for k in range(0, n1+n2):</pre> |    | i                 | int       | 1     | 2                         |       |  |  |
| 17 if A[i]<=B[j]:<br>18 l=l+[A[i]]                  |    | j                 | int       | 1     | 1                         |       |  |  |
| 19 i=i+1                                            |    | k                 | int       | 1     | 2                         |       |  |  |
| 20 else.<br>21 l=l+[B[j]]<br>22 i=i+1               |    | 1                 | list      | 3     | [10, 20, 30]              |       |  |  |
| 23 return 1                                         |    | n1                | int       | 1     | 2                         |       |  |  |
| 24<br>25                                            |    | Variabl           | e explore | er Fi | le explorer Help Profiler |       |  |  |
| 26 merge([10, 30], [20])                            |    | IPython o         | onsole    |       |                           |       |  |  |

#### <u>Task:</u>

There are going to be recursive calls in the *mergesort* procedure given above. Student is supposed to note the values of different variables during each recursive call and record their observations.

Further, student is supposed to compare the run-time of *mergesort* algorithm, with the sorting algorithms covered in lab session 03.

#### **NED University of Engineering & Technology Department of Electrical Engineering**



Course Code: EE-264

Course Title: Data Structures and Algorithms Date:

| Laboratory Session No.: _                |                |                      | Date:                 |                    |                    |
|------------------------------------------|----------------|----------------------|-----------------------|--------------------|--------------------|
|                                          | Psychomotor [  | Domain Assessment    | Rubric for Laboratory | (Level P3)         |                    |
| Skill(s) to be assessed                  |                |                      | Extent of Achievemer  | nt                 |                    |
| Skill(s) to be assessed                  | 0              | 1                    | 2                     | 3                  | 4                  |
| Software Initialisation                  | Completely     | Able to recognise    | Able to recognise     | Able to recognise  | Able to recognise  |
| and Configuration:                       | unable to      | initialisation but   | initialisation but    | initialisation and | initialisation and |
| Set up and <u>recognise</u>              | recognise      | could not            | configuration is      | configuration      | configuration with |
| software initialisation and              | initialisation | configure            | erroneous             | with minimal       | complete success   |
| configuration steps                      | and            |                      |                       | errors             |                    |
|                                          | configuration  |                      | <u> </u>              |                    |                    |
| 10%                                      | 0              | 10                   | 20                    | 30                 | 40                 |
| Input/Output Variable                    | Incorrect      | Correctly            | Correctly perceives   | Correctly          | Correctly          |
| Recognition, Definition                  | perception for | perceives the        | the required          | perceives the      | perceives the      |
| and Initialisation:                      | both           | required             | Input/Output          | required           | required           |
| <u>Recognise</u> and <u>perceive</u>     | Input/Output   | Input/Output         | variables and data    | Input/Output       | Input/Output       |
| correct input/output                     | variables and  | variables and data   | types and only        | variables and data | variables and data |
| variables along with data                | data types     | types but fails to   | initialises them      | types and          | types and          |
| types for testing a specific             |                | initialise variables | partially             | initialises them   | initialises them   |
| algorithm/data structure                 |                | altogether           |                       | completely but     | with complete      |
|                                          |                |                      |                       | with errors        | success            |
| 15%                                      | 0              | 15                   | 30                    | 45                 | 60                 |
| Procedural Programming                   | Little to no   | Slight ability to    | Mostly correct        | Correctly          | Correctly          |
| of given Algorithm:                      | understanding  | use procedural       | recognition and       | recognises and     | recognises and     |
| <u>Practice</u> procedural               | of procedural  | programming          | application of        | uses procedural    | uses procedural    |
| programming techniques                   | programming    | techniques for       | procedural            | programming        | programming        |
| including recursion, in                  | techniques     | coding given         | programming           | techniques with    | techniques with    |
| order to code specific                   |                | algorithm            | techniques but        | no errors but      | no errors and runs |
| algorithms from their                    |                |                      | makes crucial         | unable to run      | algorithm          |
| pseudo code                              |                |                      | errors for the given  | algorithm          | successfully       |
|                                          |                |                      | algorithm             | successfully       |                    |
| 15%                                      | 0              | 15                   | 30                    | 45                 | 60                 |
| Object Oriented                          | Incorrect      | Correct selection    | Correct selection     | Correct selection  | Correct selection  |
| Programming for given                    | selection and  | of programming       | and use of            | and use of         | and use of         |
| Algorithm and Data                       | use of         | constructs and       | programming           | programming        | programming        |
| Structure                                | programming    | instructions but     | constructs and        | constructs and     | constructs and     |
| Implementation:                          | constructs and | their use is         | instructions with     | instructions with  | instructions with  |
| <u>Imitate</u> and <u>practice</u> given | instructions   | incorrect            | many                  | little to no       | no                 |
| OOP instructions for                     |                |                      | syntax/semantic       | syntax/semantic    | syntax/semantic    |
| making specific data                     |                |                      | errors                | errors             | errors             |
| structure/algorithm                      |                |                      |                       |                    |                    |
| 15%                                      | 0              | 15                   | 30                    | 45                 | 60                 |

| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                  |                    |                       |                     |                    |  |  |  |  |
|----------------------------------------------------------------|------------------|--------------------|-----------------------|---------------------|--------------------|--|--|--|--|
| Skill(c) to be accord                                          |                  |                    | Extent of Achievemer  | nt                  |                    |  |  |  |  |
| Skiil(s) to be assessed                                        | 0                | 1                  | 2                     | 3                   | 4                  |  |  |  |  |
| Software Menu                                                  | Unable to        | Little ability and | Moderate ability      | Reasonable          | Demonstrates       |  |  |  |  |
| Identification and Usage:                                      | understand and   | understanding of   | and understanding     | understanding of    | command over       |  |  |  |  |
| Ability to <u>operate</u>                                      | use software     | software menu      | of software menu      | software menu       | software menu      |  |  |  |  |
| software environment                                           | menu             | operation, makes   | operation, makes      | operation, makes    | usage with         |  |  |  |  |
| <u>under supervision</u> , using                               |                  | many mistake       | lesser mistakes       | no major mistakes   | frequent use of    |  |  |  |  |
| menus, shortcuts,                                              |                  |                    |                       |                     | advance menu       |  |  |  |  |
| instructions etc.                                              |                  |                    |                       |                     | options            |  |  |  |  |
| 15%                                                            | 0                | 15                 | 30                    | 45                  | 60                 |  |  |  |  |
| Detecting and Removing                                         | Unable to check  | Able to find error | Able to find error    | Able to find error  | Able to find error |  |  |  |  |
| Errors/Exceptions:                                             | and detect       | messages in        | messages in           | messages in         | messages in        |  |  |  |  |
| <u>Detect</u> Errors/Exceptions                                | error messages   | software but no    | software as well as   | software as well    | software along     |  |  |  |  |
| and <u>manipulate,</u> under                                   | in software      | understanding of   | understanding of      | as understanding    | with the           |  |  |  |  |
| supervision, to rectify the                                    |                  | detecting those    | detecting some of     | of detecting all of | understanding to   |  |  |  |  |
| Code                                                           |                  | errors and their   | those errors and      | those errors and    | detect and rectify |  |  |  |  |
|                                                                | _                | types              | their types           | their types         | them               |  |  |  |  |
| 10%                                                            | 0                | 10                 | 20                    | 30                  | 40                 |  |  |  |  |
| Debugging and                                                  | Unable to        | Little ability to  | Ability to recognise  | Ability to          | Ability to         |  |  |  |  |
| Troubleshooting:                                               | recognise and    | recognise and use  | and use debugging     | recognise and use   | recognise,         |  |  |  |  |
| <u>Recognise</u> and <u>Practice</u>                           | use debugging    | debugging and      | and                   | debugging and       | describe, and use  |  |  |  |  |
| Debugging and                                                  | options in       | troubleshooting    | troubleshooting       | troubleshooting     | debugging and      |  |  |  |  |
| Troubleshooting steps                                          | software         | options in         | options with little   | options with        | troubleshooting    |  |  |  |  |
| through line-by-line code                                      |                  | software           | ability to rectify    | ability to rectify  | with ability to    |  |  |  |  |
| execution                                                      |                  |                    | code                  | and step-through    | rectify and step-  |  |  |  |  |
|                                                                | _                |                    |                       | code                | through code       |  |  |  |  |
| 10%                                                            | 0                | 10                 | 20                    | 30                  | 40                 |  |  |  |  |
| Graphical visualisation                                        | Unable to        | Ability to         | Ability to            | Ability to          | Ability to         |  |  |  |  |
| and comparison of time                                         | understand and   | understand and     | understand and        | understand and      | understand and     |  |  |  |  |
| complexity of algorithms:                                      | utilise          | utilise            | utilise visualisation | utilise             | utilise            |  |  |  |  |
| <u>Manipulate</u> given                                        | visualisation or | visualisation and  | and plotting          | visualisation and   | visualisation and  |  |  |  |  |
| Code/Instructions under                                        | plotting         | plotting           | instructions          | plotting            | plotting           |  |  |  |  |
| supervision, in order to                                       | instructions     | instructions with  | successfully but      | instructions        | instructions       |  |  |  |  |
| produce graphs for                                             |                  | errors             | unable to draw        | successfully,       | successfully, also |  |  |  |  |
| comparing time                                                 |                  |                    | results from them     | partially able to   | able to draw       |  |  |  |  |
| complexity of algorithms                                       |                  |                    |                       | draw results from   | complete results   |  |  |  |  |
| 10%                                                            | 0                | 10                 | 20                    | them<br>30          | from them<br>40    |  |  |  |  |

| Total Points (out of 400)        |            |
|----------------------------------|------------|
| Weighted CLO (Psychomotor Score) | (Points/4) |
| Remarks                          |            |
| Instructor's Signature with Date |            |

# Laboratory Session No. 05

#### **Objective:**

#### Extending the divide-and-conquer approach on sorting and searching problems

We first start with the analysis and experimental verification of the run-time of linear search algorithm. The linear search algorithm looks for an entry present in the array sequentially. In the second stage, we apply divide and conquer based approach for searching problem and compare the running time of both linear search and binary search analytically as well as empirically.

#### The linear search Algorithm

| def linearsearch(x, key): |                                           |
|---------------------------|-------------------------------------------|
| count=0                   |                                           |
| flag=0                    |                                           |
| for i in range(len(x)):   |                                           |
| count=count+1             |                                           |
| if x[i]==key:             |                                           |
| flag=1                    |                                           |
| return flag               |                                           |
|                           | Code of linear search algorithm in Python |

|   | Pseudocode              | frequency               | Time |
|---|-------------------------|-------------------------|------|
|   |                         |                         |      |
| 1 | def linearsearch(x, y): |                         |      |
| 2 | count=0                 |                         |      |
| 3 | flag=0                  |                         |      |
| 4 | for i in range(len(x)): |                         |      |
| 5 | count=count+1           |                         |      |
| 6 | if x[i]==y:             |                         |      |
| 7 | flag=1                  |                         |      |
| 8 | return flag             |                         |      |
|   | Code of linear sea      | rch algorithm in Python |      |

# Analysis of Linear Search (perform for best and worst cases)

#### Best case

Worst case

#### **Binary Search**

Binary search is done on already sorted array. Program compares the value to be searched from the value present at the mid in the list. If value is lesser than value at mid in the list it looks for the value in the same way in the list on the left of mid. If value is larger than value at mid, it looks in the list on the right of mid. When the value is found it generates an output flag that value is found.

# Analysis of Binary Search

|    | Pseudocode                                             | Frequency | Time |
|----|--------------------------------------------------------|-----------|------|
| 1  | def bsearch(A, key):                                   |           |      |
| 2  | f_index=0                                              |           |      |
| 3  | l_index=len(A)-1                                       |           |      |
| 4  | flag=0                                                 |           |      |
| 5  | while f_index<=l_index and flag==0:                    |           |      |
| 6  | mid=(f_index+l_index)//2                               |           |      |
| 7  | if A[mid]==key:                                        |           |      |
| 8  | flag=1                                                 |           |      |
| 9  | elif key <a[mid]:< td=""><td></td><td></td></a[mid]:<> |           |      |
| 10 | l_index=mid-1                                          |           |      |
| 11 | else:                                                  |           |      |
| 12 | f_index=mid+1                                          |           |      |
| 13 | return flag                                            |           |      |

#### Best case

Worst case

#### Compare the running times of linear search and binary search

Task:

Student is supposed to implement both searching algorithms and test them for different sizes of inputs. To summaries the observations, growth plots should be made.

#### **NED University of Engineering & Technology Department of Electrical Engineering**



Course Code: EE-264

Course Title: Data Structures and Algorithms Date:

| Laboratory Session No.: _                |                       |                      | Date:                 |                    |                    |  |
|------------------------------------------|-----------------------|----------------------|-----------------------|--------------------|--------------------|--|
|                                          | Psychomotor [         | Domain Assessment    | Rubric for Laboratory | (Level P3)         |                    |  |
| Skill(s) to be assessed                  | Extent of Achievement |                      |                       |                    |                    |  |
| Skill(s) to be assessed                  | 0                     | 1                    | 2                     | 3                  | 4                  |  |
| Software Initialisation                  | Completely            | Able to recognise    | Able to recognise     | Able to recognise  | Able to recognise  |  |
| and Configuration:                       | unable to             | initialisation but   | initialisation but    | initialisation and | initialisation and |  |
| Set up and <u>recognise</u>              | recognise             | could not            | configuration is      | configuration      | configuration with |  |
| software initialisation and              | initialisation        | configure            | erroneous             | with minimal       | complete success   |  |
| configuration steps                      | and                   |                      |                       | errors             |                    |  |
|                                          | configuration         |                      | <u> </u>              |                    |                    |  |
| 10%                                      | 0                     | 10                   | 20                    | 30                 | 40                 |  |
| Input/Output Variable                    | Incorrect             | Correctly            | Correctly perceives   | Correctly          | Correctly          |  |
| Recognition, Definition                  | perception for        | perceives the        | the required          | perceives the      | perceives the      |  |
| and Initialisation:                      | both                  | required             | Input/Output          | required           | required           |  |
| <u>Recognise</u> and <u>perceive</u>     | Input/Output          | Input/Output         | variables and data    | Input/Output       | Input/Output       |  |
| correct input/output                     | variables and         | variables and data   | types and only        | variables and data | variables and data |  |
| variables along with data                | data types            | types but fails to   | initialises them      | types and          | types and          |  |
| types for testing a specific             |                       | initialise variables | partially             | initialises them   | initialises them   |  |
| algorithm/data structure                 |                       | altogether           |                       | completely but     | with complete      |  |
|                                          |                       |                      |                       | with errors        | success            |  |
| 15%                                      | 0                     | 15                   | 30                    | 45                 | 60                 |  |
| Procedural Programming                   | Little to no          | Slight ability to    | Mostly correct        | Correctly          | Correctly          |  |
| of given Algorithm:                      | understanding         | use procedural       | recognition and       | recognises and     | recognises and     |  |
| <u>Practice</u> procedural               | of procedural         | programming          | application of        | uses procedural    | uses procedural    |  |
| programming techniques                   | programming           | techniques for       | procedural            | programming        | programming        |  |
| including recursion, in                  | techniques            | coding given         | programming           | techniques with    | techniques with    |  |
| order to code specific                   |                       | algorithm            | techniques but        | no errors but      | no errors and runs |  |
| algorithms from their                    |                       |                      | makes crucial         | unable to run      | algorithm          |  |
| pseudo code                              |                       |                      | errors for the given  | algorithm          | successfully       |  |
|                                          |                       |                      | algorithm             | successfully       |                    |  |
| 15%                                      | 0                     | 15                   | 30                    | 45                 | 60                 |  |
| Object Oriented                          | Incorrect             | Correct selection    | Correct selection     | Correct selection  | Correct selection  |  |
| Programming for given                    | selection and         | of programming       | and use of            | and use of         | and use of         |  |
| Algorithm and Data                       | use of                | constructs and       | programming           | programming        | programming        |  |
| Structure                                | programming           | instructions but     | constructs and        | constructs and     | constructs and     |  |
| Implementation:                          | constructs and        | their use is         | instructions with     | instructions with  | instructions with  |  |
| <u>Imitate</u> and <u>practice</u> given | instructions          | incorrect            | many                  | little to no       | no                 |  |
| OOP instructions for                     |                       |                      | syntax/semantic       | syntax/semantic    | syntax/semantic    |  |
| making specific data                     |                       |                      | errors                | errors             | errors             |  |
| structure/algorithm                      |                       |                      |                       |                    |                    |  |
| 15%                                      | 0                     | 15                   | 30                    | 45                 | 60                 |  |

| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                       |                    |                       |                     |                    |  |
|----------------------------------------------------------------|-----------------------|--------------------|-----------------------|---------------------|--------------------|--|
| Skill(c) to be accord                                          | Extent of Achievement |                    |                       | it                  |                    |  |
| Skiil(s) to be assessed                                        | 0                     | 1                  | 2                     | 3                   | 4                  |  |
| Software Menu                                                  | Unable to             | Little ability and | Moderate ability      | Reasonable          | Demonstrates       |  |
| Identification and Usage:                                      | understand and        | understanding of   | and understanding     | understanding of    | command over       |  |
| Ability to <u>operate</u>                                      | use software          | software menu      | of software menu      | software menu       | software menu      |  |
| software environment                                           | menu                  | operation, makes   | operation, makes      | operation, makes    | usage with         |  |
| <u>under supervision</u> , using                               |                       | many mistake       | lesser mistakes       | no major mistakes   | frequent use of    |  |
| menus, shortcuts,                                              |                       |                    |                       |                     | advance menu       |  |
| instructions etc.                                              |                       |                    |                       |                     | options            |  |
| 15%                                                            | 0                     | 15                 | 30                    | 45                  | 60                 |  |
| Detecting and Removing                                         | Unable to check       | Able to find error | Able to find error    | Able to find error  | Able to find error |  |
| Errors/Exceptions:                                             | and detect            | messages in        | messages in           | messages in         | messages in        |  |
| <u>Detect</u> Errors/Exceptions                                | error messages        | software but no    | software as well as   | software as well    | software along     |  |
| and <u>manipulate,</u> under                                   | in software           | understanding of   | understanding of      | as understanding    | with the           |  |
| supervision, to rectify the                                    |                       | detecting those    | detecting some of     | of detecting all of | understanding to   |  |
| Code                                                           |                       | errors and their   | those errors and      | those errors and    | detect and rectify |  |
|                                                                | _                     | types              | their types           | their types         | them               |  |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |  |
| Debugging and                                                  | Unable to             | Little ability to  | Ability to recognise  | Ability to          | Ability to         |  |
| Troubleshooting:                                               | recognise and         | recognise and use  | and use debugging     | recognise and use   | recognise,         |  |
| <u>Recognise</u> and <u>Practice</u>                           | use debugging         | debugging and      | and                   | debugging and       | describe, and use  |  |
| Debugging and                                                  | options in            | troubleshooting    | troubleshooting       | troubleshooting     | debugging and      |  |
| Troubleshooting steps                                          | software              | options in         | options with little   | options with        | troubleshooting    |  |
| through line-by-line code                                      |                       | software           | ability to rectify    | ability to rectify  | with ability to    |  |
| execution                                                      |                       |                    | code                  | and step-through    | rectify and step-  |  |
|                                                                | _                     |                    |                       | code                | through code       |  |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |  |
| Graphical visualisation                                        | Unable to             | Ability to         | Ability to            | Ability to          | Ability to         |  |
| and comparison of time                                         | understand and        | understand and     | understand and        | understand and      | understand and     |  |
| complexity of algorithms:                                      | utilise               | utilise            | utilise visualisation | utilise             | utilise            |  |
| <u>Manipulate</u> given                                        | visualisation or      | visualisation and  | and plotting          | visualisation and   | visualisation and  |  |
| Code/Instructions under                                        | plotting              | plotting           | instructions          | plotting            | plotting           |  |
| supervision, in order to                                       | instructions          | instructions with  | successfully but      | instructions        | instructions       |  |
| produce graphs for                                             |                       | errors             | unable to draw        | successfully,       | successfully, also |  |
| comparing time                                                 |                       |                    | results from them     | partially able to   | able to draw       |  |
| complexity of algorithms                                       |                       |                    |                       | draw results from   | complete results   |  |
| 10%                                                            | 0                     | 10                 | 20                    | them<br>30          | from them<br>40    |  |

| Total Points (out of 400)        |            |
|----------------------------------|------------|
| Weighted CLO (Psychomotor Score) | (Points/4) |
| Remarks                          |            |
| Instructor's Signature with Date |            |

# Laboratory Session No. 06

#### **Objective:**

Apply Asymptotic Notations to the Sorting Algorithms.

#### **Θ** Notation:

The theta notation bounds a function from above and below, so it defines exact asymptotic behavior.

A simple way to get theta notation of an expression is to drop low order terms and ignore leading constants.

For a given function g(n), we denote  $\Theta(g(n))$  is following set of functions.

 $\Theta(g(n)) = \{f(n): \text{ there exist positive constants c1, c2 and n0 such }\}$ 

that  $0 \le c1^*g(n) \le f(n) \le c2^*g(n)$  for all  $n \ge n0$ 

The above definition means, if f(n) is theta of g(n), then the value f(n) is always between c1\*g(n) and c2\*g(n) for large values of n (n >= n0). The definition of theta also requires that f(n) must be non-negative for values of n greater than n0.

#### **O** Notation for Insertion Sort:

In order to apply theta notation for insertion sort we have to bound the time T(n) graph of insertion sort between two graphs of the same nature that of T(n) but with different constant terms  $C_1$  and  $C_2$ . The analysis is given by:

| S.no | n     | T(n)  | T(n)/n <sup>2</sup>        | C <sub>1</sub> n <sup>2</sup> | $C_2 n^2$ |
|------|-------|-------|----------------------------|-------------------------------|-----------|
| 1    | 1000  | 0.06  | C <sub>1</sub> =0.00000056 | 0.056                         | 0.064     |
| 2    | 5000  | 1.57  | 0.0000006                  | 1.5                           | 1.625     |
| 3    | 10000 | 6.37  | 0.0000006                  | 6                             | 6.5       |
| 4    | 15000 | 14.32 | 0.0000006                  | 13.5                          | 14.62     |
| 5    | 20000 | 25.5  | C <sub>2</sub> =0.00000976 | 24.4                          | 26.5      |

Tabulation of Upper and lower bound asymptotes

Here n = no of elements

T(n) = Time Complexity  $C_1n^2$  = Lower Bound  $C_2n^2$  = Upper Bound

#### **Growth Curves with Asymptotes**



#### **O** Notation for Merge Sort:

In order to apply theta notation for merge sort we have to bound the time T(n) graph of merge sort between two graphs of the same nature that of T(n) but with different constant terms  $C_1$  and  $C_2$ . The analysis is given by:

| n     | T(n)   | T(n)/nlogn               | C <sub>1</sub> (nLogn) | C₂(nlogn) |
|-------|--------|--------------------------|------------------------|-----------|
|       |        | C <sub>1</sub> =7.80E-07 |                        |           |
| 1000  | 0.008  |                          | 0.007773               | 0.008272  |
|       |        | 7.90E-07                 |                        |           |
| 5000  | 0.05   |                          | 0.048536               | 0.051608  |
|       |        | C <sub>2</sub> =8.22E-07 |                        |           |
| 10000 | 0.1152 | -                        | 0.109225               | 0.118261  |
|       |        | 8.10E-07                 |                        |           |
| 15000 | 0.1761 |                          | 0.168553               | 0.181038  |
|       |        | 8.20E-07                 |                        |           |
| 20000 | 0.2477 |                          | 0.234318               | 0.25375   |

Tabulation of Upper and lower bound asymptotes

Here n = no of elements

T(n) = Time Complexity  $C_1 n logn$  = Lower Bound  $C_2 n logn$  = Upper Bound



\*keep in mind that your reading will depend on your computer's speed. The above tables and graphs are just for the verification of concepts

# Laboratory Session No. 07

#### **Objective:**

#### Introduction to object oriented programming (OOP), creating classes and objects

#### **SIGNIFICANCE of OOP:**

Object-oriented programming is often the most natural approach, once we get the hang of it. OOP languages allow us to break down our software into bite-sized problems that we then can solve — one object at a time. This isn't to say that OOP is the One True Way. However, the advantages of object-oriented programming are many. When you need to solve complex programming challenges and want to add code tools to your skill set, OOP is your friend and has much greater longevity and utility. The concept of data classes allows a programmer to create any new data type that is not already defined in the language itself. The concept of a data class makes it possible to define subclasses of data objects that share some or all of the main class characteristics called inheritance, this property of OOP forces a more thorough data analysis, reduces development time, and ensures more accurate coding.

#### **CONCEPT OF CLASS AND OBJECT:**

A *class* is a template or set of instructions to build a specific type of object. Every object is built from a class. Each class should be designed and programmed to accomplish one, and only one, thing. An object's properties are what it knows and its methods are what it can do.

#### 2) CLASSES IN PYTHON:

We can use classes in python in order to save data. We can also access or call the data from different operation when needed.

| H | In [4]: | <pre>class Student():     '''A student with name, roll number and CGPA'''     pass</pre> |
|---|---------|------------------------------------------------------------------------------------------|
|   | In [7]: | t=Student()                                                                              |
|   | In [8]: | type (t)                                                                                 |
|   | Out[8]: | mainStudent                                                                              |
|   |         | Class creation in Python                                                                 |

In the above the making of a general class is shown. Now we are going to use data in the class. The following shows the calling and saving of the data.

In [9]: t.name='Subhan' in [10]: t.roll=156 in [11]: t.cgpa=3.0 in [13]: t.name,t.roll,t.cgpa ut[13]: ('Subhan', 156, 3.0) Assigning attributes

#### 3) USE OF \_\_init\_\_ FUNCTION IN PYTHON:

When a new instance of a <u>python class</u> is created, it is the \_\_init\_\_ method which is called and proves to be a very good place where we can modify the object after it has been created. There is no explicit variable declaration in Python. They spring into action on the first assignment. The use of self makes it easier to distinguish between instance attributes from local variables. Normal attributes are introduced in the \_\_init\_\_ method, but some attributes of a class hold for *all* instances in all cases. Following example can be used to understand \_\_init\_\_ and self construct:

```
__inint__ function usage
```

Now after using the constructor the making and calling of the data become easier.

```
M In [15]: a=Student('Subhan',3.0,156)
b= Student('Humayun',4.0,150)
c = Student('Osama',2.5,140)
d = Student('Bilal',2.8,167)
In [16]: b.all_print()
Humayun has roll # 150 and cgpa equals to 4.0
In [17]: a.all_print()
Subhan has roll # 156 and cgpa equals to 3.0
Creating objects with attributes
```

#### LAB SESSION 08

**OBJECTIVE:** To apply the Object-Oriented Programming in Python for solution of real-life examples by creating class with appropriate attributes and methods

**INTRODUCTION:** In the last lab, you have been introduced to the concept of Object-Oriented Programming (OOP). Creating objects using the defined classes have been practiced. In this lab, you will practice it further by creating classes with the required attributes and adding methods to model behaviors.

#### Creating a list of Objects in Python class

We can create a list of objects in Python by appending class instances to the list. By this, every index in the list can point to a certain instance, through which the attributes and methods become easily accessible.

Consider the following code. A class named **geeks** is defined with attributes **name** and **roll**. Then an empty list is created **list**. Different objects are created using the class for example **geeks('Adil',2))** and this is appended to the list using the append method. After adding 4 elements to the list, a for loop is used to print attributed of each one by one. Understand and observe the syntax and try such an example.

```
# Python3 code here creating class
#Reference: https://www.geeksforgeeks.org/
class geeks:
    def __init__(self, name, roll):
        self.name = name
        self.roll = roll
# creating list
list = []
# appending instances to list
list.append(geeks('Adil', 2))
list.append(geeks('Dawood', 40))
list.append(geeks('Rayan', 44))
list.append(geeks('Ali', 67))
# Accessing object value using a for loop
for i in list:
    print(i.name, i.roll)
# Accessing individual elements
print(list[0].name)
print(list[1].name)
print (list[2].name)
print(list[3].name)
```

#### Task 1: To model the Weather conditions of a city

Create a class named *Weather*. The class has 4 attributes:

- City Name
- Humidity Level
- Temperature (in Centigrade)
- Atmospheric Pressure

The class should have following methods or behaviors:

- Convert and print the temperature in Fahrenheit
- Print all Weather Conditions
- Advice: If the temperature is above 40C, display a warning message and suggest precautions.

Create 3 objects using the class (for 3 different cities), and test the methods. Show your codes and results.

#### Task 2: To develop a system which can perform following basic banking related tasks

- Customer account could be created with name, NIC, account number and initial balance. All such attributes should be placed in a class.
- Balance of any customer could be updated
- Customer data could be sorted name-wise and balance-wise (any previously used sorting procedure may be applied).

#### **NED University of Engineering & Technology Department of Electrical Engineering**



Course Code: EE-264

Course Title: Data Structures and Algorithms Date:

| Laboratory Session No.: _                |                       |                      | Date:                 |                    |                    |  |
|------------------------------------------|-----------------------|----------------------|-----------------------|--------------------|--------------------|--|
|                                          | Psychomotor [         | Domain Assessment    | Rubric for Laboratory | (Level P3)         |                    |  |
| Skill(s) to be assessed                  | Extent of Achievement |                      |                       |                    |                    |  |
| Skill(s) to be assessed                  | 0                     | 1                    | 2                     | 3                  | 4                  |  |
| Software Initialisation                  | Completely            | Able to recognise    | Able to recognise     | Able to recognise  | Able to recognise  |  |
| and Configuration:                       | unable to             | initialisation but   | initialisation but    | initialisation and | initialisation and |  |
| Set up and <u>recognise</u>              | recognise             | could not            | configuration is      | configuration      | configuration with |  |
| software initialisation and              | initialisation        | configure            | erroneous             | with minimal       | complete success   |  |
| configuration steps                      | and                   |                      |                       | errors             |                    |  |
|                                          | configuration         |                      | <u> </u>              |                    |                    |  |
| 10%                                      | 0                     | 10                   | 20                    | 30                 | 40                 |  |
| Input/Output Variable                    | Incorrect             | Correctly            | Correctly perceives   | Correctly          | Correctly          |  |
| Recognition, Definition                  | perception for        | perceives the        | the required          | perceives the      | perceives the      |  |
| and Initialisation:                      | both                  | required             | Input/Output          | required           | required           |  |
| <u>Recognise</u> and <u>perceive</u>     | Input/Output          | Input/Output         | variables and data    | Input/Output       | Input/Output       |  |
| correct input/output                     | variables and         | variables and data   | types and only        | variables and data | variables and data |  |
| variables along with data                | data types            | types but fails to   | initialises them      | types and          | types and          |  |
| types for testing a specific             |                       | initialise variables | partially             | initialises them   | initialises them   |  |
| algorithm/data structure                 |                       | altogether           |                       | completely but     | with complete      |  |
|                                          |                       |                      |                       | with errors        | success            |  |
| 15%                                      | 0                     | 15                   | 30                    | 45                 | 60                 |  |
| Procedural Programming                   | Little to no          | Slight ability to    | Mostly correct        | Correctly          | Correctly          |  |
| of given Algorithm:                      | understanding         | use procedural       | recognition and       | recognises and     | recognises and     |  |
| <u>Practice</u> procedural               | of procedural         | programming          | application of        | uses procedural    | uses procedural    |  |
| programming techniques                   | programming           | techniques for       | procedural            | programming        | programming        |  |
| including recursion, in                  | techniques            | coding given         | programming           | techniques with    | techniques with    |  |
| order to code specific                   |                       | algorithm            | techniques but        | no errors but      | no errors and runs |  |
| algorithms from their                    |                       |                      | makes crucial         | unable to run      | algorithm          |  |
| pseudo code                              |                       |                      | errors for the given  | algorithm          | successfully       |  |
|                                          |                       |                      | algorithm             | successfully       |                    |  |
| 15%                                      | 0                     | 15                   | 30                    | 45                 | 60                 |  |
| Object Oriented                          | Incorrect             | Correct selection    | Correct selection     | Correct selection  | Correct selection  |  |
| Programming for given                    | selection and         | of programming       | and use of            | and use of         | and use of         |  |
| Algorithm and Data                       | use of                | constructs and       | programming           | programming        | programming        |  |
| Structure                                | programming           | instructions but     | constructs and        | constructs and     | constructs and     |  |
| Implementation:                          | constructs and        | their use is         | instructions with     | instructions with  | instructions with  |  |
| <u>Imitate</u> and <u>practice</u> given | instructions          | incorrect            | many                  | little to no       | no                 |  |
| OOP instructions for                     |                       |                      | syntax/semantic       | syntax/semantic    | syntax/semantic    |  |
| making specific data                     |                       |                      | errors                | errors             | errors             |  |
| structure/algorithm                      |                       |                      |                       |                    |                    |  |
| 15%                                      | 0                     | 15                   | 30                    | 45                 | 60                 |  |

| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                       |                    |                       |                     |                    |  |
|----------------------------------------------------------------|-----------------------|--------------------|-----------------------|---------------------|--------------------|--|
| Skill(c) to be accord                                          | Extent of Achievement |                    |                       | it                  |                    |  |
| Skiil(s) to be assessed                                        | 0                     | 1                  | 2                     | 3                   | 4                  |  |
| Software Menu                                                  | Unable to             | Little ability and | Moderate ability      | Reasonable          | Demonstrates       |  |
| Identification and Usage:                                      | understand and        | understanding of   | and understanding     | understanding of    | command over       |  |
| Ability to <u>operate</u>                                      | use software          | software menu      | of software menu      | software menu       | software menu      |  |
| software environment                                           | menu                  | operation, makes   | operation, makes      | operation, makes    | usage with         |  |
| <u>under supervision</u> , using                               |                       | many mistake       | lesser mistakes       | no major mistakes   | frequent use of    |  |
| menus, shortcuts,                                              |                       |                    |                       |                     | advance menu       |  |
| instructions etc.                                              |                       |                    |                       |                     | options            |  |
| 15%                                                            | 0                     | 15                 | 30                    | 45                  | 60                 |  |
| Detecting and Removing                                         | Unable to check       | Able to find error | Able to find error    | Able to find error  | Able to find error |  |
| Errors/Exceptions:                                             | and detect            | messages in        | messages in           | messages in         | messages in        |  |
| <u>Detect</u> Errors/Exceptions                                | error messages        | software but no    | software as well as   | software as well    | software along     |  |
| and <u>manipulate,</u> under                                   | in software           | understanding of   | understanding of      | as understanding    | with the           |  |
| supervision, to rectify the                                    |                       | detecting those    | detecting some of     | of detecting all of | understanding to   |  |
| Code                                                           |                       | errors and their   | those errors and      | those errors and    | detect and rectify |  |
|                                                                | _                     | types              | their types           | their types         | them               |  |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |  |
| Debugging and                                                  | Unable to             | Little ability to  | Ability to recognise  | Ability to          | Ability to         |  |
| Troubleshooting:                                               | recognise and         | recognise and use  | and use debugging     | recognise and use   | recognise,         |  |
| <u>Recognise</u> and <u>Practice</u>                           | use debugging         | debugging and      | and                   | debugging and       | describe, and use  |  |
| Debugging and                                                  | options in            | troubleshooting    | troubleshooting       | troubleshooting     | debugging and      |  |
| Troubleshooting steps                                          | software              | options in         | options with little   | options with        | troubleshooting    |  |
| through line-by-line code                                      |                       | software           | ability to rectify    | ability to rectify  | with ability to    |  |
| execution                                                      |                       |                    | code                  | and step-through    | rectify and step-  |  |
|                                                                | _                     |                    |                       | code                | through code       |  |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |  |
| Graphical visualisation                                        | Unable to             | Ability to         | Ability to            | Ability to          | Ability to         |  |
| and comparison of time                                         | understand and        | understand and     | understand and        | understand and      | understand and     |  |
| complexity of algorithms:                                      | utilise               | utilise            | utilise visualisation | utilise             | utilise            |  |
| <u>Manipulate</u> given                                        | visualisation or      | visualisation and  | and plotting          | visualisation and   | visualisation and  |  |
| Code/Instructions under                                        | plotting              | plotting           | instructions          | plotting            | plotting           |  |
| supervision, in order to                                       | instructions          | instructions with  | successfully but      | instructions        | instructions       |  |
| produce graphs for                                             |                       | errors             | unable to draw        | successfully,       | successfully, also |  |
| comparing time                                                 |                       |                    | results from them     | partially able to   | able to draw       |  |
| complexity of algorithms                                       |                       |                    |                       | draw results from   | complete results   |  |
| 10%                                                            | 0                     | 10                 | 20                    | them<br>30          | from them<br>40    |  |

| Total Points (out of 400)        |            |
|----------------------------------|------------|
| Weighted CLO (Psychomotor Score) | (Points/4) |
| Remarks                          |            |
| Instructor's Signature with Date |            |

# Laboratory Session No. 09

#### **Objective:**

To implement fundamental data structures in Python (using list)

Note:

Using *list* in python, implement the following

- a) Stacks(push and pop operations)
- b) Queues(enqueue and dequeuer operations)
- c) A dynamic set 'S' having following functionalities
  - a. Search (S, key)
  - b. Insert (an object)
  - c. Delete (an object)
  - d. Minimum(S)
  - e. Maximum(S)

#### a) Stacks (push and pop operations):

Stack is a linear data structure which follows a particular order in which the operations are performed. The order may be LIFO (Last in First Out) or FILO (First in Last Out). The code of the stack is given below for push and pop operations.

#### **Implementation in Python**

| class stack():                   |  |
|----------------------------------|--|
| definit(self):                   |  |
| self.stack=list()                |  |
| def push(self,data):             |  |
| self.stack.insert(0,data)        |  |
| def pop(self):                   |  |
| <pre>print(self.stack[0])</pre>  |  |
| self.stack.remove(self.stack[0]) |  |
| Python code for class STACK      |  |

#### **b)** Queues (enqueue and dequeuer operations):

A Queue is a linear structure which follows a particular order in which the operations are performed. The order is First-In-First-Out (FIFO). A good example of a queue is any queue of consumers for a resource where the consumer that came first is served first. The difference between <u>stacks</u> and queues is in removing. In a stack we remove the item the most recently added; in a queue, we remove the item the least recently added. The code of queue is given under

#### **Implementation in Python**

| ass queue():                       |
|------------------------------------|
| definit(self):                     |
| self.queue=list()                  |
| def enqueue(self,data):            |
| self.queue.insert(0,data)          |
| def dequeue(self):                 |
| n=len(self.queue)                  |
| <pre>print(self.queue[n-1])</pre>  |
| self.queue.remove(self.queue[n-1]) |
| Python code for <i>QUEUE</i>       |

#### c) A dynamic Set

Dynamic set may refer to: A set (abstract data type) that supports insertion and/or deletion of elements. This data structure is frequently used in database access. The code for various performing operation of the dynamic set is provided below

#### **Implementation in Python**

| class ds():                             |  |
|-----------------------------------------|--|
| l=list()                                |  |
| def add(self,data):                     |  |
| ds.l.append(data)                       |  |
| print(ds.l)                             |  |
| def delete(self,data):                  |  |
| ds.l.remove(data)                       |  |
| print(ds.l)                             |  |
| def search(self,key):                   |  |
| flag=0                                  |  |
| for i in range(len(ds.l)):              |  |
| if ds.l[i]==key:                        |  |
| flag=1                                  |  |
| return flag                             |  |
| def min(self):                          |  |
| <pre>for j in range(1,len(ds.l)):</pre> |  |
| key=ds.l[j]                             |  |
| i=j-1                                   |  |
| while i>-1 and ds.l[i]>key:             |  |
| ds.l[i+1]=ds.l[i]                       |  |
| i=i-1                                   |  |
| ds.l[i+1]=key                           |  |
| print(ds.l[0])                          |  |
| def max(self):                          |  |
| n = len(ds.l)                           |  |
| <pre>for j in range(1,len(ds.l)):</pre> |  |
| key=ds.l[j]                             |  |
| i=j-1                                   |  |

while i>-1 and ds.l[i]>key: ds.l[i+1]=ds.l[i] i=i-1 ds.l[i+1]=key print(ds.l[n-1])

Python code for *DYNAMIC SET* 

Note:

Student is now supposed to create objects and perform relevant tasks using those objects for the above classes.

#### **NED University of Engineering & Technology Department of Electrical Engineering**



Course Code: EE-264

Course Title: Data Structures and Algorithms Date:

| Laboratory Session No.: _                                      |                |                      | Date:                |                    |                    |
|----------------------------------------------------------------|----------------|----------------------|----------------------|--------------------|--------------------|
| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                |                      |                      |                    |                    |
| Skill(s) to be assessed                                        |                |                      | Extent of Achievemer | nt                 |                    |
| Skill(s) to be assessed                                        | 0              | 1                    | 2                    | 3                  | 4                  |
| Software Initialisation                                        | Completely     | Able to recognise    | Able to recognise    | Able to recognise  | Able to recognise  |
| and Configuration:                                             | unable to      | initialisation but   | initialisation but   | initialisation and | initialisation and |
| Set up and <u>recognise</u>                                    | recognise      | could not            | configuration is     | configuration      | configuration with |
| software initialisation and                                    | initialisation | configure            | erroneous            | with minimal       | complete success   |
| configuration steps                                            | and            |                      |                      | errors             |                    |
|                                                                | configuration  |                      | <u> </u>             |                    |                    |
| 10%                                                            | 0              | 10                   | 20                   | 30                 | 40                 |
| Input/Output Variable                                          | Incorrect      | Correctly            | Correctly perceives  | Correctly          | Correctly          |
| Recognition, Definition                                        | perception for | perceives the        | the required         | perceives the      | perceives the      |
| and Initialisation:                                            | both           | required             | Input/Output         | required           | required           |
| <u>Recognise</u> and <u>perceive</u>                           | Input/Output   | Input/Output         | variables and data   | Input/Output       | Input/Output       |
| correct input/output                                           | variables and  | variables and data   | types and only       | variables and data | variables and data |
| variables along with data                                      | data types     | types but fails to   | initialises them     | types and          | types and          |
| types for testing a specific                                   |                | initialise variables | partially            | initialises them   | initialises them   |
| algorithm/data structure                                       |                | altogether           |                      | completely but     | with complete      |
|                                                                |                |                      |                      | with errors        | success            |
| 15%                                                            | 0              | 15                   | 30                   | 45                 | 60                 |
| Procedural Programming                                         | Little to no   | Slight ability to    | Mostly correct       | Correctly          | Correctly          |
| of given Algorithm:                                            | understanding  | use procedural       | recognition and      | recognises and     | recognises and     |
| <u>Practice</u> procedural                                     | of procedural  | programming          | application of       | uses procedural    | uses procedural    |
| programming techniques                                         | programming    | techniques for       | procedural           | programming        | programming        |
| including recursion, in                                        | techniques     | coding given         | programming          | techniques with    | techniques with    |
| order to code specific                                         |                | algorithm            | techniques but       | no errors but      | no errors and runs |
| algorithms from their                                          |                |                      | makes crucial        | unable to run      | algorithm          |
| pseudo code                                                    |                |                      | errors for the given | algorithm          | successfully       |
|                                                                |                |                      | algorithm            | successfully       |                    |
| 15%                                                            | 0              | 15                   | 30                   | 45                 | 60                 |
| Object Oriented                                                | Incorrect      | Correct selection    | Correct selection    | Correct selection  | Correct selection  |
| Programming for given                                          | selection and  | of programming       | and use of           | and use of         | and use of         |
| Algorithm and Data                                             | use of         | constructs and       | programming          | programming        | programming        |
| Structure                                                      | programming    | instructions but     | constructs and       | constructs and     | constructs and     |
| Implementation:                                                | constructs and | their use is         | instructions with    | instructions with  | instructions with  |
| <u>Imitate</u> and <u>practice</u> given                       | instructions   | incorrect            | many                 | little to no       | no                 |
| OOP instructions for                                           |                |                      | syntax/semantic      | syntax/semantic    | syntax/semantic    |
| making specific data                                           |                |                      | errors               | errors             | errors             |
| structure/algorithm                                            |                |                      |                      |                    |                    |
| 15%                                                            | 0              | 15                   | 30                   | 45                 | 60                 |

| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                       |                    |                       |                     |                    |
|----------------------------------------------------------------|-----------------------|--------------------|-----------------------|---------------------|--------------------|
| Skill(c) to be accord                                          | Extent of Achievement |                    |                       |                     |                    |
| Skiil(s) to be assessed                                        | 0                     | 1                  | 2                     | 3                   | 4                  |
| Software Menu                                                  | Unable to             | Little ability and | Moderate ability      | Reasonable          | Demonstrates       |
| Identification and Usage:                                      | understand and        | understanding of   | and understanding     | understanding of    | command over       |
| Ability to <u>operate</u>                                      | use software          | software menu      | of software menu      | software menu       | software menu      |
| software environment                                           | menu                  | operation, makes   | operation, makes      | operation, makes    | usage with         |
| <u>under supervision</u> , using                               |                       | many mistake       | lesser mistakes       | no major mistakes   | frequent use of    |
| menus, shortcuts,                                              |                       |                    |                       |                     | advance menu       |
| instructions etc.                                              |                       |                    |                       |                     | options            |
| 15%                                                            | 0                     | 15                 | 30                    | 45                  | 60                 |
| Detecting and Removing                                         | Unable to check       | Able to find error | Able to find error    | Able to find error  | Able to find error |
| Errors/Exceptions:                                             | and detect            | messages in        | messages in           | messages in         | messages in        |
| <u>Detect</u> Errors/Exceptions                                | error messages        | software but no    | software as well as   | software as well    | software along     |
| and <u>manipulate,</u> under                                   | in software           | understanding of   | understanding of      | as understanding    | with the           |
| supervision, to rectify the                                    |                       | detecting those    | detecting some of     | of detecting all of | understanding to   |
| Code                                                           |                       | errors and their   | those errors and      | those errors and    | detect and rectify |
|                                                                | _                     | types              | their types           | their types         | them               |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |
| Debugging and                                                  | Unable to             | Little ability to  | Ability to recognise  | Ability to          | Ability to         |
| Troubleshooting:                                               | recognise and         | recognise and use  | and use debugging     | recognise and use   | recognise,         |
| <u>Recognise</u> and <u>Practice</u>                           | use debugging         | debugging and      | and                   | debugging and       | describe, and use  |
| Debugging and                                                  | options in            | troubleshooting    | troubleshooting       | troubleshooting     | debugging and      |
| Troubleshooting steps                                          | software              | options in         | options with little   | options with        | troubleshooting    |
| through line-by-line code                                      |                       | software           | ability to rectify    | ability to rectify  | with ability to    |
| execution                                                      |                       |                    | code                  | and step-through    | rectify and step-  |
|                                                                | _                     |                    |                       | code                | through code       |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |
| Graphical visualisation                                        | Unable to             | Ability to         | Ability to            | Ability to          | Ability to         |
| and comparison of time                                         | understand and        | understand and     | understand and        | understand and      | understand and     |
| complexity of algorithms:                                      | utilise               | utilise            | utilise visualisation | utilise             | utilise            |
| <u>Manipulate</u> given                                        | visualisation or      | visualisation and  | and plotting          | visualisation and   | visualisation and  |
| Code/Instructions under                                        | plotting              | plotting           | instructions          | plotting            | plotting           |
| supervision, in order to                                       | instructions          | instructions with  | successfully but      | instructions        | instructions       |
| produce graphs for                                             |                       | errors             | unable to draw        | successfully,       | successfully, also |
| comparing time                                                 |                       |                    | results from them     | partially able to   | able to draw       |
| complexity of algorithms                                       |                       |                    |                       | draw results from   | complete results   |
| 10%                                                            | 0                     | 10                 | 20                    | them<br>30          | from them<br>40    |

| Total Points (out of 400)        |            |
|----------------------------------|------------|
| Weighted CLO (Psychomotor Score) | (Points/4) |
| Remarks                          |            |
| Instructor's Signature with Date |            |

#### LAB SESSION 10

**OBJECTIVE:** To develop Stack and Queues data structures in Python using Node class.

#### **INTRODUCTION:**

There are situations when the allocation of memory to store the data cannot be in a continuous block of memory (as done in arrays-static data structure). Dynamic data structures like linked lists allow us to store elements anywhere in the memory, but they are linked together by knowing their addresses. We take help of **nodes** where the along with the **data**, the **address of the next location of data element** is also stored. So, we know the address of the next node from the current node. (In Python we call these nodes)

Nodes are the foundations on which various other data structures linked-lists and trees can be handled in Python. In this lab, you will do dynamic implementation of the Stack and Queues data structures using Nodes.

#### NODE CLASS:

The implementation of Node is itself done using a class. The nodes are created by implementing a class which will hold the address of the next node along with the data element.



Example: A class named *daynames* to hold the name of the weekdays. The *nextval* is initialized to **null**. Four nodes and instantiated with values as shown. The *nextval* attribute of node e1 points to e3 while the *nextval* of node e3 points to e2 for the required connection. To verify you can print the reference or name of a node, for example print(e1). You will get a number in Hexadecimal which is neither the value of *data* nor the *nextval* of e1. This in fact represents the address of the node e1 itself. *To get the address of any node, we will be using the name of node*.

```
#NODE CLASS
class daynames:
    def init (self, dataval=None):
        self.dataval = dataval
        self.nextval = None
#CREATING NODES USING NODE CLASS
e1 = daynames('Mon') # the node e1 has data "Mon", since the node is
independent for now, (not connected to any next node, so by default, the
nextval (or address field is None)
e2 = daynames('Wed')
e3 = daynames('Tue')
e4 = daynames('Thu')
#HOW TO GET NODE'S ADDRESS ?
print(e1) #to verify that e1 gives address of the node e1)
#CONNECTING NODES (ESTABLISH LINKS)
el.nextval = e3 #connecting e1 with e3 , so Tue comes after Mon
e3.nextval = e2 #connecting e3 with e2
e2.nextval = e4 \# connecting e2 with e4
# ACCESSING ALL NODES ONE BY ONE
thisvalue = e1 #address of the starting node
while thisvalue != None:
#thisvalue becomes null for the last node so loop terminates
        print(thisvalue.dataval)
        thisvalue = thisvalue.nextval
        #print(thisvalue)
```

#### Stack Implementation in Python using Node Class:

Here, instead of using Python list or array, the elements of stack will be stored in individual nodes. Therefore, Node class must be defined first. After that a separate class Stack is needed which uses Node () class for creation of nodes and storing stack elements. The approach is described step-by-step. This is to be used for the code given in Task 1.

1. Create a Node Class

The required attributes are data and next.



Task 1: The code for Stack implementation using node class is given in the next slide. Complete the functionality of **Pop**(), isEmpty() and Peek() methods.

Test the stack DS by creating a stack object and verify the relevant methods. Push, pop, isempty and peek (like the last lab).

| class Node:                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------|
| <pre>definit(self, data):</pre>                                                                                                    |
| self.data = data                                                                                                                   |
| self.next = None                                                                                                                   |
| class Stack:                                                                                                                       |
| <pre>definit(self): #top or Head is the only attribute needed to keep track of stack's recently created node</pre>                 |
| self.top = None #initially the stack is empty so head is None                                                                      |
| <b>def</b> push(self, data): #adding an item to stack                                                                              |
| if self.top is None: #just create a node, and make head of stack = nodes address                                                   |
| self.top= Node(data)                                                                                                               |
| else: #if the stack is not empty                                                                                                   |
| new_node = Node(data) #create a node                                                                                               |
| <pre>new_node.next = self.top #connect the newly created node to the node present in stack (i.e. = top or head of<br/>stack)</pre> |
| self.top = new_node #update head of stack with the address of newly created node                                                   |
| <pre>def pop(self): #removing an item from stack</pre>                                                                             |
| if self.top is None: #if stack is empty (return none)                                                                              |
| return None                                                                                                                        |
| else: #stack is not empty                                                                                                          |
| # Complete this method for pop                                                                                                     |
| <pre>def isempty(self): #complete the method (return true if stack is empty)</pre>                                                 |
| def peek(self): #complete the method (return top most element's data without updating stack)                                       |
| TASK 2: STRING REVERSAL USING STACK                                                                                                |

Consider a string, "BALLOON"

Perform string reversal using Stack Operations.

Hint: Keep pushing characters one by one, once all characters are pushed. Start popping elements.

The string will get reversed as PUSH-POP follows FILO =LIFO

#### **Queue Implementation in Python using Node Class:**

Like class Stack(), create a class Queue(). The class has 2 attributes: head or front and tail or rear to keep track of Queue (first added and last added elements).



Initially when the queue is empty, front and tail both are None.



Enqueue: When a Node is added to an empty Queue; the front and tail both will point to it.

Enqueue: When a Node is added to an empty Queue; the front and tail both will point to it.

Elements added in this direction

TAIL
Points to the last added
element
TAIL = HEAD = NEW NODE

FRONT
added
element

When a Node is added to a Queue that already has some nodes, then the new node should be connected to the last node (pointed by tail) in Queue, and Tail should be updated.



**Dequeue:** When a Node is to be removed from the Queue, the front should be used. And Front should be updated too (updated front will be the node right next to the previous front node).



TASK 3: Implementation of Queue Data Structure in Python using Node Class

Complete the methods of **enqueue** and **dequeue** for the Queue class define below.

```
class Node:
   def __init__(self, data):
       self.data = data
      self.next = None
class Queue:
   def init (self):
        self.head = None
        self.last = None
    def enqueue(self, data):
        if self.last is None: #empty QUEUE
            #complete the logic
        else:
                               #Queue is not empty, already has node(s)
            #complete the logic
  def dequeue(self):
        if self.head is None: #empty QUEUE
            return None
                               #Queue is not empty, already has node(s)
        else:
            #complete the logic
```

Create instance (object) using the defined DS of Queue and test it's methods for verification as done in the Lab 09.

#### **NED University of Engineering & Technology Department of Electrical Engineering**



Course Code: EE-264

Course Title: Data Structures and Algorithms Date:

| Laboratory Session No.: _                                      |                |                      | Date:                |                    |                    |
|----------------------------------------------------------------|----------------|----------------------|----------------------|--------------------|--------------------|
| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                |                      |                      |                    |                    |
| Skill(s) to be assessed                                        |                |                      | Extent of Achievemer | nt                 |                    |
| Skill(s) to be assessed                                        | 0              | 1                    | 2                    | 3                  | 4                  |
| Software Initialisation                                        | Completely     | Able to recognise    | Able to recognise    | Able to recognise  | Able to recognise  |
| and Configuration:                                             | unable to      | initialisation but   | initialisation but   | initialisation and | initialisation and |
| Set up and <u>recognise</u>                                    | recognise      | could not            | configuration is     | configuration      | configuration with |
| software initialisation and                                    | initialisation | configure            | erroneous            | with minimal       | complete success   |
| configuration steps                                            | and            |                      |                      | errors             |                    |
|                                                                | configuration  |                      | <u> </u>             |                    |                    |
| 10%                                                            | 0              | 10                   | 20                   | 30                 | 40                 |
| Input/Output Variable                                          | Incorrect      | Correctly            | Correctly perceives  | Correctly          | Correctly          |
| Recognition, Definition                                        | perception for | perceives the        | the required         | perceives the      | perceives the      |
| and Initialisation:                                            | both           | required             | Input/Output         | required           | required           |
| <u>Recognise</u> and <u>perceive</u>                           | Input/Output   | Input/Output         | variables and data   | Input/Output       | Input/Output       |
| correct input/output                                           | variables and  | variables and data   | types and only       | variables and data | variables and data |
| variables along with data                                      | data types     | types but fails to   | initialises them     | types and          | types and          |
| types for testing a specific                                   |                | initialise variables | partially            | initialises them   | initialises them   |
| algorithm/data structure                                       |                | altogether           |                      | completely but     | with complete      |
|                                                                |                |                      |                      | with errors        | success            |
| 15%                                                            | 0              | 15                   | 30                   | 45                 | 60                 |
| Procedural Programming                                         | Little to no   | Slight ability to    | Mostly correct       | Correctly          | Correctly          |
| of given Algorithm:                                            | understanding  | use procedural       | recognition and      | recognises and     | recognises and     |
| <u>Practice</u> procedural                                     | of procedural  | programming          | application of       | uses procedural    | uses procedural    |
| programming techniques                                         | programming    | techniques for       | procedural           | programming        | programming        |
| including recursion, in                                        | techniques     | coding given         | programming          | techniques with    | techniques with    |
| order to code specific                                         |                | algorithm            | techniques but       | no errors but      | no errors and runs |
| algorithms from their                                          |                |                      | makes crucial        | unable to run      | algorithm          |
| pseudo code                                                    |                |                      | errors for the given | algorithm          | successfully       |
|                                                                |                |                      | algorithm            | successfully       |                    |
| 15%                                                            | 0              | 15                   | 30                   | 45                 | 60                 |
| Object Oriented                                                | Incorrect      | Correct selection    | Correct selection    | Correct selection  | Correct selection  |
| Programming for given                                          | selection and  | of programming       | and use of           | and use of         | and use of         |
| Algorithm and Data                                             | use of         | constructs and       | programming          | programming        | programming        |
| Structure                                                      | programming    | instructions but     | constructs and       | constructs and     | constructs and     |
| Implementation:                                                | constructs and | their use is         | instructions with    | instructions with  | instructions with  |
| <u>Imitate</u> and <u>practice</u> given                       | instructions   | incorrect            | many                 | little to no       | no                 |
| OOP instructions for                                           |                |                      | syntax/semantic      | syntax/semantic    | syntax/semantic    |
| making specific data                                           |                |                      | errors               | errors             | errors             |
| structure/algorithm                                            |                |                      |                      |                    |                    |
| 15%                                                            | 0              | 15                   | 30                   | 45                 | 60                 |

| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                       |                    |                       |                     |                    |
|----------------------------------------------------------------|-----------------------|--------------------|-----------------------|---------------------|--------------------|
| Skill(c) to be accord                                          | Extent of Achievement |                    |                       |                     |                    |
| Skiil(s) to be assessed                                        | 0                     | 1                  | 2                     | 3                   | 4                  |
| Software Menu                                                  | Unable to             | Little ability and | Moderate ability      | Reasonable          | Demonstrates       |
| Identification and Usage:                                      | understand and        | understanding of   | and understanding     | understanding of    | command over       |
| Ability to <u>operate</u>                                      | use software          | software menu      | of software menu      | software menu       | software menu      |
| software environment                                           | menu                  | operation, makes   | operation, makes      | operation, makes    | usage with         |
| <u>under supervision</u> , using                               |                       | many mistake       | lesser mistakes       | no major mistakes   | frequent use of    |
| menus, shortcuts,                                              |                       |                    |                       |                     | advance menu       |
| instructions etc.                                              |                       |                    |                       |                     | options            |
| 15%                                                            | 0                     | 15                 | 30                    | 45                  | 60                 |
| Detecting and Removing                                         | Unable to check       | Able to find error | Able to find error    | Able to find error  | Able to find error |
| Errors/Exceptions:                                             | and detect            | messages in        | messages in           | messages in         | messages in        |
| <u>Detect</u> Errors/Exceptions                                | error messages        | software but no    | software as well as   | software as well    | software along     |
| and <u>manipulate,</u> under                                   | in software           | understanding of   | understanding of      | as understanding    | with the           |
| supervision, to rectify the                                    |                       | detecting those    | detecting some of     | of detecting all of | understanding to   |
| Code                                                           |                       | errors and their   | those errors and      | those errors and    | detect and rectify |
|                                                                | _                     | types              | their types           | their types         | them               |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |
| Debugging and                                                  | Unable to             | Little ability to  | Ability to recognise  | Ability to          | Ability to         |
| Troubleshooting:                                               | recognise and         | recognise and use  | and use debugging     | recognise and use   | recognise,         |
| <u>Recognise</u> and <u>Practice</u>                           | use debugging         | debugging and      | and                   | debugging and       | describe, and use  |
| Debugging and                                                  | options in            | troubleshooting    | troubleshooting       | troubleshooting     | debugging and      |
| Troubleshooting steps                                          | software              | options in         | options with little   | options with        | troubleshooting    |
| through line-by-line code                                      |                       | software           | ability to rectify    | ability to rectify  | with ability to    |
| execution                                                      |                       |                    | code                  | and step-through    | rectify and step-  |
|                                                                | _                     |                    |                       | code                | through code       |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |
| Graphical visualisation                                        | Unable to             | Ability to         | Ability to            | Ability to          | Ability to         |
| and comparison of time                                         | understand and        | understand and     | understand and        | understand and      | understand and     |
| complexity of algorithms:                                      | utilise               | utilise            | utilise visualisation | utilise             | utilise            |
| <u>Manipulate</u> given                                        | visualisation or      | visualisation and  | and plotting          | visualisation and   | visualisation and  |
| Code/Instructions under                                        | plotting              | plotting           | instructions          | plotting            | plotting           |
| supervision, in order to                                       | instructions          | instructions with  | successfully but      | instructions        | instructions       |
| produce graphs for                                             |                       | errors             | unable to draw        | successfully,       | successfully, also |
| comparing time                                                 |                       |                    | results from them     | partially able to   | able to draw       |
| complexity of algorithms                                       |                       |                    |                       | draw results from   | complete results   |
| 10%                                                            | 0                     | 10                 | 20                    | them<br>30          | from them<br>40    |

| Total Points (out of 400)        |            |
|----------------------------------|------------|
| Weighted CLO (Psychomotor Score) | (Points/4) |
| Remarks                          |            |
| Instructor's Signature with Date |            |

## Cover Page for Each PBL/OEL

| Course Code:         | EE-264                       |
|----------------------|------------------------------|
| Course Name:         | Data Structures & Algorithms |
| Semester:            | Fall                         |
| Year:                | SE                           |
| Section:             |                              |
| Batch:               |                              |
| Lab Instructor name: |                              |
| Submission           |                              |
| deadline:            |                              |

PBL or OEL Statement:

Accomplish the following open ended tasks

Using Node class, develop

- 1. Stack
- 2. Queues
- 3. Singly connected linked-list with following features
- a. Add nodes
- b. Traverse all nodes starting from top node
- c. Search any key value in all nodes
- d. Insert node between any two nodes

Deliverables:

Code for Stack class along with driver code

Code for Queue class along with driver code

Code for Linked list class along with driver code

Methodology:

On Jupyter notebook / Spyder-IDE write a code for Stack class along with following member functions using given Node class:

Push(), Pop(), top(), is\_empty()

On Jupyter notebook / Spyder-IDE write a code for Queue class along with following member functions using given Node class:

Enqueue(), Dequeue(), First(), is\_empty()

On Jupyter notebook / Spyder-IDE write a code for Linked List class along with following member functions using given Node class:

Add\_node(), remove\_node(), traverse\_nodes()

# Guidelines: Using Node class below, class \_Node: def \_\_init\_\_(self,element,next): self.\_element = element self.\_next = next

write the above data structures along with their driver codes. Show the use of all member functions by taking suitable examples.

Rubrics:

Code for Stack class along with driver code

Code for Queue class along with driver code

Code for Linked list class along with driver code

#### **NED University of Engineering & Technology Department of Electrical Engineering**



Course Code: <u>EE-264</u>

Course Title: Data Structures and Algorithms
Date: \_\_\_\_\_

| Laboratory Session No.: _                                      |                |                      | Date:                |                    |                    |
|----------------------------------------------------------------|----------------|----------------------|----------------------|--------------------|--------------------|
| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                |                      |                      |                    |                    |
| Skill(s) to be accessed                                        |                |                      | Extent of Achievemer | nt                 |                    |
| Skiii(S) to be assessed                                        | 0              | 1                    | 2                    | 3                  | 4                  |
| Software Initialisation                                        | Completely     | Able to recognise    | Able to recognise    | Able to recognise  | Able to recognise  |
| and Configuration:                                             | unable to      | initialisation but   | initialisation but   | initialisation and | initialisation and |
| Set up and <u>recognise</u>                                    | recognise      | could not            | configuration is     | configuration      | configuration with |
| software initialisation and                                    | initialisation | configure            | erroneous            | with minimal       | complete success   |
| configuration steps                                            | and            |                      |                      | errors             |                    |
|                                                                | configuration  |                      |                      |                    |                    |
| 10%                                                            | 0              | 10                   | 20                   | 30                 | 40                 |
| Input/Output Variable                                          | Incorrect      | Correctly            | Correctly perceives  | Correctly          | Correctly          |
| Recognition, Definition                                        | perception for | perceives the        | the required         | perceives the      | perceives the      |
| and Initialisation:                                            | both           | required             | Input/Output         | required           | required           |
| <u>Recognise</u> and <u>perceive</u>                           | Input/Output   | Input/Output         | variables and data   | Input/Output       | Input/Output       |
| correct input/output                                           | variables and  | variables and data   | types and only       | variables and data | variables and data |
| variables along with data                                      | data types     | types but fails to   | initialises them     | types and          | types and          |
| types for testing a specific                                   |                | initialise variables | partially            | initialises them   | initialises them   |
| algorithm/data structure                                       |                | altogether           |                      | completely but     | with complete      |
|                                                                | _              |                      |                      | with errors        | success            |
| 15%                                                            | 0              | 15                   | 30                   | 45                 | 60                 |
| Procedural Programming                                         | Little to no   | Slight ability to    | Mostly correct       | Correctly          | Correctly          |
| of given Algorithm:                                            | understanding  | use procedural       | recognition and      | recognises and     | recognises and     |
| <u>Practice</u> procedural                                     | of procedural  | programming          | application of       | uses procedural    | uses procedural    |
| programming techniques                                         | programming    | techniques for       | procedural           | programming        | programming        |
| including recursion, in                                        | techniques     | coding given         | programming          | techniques with    | techniques with    |
| order to code specific                                         |                | algorithm            | techniques but       | no errors but      | no errors and runs |
| algorithms from their                                          |                |                      | makes crucial        | unable to run      | algorithm          |
| pseudo code                                                    |                |                      | errors for the given | algorithm          | successfully       |
|                                                                | -              |                      | algorithm            | successfully       | _                  |
| 15%                                                            | 0              | 15                   | 30                   | 45                 | 60                 |
| Object Oriented                                                | Incorrect      | Correct selection    | Correct selection    | Correct selection  | Correct selection  |
| Programming for given                                          | selection and  | of programming       | and use of           | and use of         | and use of         |
| Algorithm and Data                                             | use of         | constructs and       | programming          | programming        | programming        |
| Structure                                                      | programming    | instructions but     | constructs and       | constructs and     | constructs and     |
| Implementation:                                                | constructs and | their use is         | instructions with    | instructions with  | instructions with  |
| <u>Imitate</u> and <u>practice</u> given                       | instructions   | incorrect            | many                 | little to no       | no                 |
| OOP instructions for                                           |                |                      | syntax/semantic      | syntax/semantic    | syntax/semantic    |
| making specific data                                           |                |                      | errors               | errors             | errors             |
| structure/algorithm                                            |                |                      |                      |                    |                    |
| 15%                                                            | 0              | 15                   | 30                   | 45                 | 60                 |

| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                       |                    |                       |                     |                    |
|----------------------------------------------------------------|-----------------------|--------------------|-----------------------|---------------------|--------------------|
| Skill(c) to be accord                                          | Extent of Achievement |                    |                       |                     |                    |
| Skiil(s) to be assessed                                        | 0                     | 1                  | 2                     | 3                   | 4                  |
| Software Menu                                                  | Unable to             | Little ability and | Moderate ability      | Reasonable          | Demonstrates       |
| Identification and Usage:                                      | understand and        | understanding of   | and understanding     | understanding of    | command over       |
| Ability to <u>operate</u>                                      | use software          | software menu      | of software menu      | software menu       | software menu      |
| software environment                                           | menu                  | operation, makes   | operation, makes      | operation, makes    | usage with         |
| <u>under supervision</u> , using                               |                       | many mistake       | lesser mistakes       | no major mistakes   | frequent use of    |
| menus, shortcuts,                                              |                       |                    |                       |                     | advance menu       |
| instructions etc.                                              |                       |                    |                       |                     | options            |
| 15%                                                            | 0                     | 15                 | 30                    | 45                  | 60                 |
| Detecting and Removing                                         | Unable to check       | Able to find error | Able to find error    | Able to find error  | Able to find error |
| Errors/Exceptions:                                             | and detect            | messages in        | messages in           | messages in         | messages in        |
| Detect Errors/Exceptions                                       | error messages        | software but no    | software as well as   | software as well    | software along     |
| and <u>manipulate,</u> under                                   | in software           | understanding of   | understanding of      | as understanding    | with the           |
| supervision, to rectify the                                    |                       | detecting those    | detecting some of     | of detecting all of | understanding to   |
| Code                                                           |                       | errors and their   | those errors and      | those errors and    | detect and rectify |
|                                                                | _                     | types              | their types           | their types         | them               |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |
| Debugging and                                                  | Unable to             | Little ability to  | Ability to recognise  | Ability to          | Ability to         |
| Troubleshooting:                                               | recognise and         | recognise and use  | and use debugging     | recognise and use   | recognise,         |
| <u>Recognise</u> and <u>Practice</u>                           | use debugging         | debugging and      | and                   | debugging and       | describe, and use  |
| Debugging and                                                  | options in            | troubleshooting    | troubleshooting       | troubleshooting     | debugging and      |
| Troubleshooting steps                                          | software              | options in         | options with little   | options with        | troubleshooting    |
| through line-by-line code                                      |                       | software           | ability to rectify    | ability to rectify  | with ability to    |
| execution                                                      |                       |                    | code                  | and step-through    | rectify and step-  |
|                                                                | _                     |                    |                       | code                | through code       |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |
| Graphical visualisation                                        | Unable to             | Ability to         | Ability to            | Ability to          | Ability to         |
| and comparison of time                                         | understand and        | understand and     | understand and        | understand and      | understand and     |
| complexity of algorithms:                                      | utilise               | utilise            | utilise visualisation | utilise             | utilise            |
| <u>Manipulate</u> given                                        | visualisation or      | visualisation and  | and plotting          | visualisation and   | visualisation and  |
| Code/Instructions under                                        | plotting              | plotting           | instructions          | plotting            | plotting           |
| supervision, in order to                                       | instructions          | instructions with  | successfully but      | instructions        | instructions       |
| produce graphs for                                             |                       | errors             | unable to draw        | successfully,       | successfully, also |
| comparing time                                                 |                       |                    | results from them     | partially able to   | able to draw       |
| complexity of algorithms                                       |                       |                    |                       | draw results from   | complete results   |
| 10%                                                            | 0                     | 10                 | 20                    | them<br>30          | from them<br>40    |

| Total Points (out of 400)        |            |
|----------------------------------|------------|
| Weighted CLO (Psychomotor Score) | (Points/4) |
| Remarks                          |            |
| Instructor's Signature with Date |            |

#### **NED University of Engineering & Technology Department of Electrical Engineering**



Course Code: <u>EE-264</u>

Course Title: Data Structures and Algorithms
Date: \_\_\_\_\_

| Laboratory Session No.: _                |                |                       | Date:                 |                    |                    |
|------------------------------------------|----------------|-----------------------|-----------------------|--------------------|--------------------|
|                                          | Psychomotor [  | Oomain Assessment     | Rubric for Laboratory | (Level P3)         |                    |
| Skill(s) to be accessed                  |                | Extent of Achievement |                       |                    |                    |
| Skiii(S) to be assessed                  | 0              | 1                     | 2                     | 3                  | 4                  |
| Software Initialisation                  | Completely     | Able to recognise     | Able to recognise     | Able to recognise  | Able to recognise  |
| and Configuration:                       | unable to      | initialisation but    | initialisation but    | initialisation and | initialisation and |
| Set up and <u>recognise</u>              | recognise      | could not             | configuration is      | configuration      | configuration with |
| software initialisation and              | initialisation | configure             | erroneous             | with minimal       | complete success   |
| configuration steps                      | and            |                       |                       | errors             |                    |
|                                          | configuration  |                       |                       |                    |                    |
| 10%                                      | 0              | 10                    | 20                    | 30                 | 40                 |
| Input/Output Variable                    | Incorrect      | Correctly             | Correctly perceives   | Correctly          | Correctly          |
| Recognition, Definition                  | perception for | perceives the         | the required          | perceives the      | perceives the      |
| and Initialisation:                      | both           | required              | Input/Output          | required           | required           |
| <u>Recognise</u> and <u>perceive</u>     | Input/Output   | Input/Output          | variables and data    | Input/Output       | Input/Output       |
| correct input/output                     | variables and  | variables and data    | types and only        | variables and data | variables and data |
| variables along with data                | data types     | types but fails to    | initialises them      | types and          | types and          |
| types for testing a specific             |                | initialise variables  | partially             | initialises them   | initialises them   |
| algorithm/data structure                 |                | altogether            |                       | completely but     | with complete      |
|                                          | _              |                       |                       | with errors        | success            |
| 15%                                      | 0              | 15                    | 30                    | 45                 | 60                 |
| Procedural Programming                   | Little to no   | Slight ability to     | Mostly correct        | Correctly          | Correctly          |
| of given Algorithm:                      | understanding  | use procedural        | recognition and       | recognises and     | recognises and     |
| <u>Practice</u> procedural               | of procedural  | programming           | application of        | uses procedural    | uses procedural    |
| programming techniques                   | programming    | techniques for        | procedural            | programming        | programming        |
| including recursion, in                  | techniques     | coding given          | programming           | techniques with    | techniques with    |
| order to code specific                   |                | algorithm             | techniques but        | no errors but      | no errors and runs |
| algorithms from their                    |                |                       | makes crucial         | unable to run      | algorithm          |
| pseudo code                              |                |                       | errors for the given  | algorithm          | successfully       |
|                                          | -              |                       | algorithm             | successfully       | _                  |
| 15%                                      | 0              | 15                    | 30                    | 45                 | 60                 |
| Object Oriented                          | Incorrect      | Correct selection     | Correct selection     | Correct selection  | Correct selection  |
| Programming for given                    | selection and  | of programming        | and use of            | and use of         | and use of         |
| Algorithm and Data                       | use of         | constructs and        | programming           | programming        | programming        |
| Structure                                | programming    | instructions but      | constructs and        | constructs and     | constructs and     |
| Implementation:                          | constructs and | their use is          | instructions with     | instructions with  | instructions with  |
| <u>Imitate</u> and <u>practice</u> given | instructions   | incorrect             | many                  | little to no       | no                 |
| OOP instructions for                     |                |                       | syntax/semantic       | syntax/semantic    | syntax/semantic    |
| making specific data                     |                |                       | errors                | errors             | errors             |
| structure/algorithm                      |                |                       |                       |                    |                    |
| 15%                                      | 0              | 15                    | 30                    | 45                 | 60                 |

| Psychomotor Domain Assessment Rubric for Laboratory (Level P3) |                       |                    |                       |                     |                    |
|----------------------------------------------------------------|-----------------------|--------------------|-----------------------|---------------------|--------------------|
| Skill(c) to be accord                                          | Extent of Achievement |                    |                       |                     |                    |
| Skiil(s) to be assessed                                        | 0                     | 1                  | 2                     | 3                   | 4                  |
| Software Menu                                                  | Unable to             | Little ability and | Moderate ability      | Reasonable          | Demonstrates       |
| Identification and Usage:                                      | understand and        | understanding of   | and understanding     | understanding of    | command over       |
| Ability to <u>operate</u>                                      | use software          | software menu      | of software menu      | software menu       | software menu      |
| software environment                                           | menu                  | operation, makes   | operation, makes      | operation, makes    | usage with         |
| <u>under supervision</u> , using                               |                       | many mistake       | lesser mistakes       | no major mistakes   | frequent use of    |
| menus, shortcuts,                                              |                       |                    |                       |                     | advance menu       |
| instructions etc.                                              |                       |                    |                       |                     | options            |
| 15%                                                            | 0                     | 15                 | 30                    | 45                  | 60                 |
| Detecting and Removing                                         | Unable to check       | Able to find error | Able to find error    | Able to find error  | Able to find error |
| Errors/Exceptions:                                             | and detect            | messages in        | messages in           | messages in         | messages in        |
| <u>Detect</u> Errors/Exceptions                                | error messages        | software but no    | software as well as   | software as well    | software along     |
| and <u>manipulate,</u> under                                   | in software           | understanding of   | understanding of      | as understanding    | with the           |
| supervision, to rectify the                                    |                       | detecting those    | detecting some of     | of detecting all of | understanding to   |
| Code                                                           |                       | errors and their   | those errors and      | those errors and    | detect and rectify |
|                                                                | _                     | types              | their types           | their types         | them               |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |
| Debugging and                                                  | Unable to             | Little ability to  | Ability to recognise  | Ability to          | Ability to         |
| Troubleshooting:                                               | recognise and         | recognise and use  | and use debugging     | recognise and use   | recognise,         |
| <u>Recognise</u> and <u>Practice</u>                           | use debugging         | debugging and      | and                   | debugging and       | describe, and use  |
| Debugging and                                                  | options in            | troubleshooting    | troubleshooting       | troubleshooting     | debugging and      |
| Troubleshooting steps                                          | software              | options in         | options with little   | options with        | troubleshooting    |
| through line-by-line code                                      |                       | software           | ability to rectify    | ability to rectify  | with ability to    |
| execution                                                      |                       |                    | code                  | and step-through    | rectify and step-  |
|                                                                | _                     | _                  | _                     | code                | through code       |
| 10%                                                            | 0                     | 10                 | 20                    | 30                  | 40                 |
| Graphical visualisation                                        | Unable to             | Ability to         | Ability to            | Ability to          | Ability to         |
| and comparison of time                                         | understand and        | understand and     | understand and        | understand and      | understand and     |
| complexity of algorithms:                                      | utilise               | utilise            | utilise visualisation | utilise             | utilise            |
| <u>Manipulate</u> given                                        | visualisation or      | visualisation and  | and plotting          | visualisation and   | visualisation and  |
| Code/Instructions under                                        | plotting              | plotting           | instructions          | plotting            | plotting           |
| supervision, in order to                                       | instructions          | instructions with  | successfully but      | instructions        | instructions       |
| produce graphs for                                             |                       | errors             | unable to draw        | successfully,       | successfully, also |
| comparing time                                                 |                       |                    | results from them     | partially able to   | able to draw       |
| complexity of algorithms                                       |                       |                    |                       | draw results from   | complete results   |
| 10%                                                            | 0                     | 10                 | 20                    | them<br>30          | from them<br>40    |

| Total Points (out of 400)        |            |
|----------------------------------|------------|
| Weighted CLO (Psychomotor Score) | (Points/4) |
| Remarks                          |            |
| Instructor's Signature with Date |            |