

NED University of Engineering & Technology

Department of Electrical Engineering

LAB MANUAL

For the course

COMPUTERS AND PROGRAMMING

(EE-163) For F.E.(EE)

Instructor name:__________________________________

Student name:____________________________________

Roll no: Batch:___________________

Semester: Year:________________

LAB MANUAL

For the course

COMPUTERS AND PROGRAMMING

(EE-163) For F.E.(EE)

Content Revision Team:

Mr.Fezan Rafique, Mr. HassanulHaq

Last Revision Date: 02 March 2023

Approved By

The Board of Studies of Department of Electrical Engineering

____________________ ____________________

____________________ ___________________

____________________ ____________________

To
 b

e
fi

lle
d

 b
y

la
b

 t
ec

h
n

ic
ia

n

A
tt

en
d

an
ce

: P
re

se
n

t
o

u
t

o
f

_
__

__
 L

ab
 s

es
si

o
n

s

A
tt

en
d

an
ce

 P
er

ce
n

ta
ge

 _
__

_
__

__

To
 b

e
fi

lle
d

 b
y

La
b

 In
st

ru
ct

o
r

La
b

 S
co

re
 S

h
ee

t

R
o

ll
N

o
.

R
u

b
ri

c
b

as
ed

La

b
 I

R
u

b
ri

c
b

as
ed

La

b
 II

R
u

b
ri

c
b

as
ed

La

b
 II

I

R
u

b
ri

c
b

as
ed

La

b
 IV

R
u

b
ri

c
b

as
ed

La

b
 V

R
u

b
ri

c
b

as
ed

La

b
 V

I

O
EL

/P
B

L
R

u
b

ri
c

Sc
o

re

A

Fi
n

al
 L

A
B

R

u
b

ri
c

Sc
o

re

B

A
tt

en
d

an
ce

P

er
ce

n
ta

ge

 C

Fi
n

al
 w

e
ig

h
te

d
 S

co
re

 f
o

r
M

IS
 S

ys
te

m

[1
0

(A
)+

1
0

(B
)+

5
(C

)]
/2

5

R
o

u
n

d
 t

o
 n

ex
t

h
ig

h
er

m

u
lt

ip
le

 o
f

5

 EE
-1

63
 C

o
m

p
u

te
rs

 a
n

d
 P

ro
gr

am
m

in
g

R
u

b
ri

c
B

as
ed

 L
ab

s
3

, 4
, 6

, 8
, 9

, 1
0

N
o

te
: A

ll
R

u
b

ri
c

Sc
o

re
s

m
u

st
 b

e
in

 t
h

e
n

ex
t

h
ig

h
er

 m
u

lt
ip

le
 o

f
5

 f
o

r
co

rr
ec

t
e

n
tr

y
in

 M
IS

 s
ys

te
m

.

CONTENTS

Psychomotor / Cognitive Level: P4

CLO/PLO: 5/3

S.No. Date Title of Experiment Total Marks Signature

1
Getting Started – Familiarization with

Environment

2 C++ Building Blocks

3 C++ Mathematics

4 Decision Making in C++

5 Repetition with for () loop

6 Repetition with while () loop

7 Algorithms with loops (PBL)

8 Arrays in C/C++

9
To become familiar with User Defined Functions

in C++

10 Recursive Functions in C/C++

11 Introduction to Pointers in C/C++

12 An Introduction to Filing in C/C++

EE-163 Computers & Programming Lab Session 01

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 1

Objective:

 Getting Started – Familiarization with Environment

In this lab session, we shall cover the following objectives

• How to install Code::Blocks IDE on computer

• Use Code::Blocks IDE and built in MinGW GCC Compiler to run our first program

• Explore Command Prompt (cmd)

• Run our first program via cmd

• Run an existing program (GuessNumber.exe) via cmd

1.1 Installing Code::Blocks Integrated Development Environment (IDE)

C++ (pronounced cee plus plus) is a compiled language. In order to get started, two requirements are essential.

First is the compiler and second is text editor (for typing the program). These requirements often come under a

single packaged software application termed as Integrated Development Environment (IDE). For the lab

sessions of this course we shall be using an open source and free of cost IDE called Code::Blocks. Getting

Code::Blocks is just a matter of few clicks (provided you have an internet connection). In order to download

the IDE follow these steps

i. Access www.codeblocks.org/downloads from your favorite web browser.

ii. Click Download the binary release

iii. Download the Code::Blocks with Mingw setup file, at the time of writing this text codeblocks-

16.01mingw-setup.exe was available.

iv. You are ready to go now.

Note: These instructions are for Windows users. If you are running any other operating system then

download the version for your operating system.

If you don’t have internet access you can get a copy of the binary release from the Computer Lab. For

now, it’s only available for Windows users.

Figure 1 Screenshot of Downloads Page for Binary Release

http://www.codeblocks.org/downloads

EE-163 Computers & Programming Lab Session 01

NED University of Engineering & Technology Department of Electrical Engineering

Installation process is simple. Run the executable file you just downloaded (or acquired from Computer

Lab). The installation Wizard will guide you through the whole process.

Once you run the setup file, the Wizard will get started.

Figure 2 Step 1 of Installation Process Wizard Guide

Click Next to continue.

Figure 3 Step 2 of installation process License Agreement

You must agree with license terms to install and use Code::Blocks (read the terms provided and click I

Agree). Once you are agreed with the terms, the installation wizard will now prompt to choose the

components to install, check all components and click Next.

EE-163 Computers & Programming Lab Session 01

NED University of Engineering & Technology Department of Electrical Engineering

Figure 4 Step 3 of installation process, Components to install

Now select the hard disk location to install the Code::Blocks (using default is recommended)

Figure 5 Step 4 of installation process, choose destination

Once you click the install button the installation will take place. Upon successful installation you will get

the message.

Figure 6 Installation in process

EE-163 Computers & Programming Lab Session 01

NED University of Engineering & Technology Department of Electrical Engineering

Figure 7 Installation successful

Once the installation process completed, click Finish button

Figure 8 Installation process completed

1.2 Running the First Program

Once, the IDE is installed successfully we are now ready to develop our first C++ program. Follow the following

steps

• Open Code::Blocks

• Create a new empty file (shortcut Ctrl + Shift + N)

• Save the file as lab_01_code_01.cpp

• Beware about the format .cpp

EE-163 Computers & Programming Lab Session 01

NED University of Engineering & Technology Department of Electrical Engineering

lab01_code_01.cpp

#include<iostream>
using namespace std;
int main(void)
{
 cout<<"Hello World";
 return 0;
}

• Type the code as shown (don’t worry if you don’t understand it for now)

• After typing the code Go to BUILD>>BUILD and RUN (shortcut F9)

• If your program was successfully written, it will be executed otherwise you will get an error

Figure 9 Step to Build Code

Figure 10 Console Log for Successful Build

Figure 11 Output for lab_01_code_01.cpp

1.3 Exploring Command Prompt

The target of our first program and all the other programs in this course is Console (command prompt or

terminal). It is therefore necessary to have a brief introduction of command prompt.

To start command prompt, type “cmd” (without quotes) in Run.

EE-163 Computers & Programming Lab Session 01

NED University of Engineering & Technology Department of Electrical Engineering

Figure 12 Run command for command prompt

This will open the command prompt window.

Figure 13 Command Prompt

To navigate through the directories, one can use cd command. A sample is shown in figure.

Figure 14 Navigating directories

There are many useful commands for command prompt, following links are helpful to get started.

• http://www.digitalcitizen.life/command-prompt-how-use-basic-commands
• http://www.computerhope.com/overview.htm

EE-163 Computers & Programming Lab Session 01

NED University of Engineering & Technology Department of Electrical Engineering

1.4 Run GuessNumber.exe

As part of cmd exercise we shall now run an already developed program called GuessNumber.exe through

cmd. This file is provided in the folder for Lab01

• GuessNumber.exe is already written program, the program asks the user to guess a number (which is

in computer’s mind)

• The user will respond by typing and can do so, until correct number is guessed

• In the meanwhile for any wrong guess computer will give a hint

• Let’s try it

Figure 15 Running GuessNumber.exe

Exercise

Task 1:

Write a program to print text in following pattern,

 Hello World

 Hello World

 Hello World

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 02

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 2

Objective:

 C++ Building Blocks

In this lab session, we shall cover the following objectives

• Basic data types in C++

• Declaring and using variables

• Comments in a C++ Program

• Printing variable values with cout

• Interactive computing with cin

• Escape sequences

2.1 Basic Data Types in C++

Fundamental to any computer program is the data associated with its use. Based on the nature of data

it can be classified into various categories. Data types are important to understand, they define

proper use of an identifier and expression. In C++ data types can be categorized as following.

Figure 16 Basic data types in C++

Numeric: This type contains the numbers including integers and floating point values. Following are the

example of numeric data

• 100

• 895

• -237

• 6.022140857 × 10 ^ 23

• 6.62607004 × 10 -34

• -1.60217662 × 10-19

Character: Character data includes the alpha numeric characters and special symbols (enclosed in single

quotes). Following are the examples

• ‘a’

• ‘F’

• ‘@’

• ‘%’

• ‘^’

Numeric Character String Boolean

EE-163 Computers & Programming Lab Session 02

NED University of Engineering & Technology Department of Electrical Engineering

Strings: Strings include all the text values (enclosed in double quotes). Following are the examples

• “Finland”

• “NED University”

• “PO Box No 341”

• “all along the watch tower”

Boolean: Boolean includes true and false values.

Following C++ statements show the possible use of these data types

cout<<100;
cout<<‘~’;
cout<<true;
cout<<“Mixing the stream ”<<200<<‘#’<<true<<“ ”<<false;

2.2 Declaring and Using Variables

• Variables are named objects with a specific type

• Variables can be used to store data of a certain type which can later be used, processed and/or

updated in the program

• A variable must be declared using appropriate keyword

• There are some rules with variable naming

The following table shows the keyword and memory requirement of several data types

Type Keyword Memory

Boolean bool 1 Byte

Character char 1 Byte

Integer int 4 Bytes

Floating point float 4 Bytes

Double floating point double 8 Bytes

String string ?

lab_02_code_01.cpp

Following code can be used to check the memory requirements of various data types

#include<iostream>

using namespace std;

// sizeof() function calculates the Bytes

int main(void)

{

 cout<<"Integer Bytes="<<sizeof(int);

 cout<<"\nDouble Bytes="<<sizeof(double);

 cout<<"\nCharacter Bytes="<<sizeof(char);

EE-163 Computers & Programming Lab Session 02

NED University of Engineering & Technology Department of Electrical Engineering

 cout<<"\nBoolean Bytes="<<sizeof(bool);

 return 0;

}

Identify the data types for the following items

Item Type Item Type

TRUE @

127 192.12

Pakistan

Variable Naming Rules: Following rules must be taken care while assigning a name to any variable.

• Variable name must start with a letter or _ (underscore)

• May contains letter, numbers and the underscore character only

• Uppercase and lower case are distinct

• Name should not be a reserved keyword

Good Examples

 salary, new_name, myValue

Bad Examples

3name, my name, my-val, class, struct, while

A variable can be assigned a value with the assignment operator “=” . (Discussion about

associativity will be the part of Lab03)

The following codes will be helpful to understand the use and role of variables in a C++ program

lab02_code_02.cpp

#include<iostream>

using namespace std;

int main(void)

{

 int age; // declaring int variable

 string name;// declaring string variable

 float height_in_cms, weight_in_kg; // 2 float variables

 age = 19; // now assigning values to variables

 name = "Ahmed Khan";

 height_in_cms = 123.8;

 weight_in_kg = 58.7;

 cout<<"Name:"<<name<<"\t Age:"<<age<<endl;

 cout<<"Height(cm):"<<height_in_cms<<"\t Weight(kg):"<<weight_in_kg;

 return 0;

EE-163 Computers & Programming Lab Session 02

NED University of Engineering & Technology Department of Electrical Engineering

}

lab02_code_03.cpp

#include<iostream>

using namespace std;

int main(void)

{

 int Roll_No = 123, salary = 40000;

 float CGPA = 3.2;

 double pi = 3.1214, x = 0.012, y;

 string enrolment_no = "ned/0145/14-15",name;

 char section = 'D';

 bool logical = 1;

 cout<< "My Roll No:" <<Roll_No<<"\t Pi="<<CGPA;

 cout<< endl<<"Value of y is:"<<y<<endl;

 cout<< "Name:"<<name<< endl;

 cout << "Enrolment:"<< enrolment_no;

 return 0; }

2.3 Comments in a C++ Program

Program comments are explanatory statements that you can include in the C++ code that you write

and helps anyone reading it's source code. All programming languages allow for some form of

comments. C++ supports single-line and multi-line comments. All characters available inside any

comment are ignored by C++ compiler.

C++ comments start with /* and end with */. For example:

/* This is a comment */

/* C++ comments can also
 * span multiple lines
 */
A comment can also start with //, extending to the end of the line. For example:

#include <iostream>
using namespace std;

main() {
 cout << "Hello World"; // prints Hello World

 return 0;
}
When the above code is compiled, it will ignore // prints Hello World and final executable will produce the

following result:

EE-163 Computers & Programming Lab Session 02

NED University of Engineering & Technology Department of Electrical Engineering

Within a /* and */ comment, // characters have no special meaning. Within a // comment, /* and */ have no

special meaning. Thus, you can "nest" one kind of comment within the other kind. For example:

/* Comment out printing of Hello World:

cout << "Hello World"; // prints Hello World

*/

2.4 Idea of Interactive Computing

In the above programs the value was directly assigned to the variable via assignment operator. This

was done by the programmer. If it is needed to take input from the user and assign the user value to a

particular variable. This is called interactive computing. C++ provides means to do so. One can use

stream insertion via cin to assign value to a variable. This can be done like following

int value;

cout<<“Please enter the value ”;

cin>>value;

The following code further illustrates the idea of interactive computing

lab_02_code_04.cpp

#include<iostream>

using namespace std;

int main(void)

{ // Starting braces of main

 //***Variable Declaration***

 string name, year, department ;

 char section;

 int roll_no;

 float cgpa;

 //****Taking user input****

 cout<<"Enter your name:";

 cin>>name;

 cout<<"Enter your Roll No.:";

 cin>>roll_no;

 cout<<"Enter your department:";

 cin>>department;

 cout<<"Enter year of study:";

 cin>>year;

 cout<<"Enter your section:";

 cin>>section;

 cout<<"What is your CGPA?";

EE-163 Computers & Programming Lab Session 02

NED University of Engineering & Technology Department of Electrical Engineering

 cin>>cgpa;

 cout<<endl<<endl;

 //*****Printing Output*****

 cout<<"\t My Profile"<<endl;

 cout<<"Name:"<<name<<"\tRoll No:"

 <<roll_no<<endl<<"Section:"

 <<section<<"\tYear:"<<year<<

 endl<<"Department:"<<

 department<<"\tCGPA:"<<cgpa;

 return 0;

}

2.4 Escape Sequences

You must have observed some difference in the last code, e.g. using \t in cout statements. This is

called escape sequence. Escape sequences are used to represent certain special characters within

string literals and character literals. Following escape sequences are commonly used in C++.

Sequence Purpose

\n Next line

\r Carriage return

\t Horizontal tab

\b Backspace

\a Alert (beep)

\\ Print \

\’ Print ’

\” Print “

Taking help from your textbook and online resources, try to figure out the purpose of these escape

sequences and explain with the help of an example program.

Exercise

Task 1:

How to insert single line and multiline comments in a C++ program.

__

__

__

__

EE-163 Computers & Programming Lab Session 02

NED University of Engineering & Technology Department of Electrical Engineering

Task 2:

Variable Declarations can appear almost anywhere in the body of C++ function (T/F).

If true, then discuss the situation in which variable declaration must be done prior to some specific

task. Support you answer by giving example.

__

__

__

__

__

Task 3:

Calculate the maximum and minimum number that can be accommodated by int data type (calculate

range).

__

__

__

__

Task 4:

What do you mean by Variable Declaration and Variable Definition in C/C++?

__

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 02

NED University of Engineering & Technology Department of Electrical Engineering

Task 5:

Check the output of the following cout functions and write your comments.

1. cout << “I am a computer geek, \rits a \blie.”

2. cout <<"a"<<"\t"<<"b"<<"\t"<<"c"<<endl;

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 3

Objective:

 C++ Mathematics

In this lab session, we shall cover the following objectives

• Mathematical Operators in C++

• Operators Precedence and Associativity

• Special Mathematics Operators

o Increment/ Decrement

o Compound Assignments

• Type Conversion

• <cmath> Library

3.1 Mathematical Operators in C++

C++ can be used to perform basic mathematical operations. The following program can be used to

illustrate this.

Code 01

1. #include<iostream>

2. using namespace std;

3. int main()

4. {

5. int number1;

6. int number2;

7. int result;

8. cout<<"Please enter number1 & number2";

9. cin>>number1>>number2;

10. result = number1 + number2; // addition

11. result = number1 - number2; // subtraction

12. result = number1 * number2; // multiplication

13. result = number1 / number2; // division

14. result = number1 % number2; // remainder division

15. cout<<result;

16. return 0;

17. }

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

S.No number1 number2 operation result
1 12 8 + 20
2 12 8 - 4
3 12 8 * 96
4 12 8 / 1
5 12 8 % 4

In the above program the variable number1 and number2 are called operands and they are

connected via different operators in expressions given on line numbers 10 through 14. Response of

each operation is stored in the variable result.

Keep in mind that modulus (%) operator is only defined for the data type integers

It is important to emphasis that result of the division is not as we expect in general. This is because

the data type of number1 and number2 is integer, an integer divided by an integer will give an

integer response, while truncating the decimal part of the value. This makes the order of precedence

of arithmetic operators very significant.

The following code will help you develop intuition of C++ Mathematics

Code 02

#include<iostream>

using namespace std;

int main(void)

{ // BMI Calculator

 float weight_in_kg ,height_in_meter ,bmi;

 cout<<"\t \t **Body mass index (BMI) calculator** \n";

 cout<<"\t Calculates an index that indicates"<<

 " healthy weight distribution\n";

 cout<<"Enter your weight in Kgs: ";

 cin>> weight_in_kg;

 cout <<"\nEnter your height in meters: ";

 cin>> height_in_meter;

 bmi=weight_in_kg/(height_in_meter*height_in_meter);

 cout<<"\nYour BMI value is:"<< bmi;

 cout<<"\n\n \t\t Standard BMI Values for comparison \n";

 cout<<"\n \t\t Less than 18.5 : Underweight";

 cout<<"\n \t\t Between 18.5 and 24.9 : Normal";

 cout<<"\n \t\t Between 25 and 29.9 : Overweight";

 cout<<"\n \t\t Greater than 30 : Overweight";

 return 0;

}

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

Working with +, -, * and / is very obvious. Modulus operator (%) though needs some more

explanation. Modulus operator gives the value of remainder once an int is divided by other int. This

is very useful operator in C++. This can be very helpful in many programming situations. The

following code snippet will help develop more intuition about modulus operator.

3.2 Operators Precedence and Associativity

In order to properly evaluate an expression such as 4 + 2 * 3, we must understand both what the

operators do, and the correct order to apply them. The order in which operators are evaluated in a

compound expression is called operator precedence. Using normal mathematical precedence rules

(which state that multiplication is resolved before addition), we know that the above expression should

evaluate as 4 + (2 * 3) to produce the value 10.

In C++, all operators are assigned a level of precedence. Those with the highest precedence are

evaluated first. You can see in the table below that multiplication and division have a higher

precedence than addition and subtraction. The compiler uses these levels to determine how to evaluate

expressions it encounters.

Thus, 4 + 2 * 3 evaluates as 4 + (2 * 3) because multiplication has a higher level of precedence than

addition.

If two operators with the same precedence level are adjacent to each other in an expression, the

associativity rules tell the compiler whether to evaluate the operators from left to right or from right

to left.

For example, in the expression 3 * 4 / 2, the multiplication and division operators are both precedence

level 5. Level 5 has an associativity of left to right, so the expression is resolved from left to right: (3

* 4) / 2 = 6.

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the

expression in the innermost pair is evaluated first.

[Caution: If you have an

expression such as (a + b) * (c - d) in which

two sets of parentheses are not nested, but appear

“on the same level,” the C++ Standard does not

specify the order in which these parenthesized sub

expressions will be evaluated.]

*, /, % Multiplication,

Division,

Modulus

Evaluated second. If there are several, they’re

evaluated left to right.

+, - Addition

Subtraction

Evaluated last. If there are several, they’re evaluated

left to right.

Following examples will help you to understand the idea of precedence and associativity

y = 5 / 2 * 5 + 3 * 5 + 7;

cout<<y;

y = 5 * 5 / 2 + 3 * 5 + 7;

cout<<y;

Now try the following codes

Code 03

1. #include<iostream>

2.

3. using namespace std;

4.

5. int main()

6. {

7.

8. int number1 = 74, number2 = 82, number3 = 88;

9. double average;

10. average = number1 + number2 + number3 / 3;

11. cout<<average;

12. return 0;

13. }

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

Code 04

1. #include<iostream>

2.

3. using namespace std;

4.

5. int main()

6. {

7.

8. int number1 = 74, number2 = 82, number3 = 88;

9. double average;

10. average = (number1 + number2 + number3) / 3;

11. cout<<average;

12. return 0;

13. }

What did you observe from the output of the above two programs? Try to explain briefly.

__

__

__

__

__

3.3 Special Mathematical Operators (Assignment Operators): Increment and Decrement

Incrementing (adding 1 to) and decrementing (subtracting 1 from) a variable are so common that they

have their own operators in C++. There are actually two versions of each operator, a prefix version

and a postfix version. Following table lists them

Operator Symbol Form Operation

Prefix increment (pre-increment) ++ ++x Increment x, then evaluate x

Prefix decrement (pre-decrement) -- --x Decrement x, then evaluate x

Postfix increment (post-increment) ++ x++ Evaluate x, then increment x

Postfix decrement (post-decrement) -- x-- Evaluate x, then decrement x

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

The prefix increment/decrement operators are very straightforward. The value of x is incremented or

decremented, and then x is evaluated.

For example

int x = 5;

int y = ++x; // x is now equal to 6, and 6 is assigned to y

The postfix increment/decrement operators are a little more tricky. The compiler makes a temporary

copy of x, increments or decrements the original x (not the copy), and then evaluates the temporary

copy of x. The temporary copy of x is then discarded.

int x = 5;

int y = x++; // x is now equal to 6, and 5 is assigned to y

Let’s examine how this last line works in more detail. First, the compiler makes a temporary copy of

x that starts with the same value as x (5). Then it increments the original x from 5 to 6. Then the

compiler evaluates the temporary copy, which evaluates to 5, and assigns that value to y. Then the

temporary copy is discarded.

Consequently, y ends up with the value of 5, and x ends up with the value 6. Here is another

example showing the difference between the prefix and postfix versions:

int x = 5, y = 5;

cout << x << " " << y << endl;

cout << ++x << " " << --y << endl; // prefix

cout << x << " " << y << endl;

cout << x++ << " " << y-- << endl; // postfix

cout << x << " " << y << endl;

This produces the output:

5 5

6 4

6 4

6 4

7 3

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

Special Mathematical Operators (Assignment Operators): Compound Assignments

Compound assignment operators modify the current value of a variable by performing an operation

on it. They are equivalent to assigning the result of an operation to the first operand: Following table

summarizes the compound assignments

Equation with Compound

Assignment

Actually means

x +=3.5 x=x+3.5

x -= 1000 x=x-1000

x *= 10 x=x*10

x /= 5 x=x/5

Evaluating Expression and Equations with Mixed Data Types

You are now familiar with the idea of precedence and associativity. It is now time to clarify one very

important aspects of C++ mathematics, how an expression or equation contacting mixed data types

e.g. int and float is evaluated. Consider the equation for example

tempf=tempc*(9/5)+32;

One may be disguised that there is nothing wrong with the above statement, but the way C++ handle

it is really important to consider. The literal 9 when divided by 5 will result in an int value whereas

the user might be expecting floating result. In that case the result will be incorrect. This can be

corrected by implementing the same expression with floating point literals, like

tempf=tempc*(9.0/5.0)+32;

Following will also do the job.

tempf=tempc*(9.0/5)+32; or tempf=tempc*(9/5.0)+32;

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

3.4 Type Casting

C++ allows to temporarily change the type of a variable for one statement, this idea is called type

casting. The idea is explained in the following code.

Code 05

1. #include<iostream>

2. #include<cmath>

3.

4. using namespace std;

5.

6. int main ()

7. {

8. float num1 = -9.5;

9. int num2 = 101;

10. cout<<(int)num1;

11. cout<<endl<<(float)num2/10;

12.

13. return 0;

14. }

Line number 10 will be processed by considering num1 as int and not its own type, similarly line 11

will be executed by considering num2 as floating point quantity and not int.

3.5 Advanced Mathematical Functions <cmath>

Some very useful and advanced mathematical functions are present in <cmath> library. Which can be

included in a program through preprocessor directive #include<cmath>. Following are the few functions

which are available in this library.

Category Function Description

Trigonometry

cos Returns the cosine of an angle of x radians.

sin Returns the sine of an angle of x radians.

tan Returns the tangent of an angle of x radians.

acos The acos function computes the principal value of

the arc cosine of x. A domain error occurs

for arguments not in the range [-I. +I].

asin The asin function computes the principal value of the

arc sine of x. A domain error occurs

for arguments not in the range [-I, +I].

atan The atan function returns the arc tangent in the range

[[-pi/2, +pi/2]]

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

Exponential and

logarithmic

function

exp Returns the base-e exponential function of x, which

is e raised to the power x: ex.
log Returns the natural logarithm of x.

If the argument is negative, a domain error occurs.
log10 Returns the common (base-10) logarithm of x.

If the argument is negative, a domain error occurs.

Power Functions

pow Returns base raised to the power exponent:

e.g. pow(7.0, 3.0); will find 7 ^ 3
sqrt Returns the square root of x.

If x is negative, a domain error occurs:
cbrt Returns the cubic root of x.

Rounding and

Remainder

Functions

ceil Rounds x upward, returning the smallest integral

value that is not less than x.

floor Rounds x downward, returning the largest integral

value that is not greater than x.
fmod Returns the floating-point remainder

of numer/denom
trunc Rounds x toward zero, returning the nearest integral

value that is not larger in magnitude than x.
round Returns the integral value that is nearest to x, with

halfway cases rounded away from zero.

Other Functions
fabs Returns the absolute value of x: |x|.
abs Returns the absolute value of x: |x|.

Example to use trigonometric functions

Code 06

1. #include<iostream>

2. #include<cmath>

3.

4. using namespace std;

5.

6. int main()

7. {

8.

9. const double pi = 3.141592;

10. double angle = pi/6;

11. cout<<endl<<"******** Calculating Trigonometric Ratios

********"<<endl;

12. cout<<endl<<"All calculations on Angle "<<angle<<"

Radians"<<endl;

13. cout<<endl<<"cos("<<angle<<") "<<"= "<<cos(angle)<<endl;

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

14. cout<<endl<<"sin("<<angle<<") "<<"= "<<sin(angle)<<endl;

15. cout<<endl<<"tan("<<angle<<") "<<"= "<<tan(angle)<<endl;

16. cout<<endl<<"******** Calculations Terminated

********"<<endl;

17.

18. return 0;

19. }

Example to use exponential and logarithmic functions

Code 07

1. #include<iostream>

2. #include<cmath>

3.

4. using namespace std;

5.

6. int main()

7. {

8. double num = 10.3;

9. cout<<endl<<"exp("<<num<<") "<<"= "<<exp(num)<<endl;

10. cout<<endl<<"log("<<num<<") "<<"= "<<log(num)<<endl;

11. cout<<endl<<"log10("<<num<<") "<<"= "<<log10(num)<<endl;

12.

13. return 0;

14. }

Example to use power functions

Code 08

1. #include<iostream>

2. #include<cmath>

3.

4. using namespace std;

5.

6. int main()

7. {

8. double num1 = 10.3, num2 = 2.0;

9. cout<<endl<<"pow("<<num1<<","<<num2<<") "<<"=

"<<pow(num1,num2)<<endl;

10. cout<<endl<<"sqrt("<<num1<<") "<<"= "<<sqrt(num1)<<endl;

11. cout<<endl<<"cbrt("<<num1<<") "<<"= "<<cbrt(num1)<<endl;

12.

13. return 0;

14. }

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

Example to use power rounding functions

Code 09

1. #include<iostream>

2. #include<cmath>

3.

4. using namespace std;

5.

6. int main()

7. {

8. double num1 = 2.3,num2 = 3.8,num3 = 5.5,num4 = -2.3,num5 = -3.8,num6 = -

5.5;

9. cout<<"value\tround\tfloor\tceil\ttrunc\n";

10. cout<<"-----\t-----\t-----\t----\t-----\n";

11. cout<<num1<<"\t"<<round(num1)<<"\t"<<floor(num1)<<"\t"<<ceil(num1)<<

"\t"<<trunc(num1)<<"\n";

12. cout<<num2<<"\t"<<round(num2)<<"\t"<<floor(num2)<<"\t"<<ceil(num2)<<

"\t"<<trunc(num2)<<"\n";

13. cout<<num3<<"\t"<<round(num3)<<"\t"<<floor(num3)<<"\t"<<ceil(num3)<<

"\t"<<trunc(num3)<<"\n";

14. cout<<num4<<"\t"<<round(num4)<<"\t"<<floor(num4)<<"\t"<<ceil(num4)<<

"\t"<<trunc(num4)<<"\n";

15. cout<<num5<<"\t"<<round(num5)<<"\t"<<floor(num5)<<"\t"<<ceil(num5)<<

"\t"<<trunc(num5)<<"\n";

16. cout<<num6<<"\t"<<round(num6)<<"\t"<<floor(num6)<<"\t"<<ceil(num6)<<

"\t"<<trunc(num6)<<"\n";

17.

18. return 0;

19. }

20.

Exercise

1. Using compound assignment operators, write a program that generates the following output:

x = 2.5 y = 10

x = 25.0 y = 15

x = 250.0 y = 20

x = 2500.0 y = 25

Initialize x as float with value of 2.5 and y as int with value 10. In each successive stage, use

*= operator for x and += operator for y to achieve the desired values.

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

__

__

__

__

__

__

__

__

2. Write a program that asks the user to enter the length of base and perpendicular of a right angle

triangle. Then it determines the length of hypotenuse, angle between base and hypotenuse and

angle between hypotenuse and perpendicular. Also find the sine and cosine values of these

angles. (For hint refer to basic trigonometry from any mathematics book)

__

__

__

__

__

__

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 03

NED University of Engineering & Technology Department of Electrical Engineering

 3.Write a program that asks the user to enter coefficients a, b and c of the stand ard quadratic equation:

ax2+bx+c=0

The program then should compute and display discriminant

|b2-4ac|

And the roots of equation

𝑥1 = −𝑏 + √𝑏2 − 4𝑎𝑐
2𝑎

⁄

𝑥2 = −𝑏 − √𝑏2 − 4𝑎𝑐
2𝑎

⁄

Finally, give opinion on how the program could be made more general to different input conditions

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-163 Course Title: Computers and Programming
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Input/Output Variable
Recognition and
Definition:
Recognise and perceive
correct input/output
variables along with
data types

15%

Incorrect
perception for
both
Input/Output
variable count
and data type

0

Inorrectly
perceives the
required
Input/Output
variable count
but data type is
correctly
recognized

15

Correctly
perceives the
required
Input/Output
variable count but
data type is not
recognized

30

Correctly
perceives the
required
Input/Output
variable count
and data type
with slight
issues

45

Correctly
perceives the
required
Input/Output
variable count
and data type

60

User Interface creation
for Input and Output
Variables:
Recognise and use
correct Input/Output
instructions for easy
user interaction

15%

Little to no
understanding
of
Input/Output
Instructions
and their use

0

Correctly
recognises
Output
instruction use
but incorrect
use of Input
instructions

15

Correctly
recognises Input
instruction use
but incorrect use
of Output
instructions

30

Correctly
recognises and
uses
Input/Output
instructions but
user interface is
ineffective

45

Correctly
recognises and
uses
Input/Output
instructions that
creates effective
user interface

60

Manipulating Input(s)
to create desired
Output(s):
Imitate and practice
given set of
programming
instructions to
compute/produce the
desired output.

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/semantic
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/semantic
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no
syntax/semantic
errors

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

15%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

15

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

30

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

45

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

60

Detecting and
Removing
Errors/Exceptions:
Detect common
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Code

10%

Unable to
check and
detect error
messages in
software

0

Able to find
error messages
in software but
no
understanding
of detecting
those errors and
their types

10

Able to find error
messages in
software as well
as understanding
of detecting some
of those errors
and their types

20

Able to find
error messages
in software as
well as
understanding
of detecting all
of those errors
and their types

30

Able to find
error messages
in software
along with the
understanding
to detect and
rectify them

40

Duplicating given
Code/Instructions:
Copying/Duplication of
given Code/Instructions
without syntax and
semantic errors from
lab manual or slides

10%

Unable to
reproduce
given piece of
code correctly
on software

0

Little ability to
reproduce given
piece of code
correctly on
software (major
syntax and
semantic errors)

10

Ability to
reproduce given
piece of code
correctly on
software with
minor syntax and
semantic errors

20

Ability to
reproduce given
piece of code
correctly on
software with
little to no
syntax and
semantic errors

30

Ability to
reproduce given
piece of code
correctly on
software with no
syntax and
semantic errors

40

Manipulating given
Code/Instructions
under guidance:
Manipulate given
Code/Instructions
under supervision, in
order to produce a
different result

10%

Unable to
understand
and follow
teacher’s
guidance to
manipulate
code

0

Ability to
understand
teacher’s
guidance
regarding
manipulation
but could not
follow

10

Ability to
understand
teacher’s
guidance
regarding code
manipulation but
lags behind in
following

20

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows
majority of
instructions

30

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows all
instructions
successfully

40

Total Points (out of 400)

Weighted CLO (Psychomotor Score) (Points/4)

Remarks

Instructor’s Signature with Date

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 4

Objective:

 Decision Making in C++

In this lab session, we shall cover the following objectives

• General idea of decision making in Programming

• Operators used in decision making

• The if() and if() – else statements

• The if() – else if() structure

4.1 General idea of decision making in the Programming

The idea of decision making allows to control the flow of the program. So far, every program that we

have discussed was executed from start to end. Often it is required to control the flow of a program so

that a certain piece of code is only executed if a certain condition is met. The ability to control the

flow of a program, letting it make decisions on what code to execute, is valuable in programming. The

if statement allows to control if a program enters a section of code or not based on whether a given

condition is true or false. One of the important functions of the if statement is that it allows the program

to select an action based upon the user's input. For example, by using an if statement to check a user

entered password, your program can decide whether a user is allowed access to the program.

Decision making in programming is done in terms of testing an expression (logical or relational). The

result of the test is either TRUE or FALSE. A TRUE leads to the execution of a specified piece of

code, whereas a FALSE leads to two possibilities; either a piece of code is executed that is different

from the TRUE case or a branch takes place. An important note regarding decision making structures

is that they are not loops; they are executed only once.

4.2 Operators Used in Decision Making

Arithmetic operators are incapable of generating TRUE or FALSE. For this we need operators that

can result in YES and NO. In other words operators that can produce Boolean output. There are two

such operators in C++

i. Relational Operators

ii. Logical Operators

Relational operators are described in the following table

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

Operator Description Example

> Greater than 5 > 4 is TRUE

< Less than 4 < 5 is TRUE

>= Greater than or equal 4 >= 4 is TRUE

<= Less than or equal 3 <= 4 is TRUE

== Equal to 5 == 5 is TRUE

!= Not equal to 5 != 4 is TRUE

The following program will describe the use of these operators

Code 01

#include<iostream>

using namespace std;

int main(void)

{

 int num1=105, num2=34;

 float pi=3.1412, x=123.5;

 string password="abcd1234";

 bool result=(num1>num2);

 cout<<num1<<">"<<num2<<"\t1=true, 0=false";

 cout<<"\nanswer="<<result<<endl;

 cout<<pi<<"="<<x<<"\t1=true, 0=false";

 cout<<"\nanswer="<<(pi==x)<<endl;

 cout<<"Is the password correct?\t1=yes, 0=no";

 cout<<"\nanswer="<<(password=="abcd1234");

 return 0;

}

What did you understand from the results of above program?

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

Logical operators

The logical operators apply logic functions (NOT, AND, and inclusive OR) to boolean arguments. These are

helpful to take decision based on multiple conditions. Following tables summarize these operators.

Operator C++ Symbol

AND &&

OR ||

NOT !

AND (&&) and OR (||) Operator

A B A&&B A||B

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

NOT (!) Operator

A !A

0 1

1 0

The following program will demonstrate the use of logical operators

Code 02

#include<iostream>
using namespace std;
int main(void)
{
 bool a=true, b=0, c=0, result;
 result=(c||a);
 cout<<"a AND b="<<(a&&b);
 cout<<"\nc OR a="<<result;
 cout<<"\nNOTa="<<(!a);
 cout<<"\nNOTb="<<(!b);
 cout<<"\nNOTc="<<(!c);
 return 0;
}

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

Explain in few lines what you understood from the above program

__

__

__

__

4.3 The if() and if() – else statements

if (testExpression)
{
 // statements
}

The if statement evaluates the test expression inside parenthesis. If test expression is evaluated to true,

statements inside the body of if is executed. If test expression is evaluated to false, statements inside

the body of if is skipped. This can be demonstrated with the following flow-chart.

The following program will help to demonstrate the idea.

Code 03

#include<iostream>

using namespace std;

int main(void)

{ //Calculator Program

 double operand1, operand2, result;

 char operation;

 cout<<"\t***Calculator Program***";

 cout<<"\nEnter the desired expression"

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

 <<"with spaces<eg 12.6 + 4.32>";

 cin>>operand1>>operation>>operand2;

 if(operation=='+')

 {

 result=operand1+operand2;

 }

 if(operation=='-')

 {

 result=operand1-operand2;

 }

 if(operation=='*')

 {

 result=operand1*operand2;

 }

 if(operation=='/')

 {

 result=operand1/operand2;

 }

 if(operation!='+' || operation!='-' ||

 operation!='*' || operation!='/')

 {

 cout<<"\nInvalid Operator";

 }

 cout<<"\n\nresult="<<result;

 return 0;

}

What did you understand from the results of above program?

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

The if else executes the codes inside the body of if statement if the test expression is true and

skips the codes inside the body of else. If the test expression is false, it executes the codes inside the

body of else statement and skips the codes inside the body of if. The following flow chart and

program will help you understand the idea.

Code 04

#include<iostream>
using namespace std;
int main(void)
{
 string stored_password="abcd1234";
 string user_password;
 cout<<"Enter password:";
 getline(cin,user_password);
 if(user_password==stored_password)
 {
 cout<<"\nAccess granted\n";
 }
 else
 {
 cout<<"\nAccess denied\n";
 }
 return 0;
}

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

4.4 The if() – else if () statement

Occasionally, programs need to decide between a set of given conditions to perform an operation. This

is called ‘Multiple Selection’. In our calculator program, we performed multiple selection by using

multiple if() statements. This is an improper method. Multiple selection can be perform by using if()

– else if () statement. Following example and flow chart will be helpful to understand.

Code 05

#include<iostream>
using namespace std;
int main(void)
{ //Calculator Program
 double operand1, operand2, result;
 char operation;
 cout<<"\t***Calculator Program***";
 cout<<"\nEnter the desired expression"
 <<"with spaces<eg 12.6 + 4.32>";
 cin>>operand1>>operation>>operand2;
 if(operation=='+')
 {
 result=operand1+operand2;
 }
 else if(operation=='-')
 {
 result=operand1-operand2;
 }
 else if(operation=='*')
 {
 result=operand1*operand2;
 }
 else if(operation=='/')
 {

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

 result=operand1/operand2;
 }
 else
 {
 cout<<"\nInvalid Operator\n";
 return 0;
 }

 cout<<"\n\nresult="<<result;

 return 0;
}

Exercise

Task 1:

Write a program that asks user to enter 3 numbers and then finds the largest and smallest among them

and displays both largest and smallest number. This program can be written in many ways. Provide

at-least two methods.

Note: This program can be written using Multiple if() statements, Multiple if()-else statements or if()

else. And of course there are other methods also. This exercise is a test of your thinking abilities.

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Task 2:

C++ provides an alternate approach for if () – else if () statements, that is switch () –

case statement. Use literature and internet resources to understand using it. Then write a calculator

program written in lab session using switch ()-case statements. If the user entered the operator other

than +,-,*,/ then program should print “Invalid Operator” on screen.

__

__

__

__

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 04

NED University of Engineering & Technology Department of Electrical Engineering

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-163 Course Title: Computers and Programming
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Input/Output Variable
Recognition and
Definition:
Recognise and perceive
correct input/output
variables along with
data types

15%

Incorrect
perception for
both
Input/Output
variable count
and data type

0

Inorrectly
perceives the
required
Input/Output
variable count
but data type is
correctly
recognized

15

Correctly
perceives the
required
Input/Output
variable count but
data type is not
recognized

30

Correctly
perceives the
required
Input/Output
variable count
and data type
with slight
issues

45

Correctly
perceives the
required
Input/Output
variable count
and data type

60

User Interface creation
for Input and Output
Variables:
Recognise and use
correct Input/Output
instructions for easy
user interaction

15%

Little to no
understanding
of
Input/Output
Instructions
and their use

0

Correctly
recognises
Output
instruction use
but incorrect
use of Input
instructions

15

Correctly
recognises Input
instruction use
but incorrect use
of Output
instructions

30

Correctly
recognises and
uses
Input/Output
instructions but
user interface is
ineffective

45

Correctly
recognises and
uses
Input/Output
instructions that
creates effective
user interface

60

Manipulating Input(s)
to create desired
Output(s):
Imitate and practice
given set of
programming
instructions to
compute/produce the
desired output.

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/semantic
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/semantic
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no
syntax/semantic
errors

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

15%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

15

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

30

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

45

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

60

Detecting and
Removing
Errors/Exceptions:
Detect common
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Code

10%

Unable to
check and
detect error
messages in
software

0

Able to find
error messages
in software but
no
understanding
of detecting
those errors and
their types

10

Able to find error
messages in
software as well
as understanding
of detecting some
of those errors
and their types

20

Able to find
error messages
in software as
well as
understanding
of detecting all
of those errors
and their types

30

Able to find
error messages
in software
along with the
understanding
to detect and
rectify them

40

Duplicating given
Code/Instructions:
Copying/Duplication of
given Code/Instructions
without syntax and
semantic errors from
lab manual or slides

10%

Unable to
reproduce
given piece of
code correctly
on software

0

Little ability to
reproduce given
piece of code
correctly on
software (major
syntax and
semantic errors)

10

Ability to
reproduce given
piece of code
correctly on
software with
minor syntax and
semantic errors

20

Ability to
reproduce given
piece of code
correctly on
software with
little to no
syntax and
semantic errors

30

Ability to
reproduce given
piece of code
correctly on
software with no
syntax and
semantic errors

40

Manipulating given
Code/Instructions
under guidance:
Manipulate given
Code/Instructions
under supervision, in
order to produce a
different result

10%

Unable to
understand
and follow
teacher’s
guidance to
manipulate
code

0

Ability to
understand
teacher’s
guidance
regarding
manipulation
but could not
follow

10

Ability to
understand
teacher’s
guidance
regarding code
manipulation but
lags behind in
following

20

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows
majority of
instructions

30

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows all
instructions
successfully

40

Total Points (out of 400)

Weighted CLO (Psychomotor Score) (Points/4)

Remarks

Instructor’s Signature with Date

EE-163 Computers & Programming Lab Session 05

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 05

Objective:

 Repetition with for () loop

In this lab session, we shall cover the following objectives

• The idea of loop

• The for () loop

• Nested for() loop

5.1 The idea of loop and its need

One of the very powerful control structures is Repetition Statements in C++. Repetition statements

allow to repeat a block of code until a certain condition is true. Repetition statements are commonly

referred as loops and they can be implemented with the following statements

i. for

ii. while

iii. do while

In this lab we shall discuss (i) whereas (ii & iii) will be discussed in the next. Loops are helpful when

a certain piece of code is required to be executed in a repeated manner. This can save a lot of precious

time and laborious efforts.

5.2 The for() loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to

execute a specific number of times. The syntax of a for loop in C++ is

for (init; condition; increment) {
 statement(s);
}

Here is the flow of control in a for loop. The init step is executed first, and only once. This step allows

you to declare and initialize any loop control variables. Next, the condition is evaluated. If it is true,

the body of the loop is executed. If it is false, the body of the loop does not execute and flow of control

jumps to the next statement just after the for loop. After the body of the for loop executes, the flow of

control jumps back up to the increment statement. This statement allows you to update any loop control

variables. The condition is now evaluated again. If it is true, the loop executes and the process repeats

EE-163 Computers & Programming Lab Session 05

NED University of Engineering & Technology Department of Electrical Engineering

itself (body of loop, then increment step, and then again condition). After the condition becomes false,

the for loop terminates. Following diagram explains the whole process.

Code 01

#include<iostream>
using namespace std;
int main(void)
{
 int num;
 for(int num=0;num<=10;num++)
 {
 cout<<"\n num = "<<num;
 }
 return 0;
}

Observe the output of this program and describe in your words

__

__

__

__

Following code will further strengthen your understanding of for loop

EE-163 Computers & Programming Lab Session 05

NED University of Engineering & Technology Department of Electrical Engineering

Code 02

#include<iostream>
using namespace std;
int main(void)
{ //Calculating Power (base^exponent)
 int base,exponent,answer,counter;
 cout<<"Enter a number(integer):";
 cin>>base;
 cout<<"Enter an exponent(integer):";
 cin>>exponent;
 answer=1;//running product variable
 for(counter=exponent;counter>0;counter=counter-1)
 {
 answer=answer*base;
 }
 cout<<"\n"<<base<<" raised to power "<<exponent
 <<" = "<<answer;
 return 0;
}

5.3 Nested for () loop

Placing a loop inside the body of a loop is called nesting the loops. This idea is so useful to code

solutions for many real life computational problems. Following is the syntax of nested for loops

for (init; condition; increment) {
 for (init; condition; increment) {
 statement(s);
 }
 statement(s); // you can put more statements.
}
C++ allows 256 levels of nesting.

Following examples will help to understand the idea

Code 03

#include<iostream>
using namespace std;
int main(void)
{ // 10x10 Grid of a character
 int row,col;
 char display_char;
 cout<<"Enter a character for display:";
 cin>>display_char;
 cout<<endl<<endl;
 for(row=1;row<=10;row++)

EE-163 Computers & Programming Lab Session 05

NED University of Engineering & Technology Department of Electrical Engineering

 {
 for(col=1;col<=10;col++)
 {

 cout<<display_char;

 }
 cout<<endl;
 }
 return 0;
}

Draw output here

EE-163 Computers & Programming Lab Session 05

NED University of Engineering & Technology Department of Electrical Engineering

Code 04

#include<iostream>
using namespace std;

int main()
{
for(int row = 1; row <= 5; ++row)
{

for(int col = 1; col <= 5; ++col)
{

cout<<row<<" * "<<col<<" = "
<<row * col<<"\t";

}
cout<<endl;

}
}

Draw the output here

EE-163 Computers & Programming Lab Session 05

NED University of Engineering & Technology Department of Electrical Engineering

Exercise

Task 1:

Write a program to print following pattern using for loops (do not use if, if-else or any other decision

making statement).

a) *

b) 1

 121

 12321

 1234321

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 05

NED University of Engineering & Technology Department of Electrical Engineering

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 05

NED University of Engineering & Technology Department of Electrical Engineering

Task 2:

Using for() loops, write a program that displays all possible combination of 6 bit binary number. (Hint:

You shall need 6 int variables for the six digits)

Sample Run: 000000, 000001, 000010, 000011, ……………. 111111

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 06

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 06

Objective:

 Repetition with while () loop

In this lab session, we shall cover the following objectives

• The idea of sentinel controlled loop

• The while () loop

• Nested do while() loop

6.1 The idea of sentinel control loop

Loops that do not have a pre-defined ending point and terminate when the termination condition has

arrived. Unlike exhaustive loops, the termination condition in these loops is provided by manipulations

within the loop. Sometimes, loop control may need to be based on the value of what we are processing.

In this case, we would sentinel-controlled repetition. Sentinel-controlled repetition is sometimes called

indefinite repetition because it is not known in advance how many times the loop will be executed. It

is a repetition procedure for solving a problem by using a sentinel value (also called a signal value, a

dummy value or a flag value) to indicate "end of data entry". The sentinel value itself is not a part of

the processed data. C++ provides while and do while statements for implementing sentinel loops.

6.2 The while () loop

Generally, a while loop contains the following components

i. Loop control variable: A variable mostly inside the relational expression.

ii. Relational Expression

iii. Body (Multiple statements)

iv. A statement that makes the relational expression false.

EE-163 Computers & Programming Lab Session 06

NED University of Engineering & Technology Department of Electrical Engineering

The following code will explain these terms

Code 01

#include<iostream>

#include<conio2.h>

using namespace std;

int main(void)

{

 char guess;

 cout<<"Press any key from keyboard :";

 cout<<"\n This program shall end only"

 <<" when you press the secret key";

 guess=getche();

 while(guess!='x')

 {

 cout<<"\n Wrong input, try another key:";

 guess=getche();

 }

 cout<<"\nEureka! You have discovered it.";

 getch();

 return 0;

}

Observe the output of this program and describe in your words

__

__

__

__

EE-163 Computers & Programming Lab Session 06

NED University of Engineering & Technology Department of Electrical Engineering

Another example to explain the idea

Code 02

#include<iostream>
#include<iomanip>
#include<conio2.h>
using namespace std;
int main(void)
{
 char option='y';
 double num;
 int counter;
 cout<<"\t\t****Multiplication Tables****";
 while(option!='n')
 {
 cout<<"\n\nEnter a number:";
 cin>>num;
 for(counter=1;counter<=15;counter++)
 {
 cout<<left;
 cout<<setw(10)<<num<<"*"<<right
 <<setw(10)<<counter<<"="<<
 setw(10)<<num*counter<<endl;
 }
 cout<<"\n\nDo you like to continue?(y or n):";
 option=getche();
 }
 if(option=='n')
 {
 cout<<"Thanks for using this program";
 }
 getch();
 return 0;
}

EE-163 Computers & Programming Lab Session 06

NED University of Engineering & Technology Department of Electrical Engineering

6.3 The do while loop

Unlike for and while loops, which test the loop condition at the top of the loop, the do...while loop checks its

condition at the bottom of the loop. A do...while loop is similar to a while loop, except that a do...while loop

is guaranteed to execute at least one time. Following code will help to understand the idea.

Code 03

#include<iostream>
#include<iomanip>
#include<conio2.h>
using namespace std;
int main(void)
{
 char option;
 double num;
 int counter;
 cout<<"\t\t****Multiplication Tables****";
 do
 {
 cout<<"\n\nEnter a number:";
 cin>>num;
 for(counter=1;counter<=10;counter++)
 {
 //cout<<left;
 cout<<setw(10)<<num<<"*"<<right
 <<setw(10)<<counter<<"="<<
 setw(10)<<num*counter<<endl;
 }
 cout<<"\n\nDo you like to continue?(y or n):";
 option=getche();
 }
 while(option!='n');
 if(option=='n')
 {
 cout<<"Thanks for using this program";
 }
 getch();
 return 0;
}

EE-163 Computers & Programming Lab Session 06

NED University of Engineering & Technology Department of Electrical Engineering

Exercise

Task 1:

Write a program that continuously asks user to enter an integer and displays the SUM of the current

input with all previous input. The program continuous to run until the SUM value is less than equal to

100. Use while() loop.

Sample Run:

Enter an integer: 12 [Enter]

Running Sum = 12

Enter an integer: 10 [Enter]

Running Sum = 22

Enter an integer:70 [Enter]

Running Sum = 92

.

.

.

Sum exceeds 100. Program terminated.

__

__

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 06

NED University of Engineering & Technology Department of Electrical Engineering

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

EE-163 Computers & Programming Lab Session 06

NED University of Engineering & Technology Department of Electrical Engineering

Task 2:

Write a program that counts number of digits in an integer entered by the user. Use while() loop.

Sample Run:

Enter an integer: 123456 [Enter]

No. of digits = 6

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-163 Course Title: Computers and Programming
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Input/Output Variable
Recognition and
Definition:
Recognise and perceive
correct input/output
variables along with
data types

15%

Incorrect
perception for
both
Input/Output
variable count
and data type

0

Inorrectly
perceives the
required
Input/Output
variable count
but data type is
correctly
recognized

15

Correctly
perceives the
required
Input/Output
variable count but
data type is not
recognized

30

Correctly
perceives the
required
Input/Output
variable count
and data type
with slight
issues

45

Correctly
perceives the
required
Input/Output
variable count
and data type

60

User Interface creation
for Input and Output
Variables:
Recognise and use
correct Input/Output
instructions for easy
user interaction

15%

Little to no
understanding
of
Input/Output
Instructions
and their use

0

Correctly
recognises
Output
instruction use
but incorrect
use of Input
instructions

15

Correctly
recognises Input
instruction use
but incorrect use
of Output
instructions

30

Correctly
recognises and
uses
Input/Output
instructions but
user interface is
ineffective

45

Correctly
recognises and
uses
Input/Output
instructions that
creates effective
user interface

60

Manipulating Input(s)
to create desired
Output(s):
Imitate and practice
given set of
programming
instructions to
compute/produce the
desired output.

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/semantic
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/semantic
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no
syntax/semantic
errors

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

15%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

15

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

30

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

45

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

60

Detecting and
Removing
Errors/Exceptions:
Detect common
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Code

10%

Unable to
check and
detect error
messages in
software

0

Able to find
error messages
in software but
no
understanding
of detecting
those errors and
their types

10

Able to find error
messages in
software as well
as understanding
of detecting some
of those errors
and their types

20

Able to find
error messages
in software as
well as
understanding
of detecting all
of those errors
and their types

30

Able to find
error messages
in software
along with the
understanding
to detect and
rectify them

40

Duplicating given
Code/Instructions:
Copying/Duplication of
given Code/Instructions
without syntax and
semantic errors from
lab manual or slides

10%

Unable to
reproduce
given piece of
code correctly
on software

0

Little ability to
reproduce given
piece of code
correctly on
software (major
syntax and
semantic errors)

10

Ability to
reproduce given
piece of code
correctly on
software with
minor syntax and
semantic errors

20

Ability to
reproduce given
piece of code
correctly on
software with
little to no
syntax and
semantic errors

30

Ability to
reproduce given
piece of code
correctly on
software with no
syntax and
semantic errors

40

Manipulating given
Code/Instructions
under guidance:
Manipulate given
Code/Instructions
under supervision, in
order to produce a
different result

10%

Unable to
understand
and follow
teacher’s
guidance to
manipulate
code

0

Ability to
understand
teacher’s
guidance
regarding
manipulation
but could not
follow

10

Ability to
understand
teacher’s
guidance
regarding code
manipulation but
lags behind in
following

20

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows
majority of
instructions

30

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows all
instructions
successfully

40

Total Points (out of 400)

Weighted CLO (Psychomotor Score) (Points/4)

Remarks

Instructor’s Signature with Date

EE-163 Computers & Programming Lab Session 07

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 07

OBJECTIVES:

➢ Algorithms with loops

➢ Example Program for Executing Algorithms using Loops

1. Random Number Generation

2. Fibonacci Sequence

3. GCD using Naïve Method

4. GCD using Euclid Slow Method

5. GCD using Fast Euclid Method

6. Square Root using Newton Raphson’s Method

7. Square Root using Bisection Method

8. Trapezoidal Integration

9. Prime and Composite Detection

THEORY & PROGRAMS:

What is Algorithm?

In Programming, Algorithm is a set of well-defined instructions in sequence to solve a problem. An

algorithms should have a clear stopping point

Random Number Generation:

In C++, rand() function defined in cstdlib is used to generate random numbers in the range of 0 to

RAND_MAX (a symbolic constant defined in cstdlib).

Let’s have a look!

//Random Number Generation

#include<iostream>

#include<cstdlib>

using namespace std;

int main()

{

 for(int i=0; i<10; i++)

 {

 cout<<rand()<<endl;

 }

}

EE-163 Computers & Programming Lab Session 07

NED University of Engineering & Technology Department of Electrical Engineering

To generate random numbers in a specific range, modulo operator is used. Let’s have a look!

Fibonacci Sequence:

Fibonacci Sequence is characterized by the fact that every number in it is a sum of two preceding ones.

1,1,2,3,5,8,….

GCD:

In mathematics, GCD of a two or more integers, is the largest positive integer that divides the number without

remainder.

There are three methods to calculate GCD:

1. Using Naïve Method

2. Euclid Slow Method

3. Euclid Fast Method

//Random Number Generation

#include<iostream>

#include<cstdlib>

using namespace std;

int main()

{

 for(int i=0; i<10; i++)

 {

 cout<<rand()%100<<endl;

 }

}

#include<iostream>

using namespace std;

int main()

{

 int n,counter;

 char x;

 int prev_term = 1,curr_term = 1,sum;

 cout<<"Enter number of terms to generate: ";

 cin>>n;

 cout<<prev_term<<" ";

 for(counter=1; counter<n; counter++)

 {

 if(counter%10 == 0)cout<<endl;

 cout<<curr_term<<" ";

 sum = prev_term + curr_term;

 prev_term = curr_term;

 curr_term = sum;

 }

}

#include<iostream> //Using Naïve Method

using namespace std;

int main()

{

 int first_num, second_num, gcd;

 cout<<"Enter first number: ";

 cin>>first_num;

 cout<<"Enter second number: ";

 cin>>second_num;

 for(int i=1;i<=first_num&&i<=second_num; i++)

 {

 if(first_num%i==0 && second_num%i==0)

 {

 gcd = i;

 }

 }

 cout<<"Greatest Common Divisor(GCD): "<<gcd<<endl;

}

EE-163 Computers & Programming Lab Session 07

NED University of Engineering & Technology Department of Electrical Engineering

The Euclidean Algorithm is based on the principle that the GCD of two numbers doesn’t change if the

larger number is replaced by its difference with the smaller number. For example: GCD of 252 and

105 is 21 and the same number 21 is also the GCD of 105 and 147=252-105.

#include<iostream> //Using Euclid Slow Method

using namespace std;

int main()

{

 int num1, num2;

 cout<<"Enter first number: ";

 cin>>num1;

 cout<<"Enter second number: ";

 cin>>num2;

 while(num1 != num2)

 {

 if(num1>num2)

 {

 num1 = num1 - num2;

 }

 else

 {

 num2 = num2 - num1;

 }

 }

 cout<<"GCD is: "<<num1;

}

#include<iostream> //Using Euclid Fast Method

using namespace std;

int main()

{

 int num1,num2,r,a,b;

 cout<<"Enter first number: ";

 cin>>num1;

 cout<<"Enter second number: ";

 cin>>num2;

 if(num1>num2)

 {

 a = num1;

 b = num2;

 }

 else

 {

 a = num2;

 b = num1;

 }

 while(b != 0)

 {

 r = a%b;a = b;b = r;

 }

 cout<<"GCD is: "<<a;

}

EE-163 Computers & Programming Lab Session 07

NED University of Engineering & Technology Department of Electrical Engineering

A more efficient version of the algorithm is to replace subtraction of larger and smaller number by

division of larger and smaller and replacing the number by remainder.

Newton Raphson’s Method:

Newton Raphson’s method is a method of finding successively better approximation to the roots of

real valued function.

𝑥: 𝑓(𝑥) = 0

To find the value of x following iterative formula is used.

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

Let us now calculate square root of a number using Newton’s Raphson’s method.

Bisection Method:

The bisection method in mathematics is a root-finding method that repeatedly bisects an interval and

then selects a subinterval in which a root must lie for further processing.

The method is applicable for numerically solving the equation f(x) = 0 for the real variable x,

where f is a continuous function defined on an interval [a, b] and where f(a) and f(b) have opposite

signs. In this case a and bare said to bracket a root since, by the intermediate value theorem, the

continuous function f must have at least one root in the interval (a, b).

#include<iostream>

#include<cmath>

 using namespace std;

 int main()

 {

 double N,root,counter=0;

 cout<<"Enter a +ve number to calculate its square root: ";

 cin>>N;

 root = N/2.0;

 while(fabs(((root*root)-N))>0.0001)

 {

 root = root - (((root*root)-N)/(2.0*root));

 counter++;

 }

 cout<<"Square root of "<<N<<" is: "<<root;

 }

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Root-finding_method
https://en.wikipedia.org/wiki/Bisection
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Intermediate_value_theorem

EE-163 Computers & Programming Lab Session 07

NED University of Engineering & Technology Department of Electrical Engineering

Trapezoidal Integration:

In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid

rule or trapezium rule) is a technique for approximating the definite integral.

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

The trapezoidal rule works by approximating the region under the graph of the function f(x) as a trapezoid and

calculating its area.

The approximation the integral becomes,

∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

2
∑ (𝑓(𝑥𝑘+1) + 𝑓(𝑥𝑘))

𝑁

𝑘=1

𝑏

𝑎

#include<iostream>

#include<cmath>

using namespace std;

int main()

{

 double a,b,c,x,N;

 cout<<"Enter a number +ve number: ";

 cin>>N;

 a = 1.0; b = N;

 x = 1.0;

 while(fabs((x*x)-N)>0.0001)

 {

 c = 0.5*(a+b);

 x = c;

 if(x*x-N<0)

 a = c;

 else

 b = c;

 }

 cout<<endl<<"Root is: "<<x;

}

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Trapezoid

EE-163 Computers & Programming Lab Session 07

NED University of Engineering & Technology Department of Electrical Engineering

Exercise:

Q1: Halley’s Method for Determination of roots of polynomial is

𝑥𝑛+1 = 𝑥𝑛 −
2𝑓(𝑥𝑛)𝑓′(𝑥𝑛)

2𝑓′(𝑥𝑛)2 − 𝑓(𝑥𝑛)𝑓′′(𝑥𝑛)

Write a program to find roots of the following polynomial using Halley’s method, precision is 0.0001

𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

Q2: Write an iterative algorithm to implement the following expansion (precision upto 0.0001)

#include<iostream>

#include<cmath>

using namespace std;

int main()

{

 double x,a,b,delta=0.0001,sum=0.0,fx1,fx2,deg_a,deg_b;

 double pi = 3.14159265359;

 int counter,counter_max;

 cout<<"Enter x_min in degrees: ";

 cin>>deg_a;

 cout<<"Enter x_max in degrees: ";

 cin>>deg_b;

 a = deg_a*pi/180.0;

 b = deg_b*pi/180.0;

 counter_max = ((b-a)/delta);

 x = a;

 for(counter=1; counter<=counter_max; counter++)

 {

 fx1 = sin(x);

 fx2 = sin(x+delta);

 sum = sum + (fx1+fx2);

 x = x + delta;

 }

 sum = 0.5*sum*delta;

 cout<<"integral = "<<sum;

 return 0;

}

1

Cover Page for Each PBL/OEL
Course Code: EE-163

Course Name: Computers & Programming

Semester: Fall

Year: FE

Section:

Batch:

Lab Instructor

name:

Submission

deadline:

PBL or OEL Statement:
Q: Write a program to find roots of the following polynomial using Halley’s Method with precision

0.0001.

𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

Halley’s method for determining roots of polynomial is,

𝑥𝑛+1 = 𝑥𝑛 −
2𝑓(𝑥𝑛)𝑓′(𝑥𝑛)

2𝑓′(𝑥𝑛)2 − 𝑓(𝑥𝑛)𝑓′′(𝑥𝑛)

Q: Write an iterative algorithm to implement the following expansion (precision upto 0.0001)

sin(𝑥) = ∑
(−1)𝑛

(2𝑛 + 1)!
𝑥2𝑛+1

∞

𝑛=0

Deliverables:
C++ code containing the implementation of the above the algorithms.

Methodology:

Follow methods provided in the lab manual for implementing above algorithms.

2

Guidelines:

Understand the concept of Halley's Method and how it can be used to find the roots of

a polynomial

Write a plan for the program, including the algorithm and data structures needed.

Write the code for the program, using appropriate data types and functions to

implement the Halley's Method algorithm.

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-163 Course Title: Computers and Programming
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Input/Output Variable
Recognition and
Definition:
Recognise and perceive
correct input/output
variables along with
data types

15%

Incorrect
perception for
both
Input/Output
variable count
and data type

0

Inorrectly
perceives the
required
Input/Output
variable count
but data type is
correctly
recognized

15

Correctly
perceives the
required
Input/Output
variable count but
data type is not
recognized

30

Correctly
perceives the
required
Input/Output
variable count
and data type
with slight
issues

45

Correctly
perceives the
required
Input/Output
variable count
and data type

60

User Interface creation
for Input and Output
Variables:
Recognise and use
correct Input/Output
instructions for easy
user interaction

15%

Little to no
understanding
of
Input/Output
Instructions
and their use

0

Correctly
recognises
Output
instruction use
but incorrect
use of Input
instructions

15

Correctly
recognises Input
instruction use
but incorrect use
of Output
instructions

30

Correctly
recognises and
uses
Input/Output
instructions but
user interface is
ineffective

45

Correctly
recognises and
uses
Input/Output
instructions that
creates effective
user interface

60

Manipulating Input(s)
to create desired
Output(s):
Imitate and practice
given set of
programming
instructions to
compute/produce the
desired output.

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/semantic
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/semantic
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no
syntax/semantic
errors

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

15%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

15

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

30

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

45

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

60

Detecting and
Removing
Errors/Exceptions:
Detect common
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Code

10%

Unable to
check and
detect error
messages in
software

0

Able to find
error messages
in software but
no
understanding
of detecting
those errors and
their types

10

Able to find error
messages in
software as well
as understanding
of detecting some
of those errors
and their types

20

Able to find
error messages
in software as
well as
understanding
of detecting all
of those errors
and their types

30

Able to find
error messages
in software
along with the
understanding
to detect and
rectify them

40

Duplicating given
Code/Instructions:
Copying/Duplication of
given Code/Instructions
without syntax and
semantic errors from
lab manual or slides

10%

Unable to
reproduce
given piece of
code correctly
on software

0

Little ability to
reproduce given
piece of code
correctly on
software (major
syntax and
semantic errors)

10

Ability to
reproduce given
piece of code
correctly on
software with
minor syntax and
semantic errors

20

Ability to
reproduce given
piece of code
correctly on
software with
little to no
syntax and
semantic errors

30

Ability to
reproduce given
piece of code
correctly on
software with no
syntax and
semantic errors

40

Manipulating given
Code/Instructions
under guidance:
Manipulate given
Code/Instructions
under supervision, in
order to produce a
different result

10%

Unable to
understand
and follow
teacher’s
guidance to
manipulate
code

0

Ability to
understand
teacher’s
guidance
regarding
manipulation
but could not
follow

10

Ability to
understand
teacher’s
guidance
regarding code
manipulation but
lags behind in
following

20

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows
majority of
instructions

30

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows all
instructions
successfully

40

Total Points (out of 400)

Weighted CLO (Psychomotor Score) (Points/4)

Remarks

Instructor’s Signature with Date

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 08

OBJECTIVES:

Arrays in C/C++.

➢ Understanding array as a sequential data structure

➢ Declaring and initializing arrays

➢ Using loops to manipulate/process arrays

➢ Working with 2D arrays

➢ Using functions to manipulate/process arrays

THEORY & PROGRAMS:

Array:

An array is the list of variables of a certain data type having a single name, define contiguously in the

memory.

In C/C++ an array is called a “subscripted variable” for obvious reasons. It is the very first step towards the

data structures.

An integer array of 5 elements would look like this in the memory. The memory locations occupied by the

array are numbered 0 to 4 while the array itself is the content of these locations.

Declaring an Array:

C++ has 5 basic variable data types. Since an array is a list of variables it can also be defined as any one of

them namely; integer, float, character, long and double.

Try the following program to understand array definition.

➢ int num[3];

➢ float temperature[7];

➢ char myname[25];

➢ unsigned int roll_num[270];

➢ double cgpa[100];

And this is allowed:

➢ const int size = 30;

➢ int arr[size];

The general method for defining an array is:

 datatype arrayname [no. of elements]

Points to note here:

1) no. of elements is always constant and can’t be taken from user

2) Usually no. of elements are given as a #define directive or const int variable

Example: #define LIM 3,

 const int N = 12;

3) C/C++ never stops the programmer from exceeding the array limit (e.g. cin>>num[5], so you need to

be cautious regarding that).

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

Initializing an Array:

Initializing an array means declaring it and assigning some initial values to it. This can be done easily by the

following syntax shown in the program.

➢ The syntax for initializing values is simply the use of parenthesis {} and putting the values in it.

➢ Even when the no. of elements is not defined, the compiler fixes it to a constant value that is equal to

the no. of elements actually present.

➢ Declaration does not require the no. of elements to be explicitly given since the compiler calculates it

automatically.

Practical Programming with Arrays:

Practically speaking we exploit one special property of arrays to work with them. As the array index

– the number written inside the square bracket – is always going to be an integer value, we define a

separate integer variable and write it within the square bracket (example: num[index]). This empowers

us to manipulate the array by changing the index variable.

Once the index variable is defined, the best way to manipulate it through a loop. The following

example uses for() loops to perform operation on an array.

Use of for() and while() loops in Programming Arrays:

Arrays can be manipulated with for() loops. This is ideal in the case of arrays that need to be processed

completely – all elements, first to last. But when we need part of array which has some unused

locations, we need while() loops. In case of using while() loops for controlling array operations where

all array locations are not utilized there are two special considerations.

#define LIM 3

int main(void)

{

float num[LIM]={12.9, 9.0, 986.89}; // Declaration of an array

char ch[]={'a‘,'b‘,'c‘,'d'}; // Declaration of char array, no. of

 // elements not assigned

cout<<"float array:”<<num[0]<<“,”<<num[1]<<“,”<<num[2];

cout<<"char array:“<<ch[0] <<“,”<<ch[1] <<“,”<<ch[2] <<“,”<<ch[3];

return 0;

}

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

In the next example we will write a program that has a character array of 25 elements. Some of these

are used by the user to enter his/her name while others remain unused.

// Proper method of processing arrays with

// for() loops

#include<iostream>

#include<conio2.h>

using namespace std;

#define LIM 10

int main(void)

{

 // variable definition

 // 10 element float array, numbered 0 to 9

 float num[LIM];

 int index_count;// an integer variable to access different array

locations

 //Automatic initialization with even numbers

 for(index_count=0;index_count<LIM;index_count++)

 {

 num[index_count]=(index_count+1)*2;

 }

 cout<<"\nPress any key to continue";

 getch();

 // loop for printing output

 for(index_count=0;index_count<LIM;index_count++)

 {

 cout<<"\nElement no."<<index_count<<" = "<<num[index_count];

 }

 getch();

 return 0;

}

// Note:

// 1) A for() loop is feasible when we have to process all elements of

anarray.

// 2) We have used three loops for three tasks; input, processing, and

output.

// We could have done this through a single loop but we shall make our

// programs modular in this way.

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

Array Processing with while() loop:

//processing arrays with while() loops

#include<iostream>

#include<conio2.h>

using namespace std;

int main(void)

{

 const int MAX=100;

 // Array/variable definition

 char name[MAX];

 int index;

 int maxindex;

 cout<<"\nEnter your name (press ESC to stop)\n";

 // Taking input in array locations:

 // index goes from 0 to unknown value

 index=0;

 name[index]=getche();

 while(name[index]!=27)

 {

 index++;

 if(index==100)

 {

 cout<<"\nArray Overflow\n";

 break;

 }

 name[index]=getche();

 }

 maxindex=index;

 // Simple processing of name[] array, converting small into capital

case

 // index goes upto maxindex less 1

 for(index=0; index<maxindex; index++)

 {

 if((name[index]>=97)&&(name[index]<=122))

 {

 name[index]=name[index]-32;

 }

 }

 cout<<"\nPrinting the processed array.\n";

 for(index=0;index<maxindex; index++)

 {

 cout<<name[index];

 }

 return 0;

}

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

Two Dimensional Arrays:

C++ allows the programmer to define and work with multi-dimensional arrays. Multidimensional

arrays find extensive usage in programming specially when handling large data-set. In this second

part of the lab we will see how to use 2-dimensional arrays.

Representation of 2D Array:

A 2D relay, also called an array of arrays, is practically nothing but a two dimensional grid of numbers

or characters. Just like 1D array which has a max length, a 2D array has both max length and max

width.

Declaring and Initializing a 2D Array:

A 2D array requires both ROWS and COLUMNS to be defined in separate square brackets.

Example: int num[5][10]; //a 5 row and 10 column integer array

 char names[5][20] //a character array in which 5 names can be stored each with 20

 //characters length

Declaration is also similar for a 2D array that is why using curly brackets {}.

Example: float price[2][3] = {{12.0,3.4,56.8},{0.0,23.8,65.8}};

 char cars[3][7] = {{‘t’,’o’,’y’,’o’,’t’,’a’},{‘k’,’i’,’a’},{‘h’,’o’,’n’,’d’,’a’}};

 char cars[3][7] = {“toyota”,”kia”,”honda”};

Practical Programming with 2D Arrays:

Considerations for practical programming with 2D arrays are same as those for 1D arrays. However there is

one understandable difference to access all location of a 2D array, you need a nested loop.

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

Using Nested for() loops to process arrays:

In the previous example, the array was manipulated with nested for() loops. This is ideal in the case

of arrays that need to be processed completely – all elements, first to last. But when we need only a

part of array which has some unused locations, we need nested while() loops.

In the next example we will write a program that has a 2D character array of 10x25 elements. Some

of these are used by the user to enter his/her name while others remain unused.

#include<iostream>

#include<conio2.h>

using namespace std;

#define row 5

#define col 3

int main(void)

{

 int i,j;

 float num[row][col]; // a global array

 cout<<"Enter elements of array:";

 for(i=0;i<row;i++) // loop for scanning

 {

 for(j=0;j<col;j++)

 {

 cout<<"\nEnter location "<<i<<","<<j<<":";

 cin>>num[i][j];

 }

 }

 cout<<"\n \n";

 for(i=0;i<row;i++) // loop for printing

 {

 for(j=0;j<col;j++)

 {

 cout<<"Location "<<i<<","<<j<<"="

 <<num[i][j]<<"\t";

 }

 cout<<"\n";

 }

 getch();

 return 0;

}

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

#include<iostream>

#include<conio2.h>

using namespace std;

#define row 10

#define col 25

int main(void)

{

 static char names[row][col]; // static class is empty

 int i,j,maxrow,maxcol;

 char ch;

 cout<<"Enter name of 10 students,press ESC to stop\n";

 i=0;

 ch=1;

 while(ch!=27)

 { // 1st while start

 j=0;

 cout<<"\n Enter name "<< i+1<<":";

 ch=getche();

 while((ch!=13)&&(ch!=27))

 { // 2nd while starts

 names[i][j]=ch;

 j=j+1;

 if(j==25)

 {

 cout<<"\n Too long name.";

 i=i-1;

 break;

 }

 ch=getche();

 } // 2nd while ends

 i=i+1;

 if(i==10)

 {

 cout<<"\n No. of names exceeded";

 break;

 }

 cout<<"\nPress ESC to stop, any other key to continue.";

 } // 1st while ends

 maxrow=i;

 cout<<endl<<endl;

 for(i=0;i<maxrow;i++) // loop for printing

 {

 for(j=0;j<col;j++)

 {

 cout<<names[i][j];

 }

 cout<<endl;

 }

 getch();

 return 0;

}

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

Conclusions for practical 2D Array Programming:

➢ For the programs where you need to utilize the array completely, use for() loops – nothing

special.

➢ For the programs in which a part of array is used, we use while() loops.

✓ The total no. of rows and columns actually utilized by the array needs to be saved for

the future use in the program.

✓ while() loop needs a separate termination condition to avoid exceeding array limit.

Calling functions to process arrays:

Arrays can also be passed to functions for input, processing and output. One vital difference between

passing variable and passing array to function is that ‘Calling’ a function with array as argument is a

‘Call by reference’ – when array is passed to function, its address is passed to it.

Method for Writing function that passes arrays:

➢ Write prototype with name of array to be used inside function with proper data-type.

int bubblesort(float array[], int N, char order);

➢ Write the function inside which the array is processed. Note that this function shall modify the

original array in main() function, thus no need to return the array.

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

#include<iostream>

#include<conio2.h>

using namespace std;

// Function Prototype

int bubblesort(float array[], int N, char order);

// array is the array to sort, N is the array size

// and order dictates ascending/descending sorting

int main(void)

{

 float num[10]={10.1,2.0,34.5,4.6,-5.7,

 6.2,77.0,18.8,9.4,0.0};

 char option;

 int index;

 cout<<"\nPrinting the given array.\n\n";

 for(index=0;index<10; index++)

 cout<<num[index]<<endl;

 cout<<"\nHow would you like to sort it?"<<

 " press a for ascending d for";

 option=getche();

 bubblesort(num, 10, option); // Function Call

 cout<<"\n\nPrinting the sorted array.\n\n";

 for(index=0;index<10; index++)

 cout<<num[index]<<endl;

 getch();

 return 0;

} // End of main()

int bubblesort(float array[], int N, char order)

{

 float buffer;

 int pivot, index;

 // Defensive Condition: in case of error in N and order values

 if((N<=0)||((order!='a')&&(order!='d')))

 {

 return 0;

 }

 for(pivot=0;pivot<N-1;pivot++)

 {

 for(index=pivot;index<N;index++)

 {

 if(order=='a')

 {

 if(array[pivot]>array[index])

 {

 buffer=array[pivot];

 array[pivot]=array[index];

 array[index]=buffer;

 }

 }

 if(order=='d')

 {

 if(array[pivot]<array[index])

 {

 buffer=array[pivot];

 array[pivot]=array[index];

 array[index]=buffer;

 }

 }

 }

 }

 return 1;

}

EE-163 Computers & Programming Lab Session 08

NED University of Engineering & Technology Department of Electrical Engineering

Important Considerations for passing Arrays to Function:

➢ An array is passed to function by reference; the actual array address is given to the function

hence making return un-necessary.

➢ In function prototype and definition, array name is followed by empty square bracket.

int bubblesort(float array[], int N, char order);

➢ For 2D arrays, function prototype and definition has array name followed by 2 pairs of square

bracket – for rows and columns. But in 2D arrays the second pair contains the no. of columns

while the first pair remains empty.

void printarray(array[][5], int size);

➢ For any array function, the function call only requires the array name to be passed, not the

brackets.

bubblesort(num, 10, ‘a’);

Exercise:

Q1: Read in 20 numbers in an array, each of which is in between 10 and 100 – if the number is not in

this range, ask user to re-enter. As each number is read by the program, print it only if it is not a

duplicate of a number already read.

Q2: Write a simple database program that stores name, roll no., and cgpa in FE , all in separate arrays,

for 25 students. The program should be able to let the user enter records, display records and replace

any one of the records (switch()-case can be used to give these options to user). The program must

continue until ESC is pressed. [Note: A single ‘record’ means name, roll no., and cgpa of one student]..

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-163 Course Title: Computers and Programming
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Input/Output Variable
Recognition and
Definition:
Recognise and perceive
correct input/output
variables along with
data types

15%

Incorrect
perception for
both
Input/Output
variable count
and data type

0

Inorrectly
perceives the
required
Input/Output
variable count
but data type is
correctly
recognized

15

Correctly
perceives the
required
Input/Output
variable count but
data type is not
recognized

30

Correctly
perceives the
required
Input/Output
variable count
and data type
with slight
issues

45

Correctly
perceives the
required
Input/Output
variable count
and data type

60

User Interface creation
for Input and Output
Variables:
Recognise and use
correct Input/Output
instructions for easy
user interaction

15%

Little to no
understanding
of
Input/Output
Instructions
and their use

0

Correctly
recognises
Output
instruction use
but incorrect
use of Input
instructions

15

Correctly
recognises Input
instruction use
but incorrect use
of Output
instructions

30

Correctly
recognises and
uses
Input/Output
instructions but
user interface is
ineffective

45

Correctly
recognises and
uses
Input/Output
instructions that
creates effective
user interface

60

Manipulating Input(s)
to create desired
Output(s):
Imitate and practice
given set of
programming
instructions to
compute/produce the
desired output.

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/semantic
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/semantic
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no
syntax/semantic
errors

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

15%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

15

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

30

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

45

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

60

Detecting and
Removing
Errors/Exceptions:
Detect common
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Code

10%

Unable to
check and
detect error
messages in
software

0

Able to find
error messages
in software but
no
understanding
of detecting
those errors and
their types

10

Able to find error
messages in
software as well
as understanding
of detecting some
of those errors
and their types

20

Able to find
error messages
in software as
well as
understanding
of detecting all
of those errors
and their types

30

Able to find
error messages
in software
along with the
understanding
to detect and
rectify them

40

Duplicating given
Code/Instructions:
Copying/Duplication of
given Code/Instructions
without syntax and
semantic errors from
lab manual or slides

10%

Unable to
reproduce
given piece of
code correctly
on software

0

Little ability to
reproduce given
piece of code
correctly on
software (major
syntax and
semantic errors)

10

Ability to
reproduce given
piece of code
correctly on
software with
minor syntax and
semantic errors

20

Ability to
reproduce given
piece of code
correctly on
software with
little to no
syntax and
semantic errors

30

Ability to
reproduce given
piece of code
correctly on
software with no
syntax and
semantic errors

40

Manipulating given
Code/Instructions
under guidance:
Manipulate given
Code/Instructions
under supervision, in
order to produce a
different result

10%

Unable to
understand
and follow
teacher’s
guidance to
manipulate
code

0

Ability to
understand
teacher’s
guidance
regarding
manipulation
but could not
follow

10

Ability to
understand
teacher’s
guidance
regarding code
manipulation but
lags behind in
following

20

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows
majority of
instructions

30

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows all
instructions
successfully

40

Total Points (out of 400)

Weighted CLO (Psychomotor Score) (Points/4)

Remarks

Instructor’s Signature with Date

EE-163 Computers & Programming Lab Session 09

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 09

OBJECTIVES:

To become familiar with User Defined Functions in C++.

➢ Procedure to write simple C/C++ functions

➢ Understanding the process of function call and their handling by computer.

➢ Writing functions that accepts values and reference.

➢ Making your header file to keep your function in one place

THEORY & PROGRAMS:

Functions:

Function is a self-contained one piece of code with some inputs upon which it does processing and

returns the output.

Number of inputs in a function can be any value and any data-type. However, in a C/C++, function

can only return one output. This is handicap when writing functions required to generate multiple

outputs.

Procedure for writing Functions:

There are three steps for writing Functions,

Step 1: Specify input(s) / output and write “prototype” before int main (void)

Step 2: Write function “definition” (the actual piece of code) after int main (void), make sure you have

returned the correct output at the completion of definition.

Step 3: “Call” the function where ever it is needed in the main() function.

Why Use Functions:

Functions provide a number of benefits that make them extremely useful in non-trivial programs.

➢ Organization: As programs grow in complexity, having all the code live inside the main()

function becomes increasingly complicated. A function is almost like a mini-program that we

can write separately from the main program, without having to think about the rest of the

program while we write it. This allows us to divide complicated tasks into smaller, simpler

ones, and drastically reduces the overall complexity of our program.

➢ Reusability: Once a function is written, it can be called multiple times from within the program.

This avoids duplicated code and minimizes the probability of copy/paste errors. Functions can

also be shared with other programs, reducing the amount of code that has to be written from

scratch (and retested) each time.

➢ Testing: Because functions reduce code redundancy, there’s less code to test in the first place.

Also because functions are self-contained, once we’ve tested a function to ensure it works, we

don’t need to test it again unless we change it. This reduces the amount of code we have to test

at one time, making it much easier to find bugs (or avoid them in the first place).

EE-163 Computers & Programming Lab Session 09

NED University of Engineering & Technology Department of Electrical Engineering

➢ Extensibility: When we need to extend our program to handle a case it didn’t handle before,

functions allow us to make the change in one place and have that change take effect every time

the function is called.

➢ Abstraction: In order to use a function, you only need to know its name, inputs, outputs, and

where it lives. You don’t need to know how it works, or what other code it’s dependent upon

to use it. This is super-useful for making other people’s code accessible (such as everything in

the standard library).

To Calculate Factorial of a Number:

//Program that calculates factorial of a number

#include<iostream>

#include<iomanip>

using namespace std;

//Function Prototype

int factorial(int);

int main(void)

{

 int number,fact;

 cout<<"Enter a positive number:";

 cin>>number;

 cout<<"\nFactorial of "<<number

 <<" is "<<factorial(number);

 return 0;

}

//Function Definition

int factorial(int num)

{

 int counter, answer=1;

 if(num<0 || num>15)

 {

 return 0; //indicates error

 }

 if(num==0)

 {

 return 1; //special case

 }

 for(counter=1;counter<=num;counter++)

 {

 answer=answer*counter;

 }

 return answer;

}

EE-163 Computers & Programming Lab Session 09

NED University of Engineering & Technology Department of Electrical Engineering

Functions that returns nothing – Void Functions:

#include<iostream>

#include<conio2.h>

using namespace std;

void delay(int num);

int main(void)

{

 getch();

 cout<<"Testing void function delay()\n";

 delay(1);

 cout<<"This line is printed after delay value 1\n";

 delay(2);

 cout<<"This line is printed after delay value 2\n";

 delay(5);

 cout<<"This line is printed after delay value 5\n";

 return 0;

}

void delay(int num)

{

 for(int counter=1;counter<=num*100000000;counter++)

 {

 }

}

EE-163 Computers & Programming Lab Session 09

NED University of Engineering & Technology Department of Electrical Engineering

Functions that returns Boolean – Predicate Functions:

#include<iostream>

#include<conio2.h>

#include<cmath>

using namespace std;

bool iseven(int num);

int main (void)

{

 int N;

 cout<<"Enter a number:";

 cin>>N;

 if(iseven(N)==1)

 {

 cout<<"\nThe number is even.";

 }

 else

 {

 cout<<"\nThe number is odd.";

 }

 return 0;

}

bool iseven(int num)

{

 bool result;

 if(num%2==0)

 {

 return true;

 }

 else

 {

 return false;

 }

}

EE-163 Computers & Programming Lab Session 09

NED University of Engineering & Technology Department of Electrical Engineering

Functions with two or more Outputs – using Global Variables:

// Function to calculate two roots of

// quadratic equation and give back to

// main()

#include<iostream>

#include<conio2.h>

#include<cmath>

using namespace std;

float quadroots(float,float,float);

// Function Prototype:quadroots() returns the

// 1st root of equation, second root is saved

// in global variable root2

float root2;

// Global Variable: Can be seen and

// manipulated by all functions

int main(void)

{

 float num1,num2,num3,root1;

 cout<<"\t\tProgram for calculating roots"

 <<" of Quadratic Equation\n\t\t"

 <<" of the form ax^2+bx+c=0";

 cout<<"\nEnter the 1st co-efficient a:";

 cin>>num1;

 cout<<"\nEnter the 2nd co-efficient b:";

 cin>>num2;

 cout<<"\nEnter the constant c:";

 cin>>num3;

 root1=quadroots(num1,num2,num3);

 //Function Call: root1 is returned by quadroots()

 cout<<"The roots are "<<root1<<","<<root2;

 getch();

 return 0;

}

float quadroots(float a,float b,float c) // Function Definition

{

 float root1;

 // Discriminant is -ve, complex roots

 if(((b*b)-(4*a*c))<0.0)

 {

 cout<<"\nRoots are imaginary,"

 <<" can't be calculated\n";

 root1=0.0;

 root2=0.0;

 }

 else

 {

 root1=(-b+sqrt((b*b)-(4*a*c)))/(2*a);

 root2=(-b-sqrt((b*b)-(4*a*c)))/(2*a);

 }

 return root1;

}

EE-163 Computers & Programming Lab Session 09

NED University of Engineering & Technology Department of Electrical Engineering

Understanding Global Variables:

➢ Global variables are seen by and accessible to all functions.

➢ They are declared outside the scope of any function

➢ Care should be taken in using Global variables as they can be changed by any function in

program.

➢ Declaring many Global variables is a bad programming practice.

Understanding “Call by Reference”:

➢ Function call by reference means sending the variable address instead of its value.

➢ Variable can be sent to a function by reference, by writing address operator (&) before its name

in function prototype and definition

EE-163 Computers & Programming Lab Session 09

NED University of Engineering & Technology Department of Electrical Engineering

Functions with two or more Outputs – using call by reference:

// Function to calculate two roots of

// quadratic equation and give back to

// main()

#include<iostream>

#include<conio2.h>

#include<cmath>

using namespace std;

void quadroots(float a,float b,float c, float &root1,float &root2);

// Function Prototype:quadroots() returns the

// root of equation,through arguments passed

// as input

int main(void)

{

 float num1,num2,num3,r1,r2;;

 cout<<"\t\tProgram for calculating roots of Quadratic Equation\n\t\t"

 <<" of the form ax^2+bx+c=0";

 cout<<"\nEnter the 1st co-efficient a:";

 cin>>num1;

 cout<<"\nEnter the 2nd co-efficient b:";

 cin>>num2;

 cout<<"\nEnter the constant c:";

 cin>>num3;

 quadroots(num1,num2,num3,r1,r2);

 //Function Call: nothing is returned,

 //root values come back via input arguments

 //r1 and r2

 cout<<"The roots are "<<r1<<","<<r2;

 getch();

 return 0;

}

void quadroots(float a,float b,float c,float &root1,float &root2)

{

 // Discriminant is -ve, complex roots

 if(((b*b)-(4*a*c))<0.0)

 {

 cout<<"\nRoots are imaginary,"

 <<" can't be calculated\n";

 root1=0.0;

 root2=0.0;

 }

 else

 {

 root1=(-b+sqrt((b*b)-(4*a*c)))/(2*a);

 root2=(-b-sqrt((b*b)-(4*a*c)))/(2*a);

 }

 //return is not needed

}

EE-163 Computers & Programming Lab Session 09

NED University of Engineering & Technology Department of Electrical Engineering

Exercise:

Q1: Write program with a function that accepts 3 int type numbers and returns the smallest among

them. The function is called minimum().

Q2: Write a void function that generates a precise delay of 2 seconds whenever it is called. The

function should contain clock() function or time() function from ctime, for precise timing.

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-163 Course Title: Computers and Programming
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Input/Output Variable
Recognition and
Definition:
Recognise and perceive
correct input/output
variables along with
data types

15%

Incorrect
perception for
both
Input/Output
variable count
and data type

0

Inorrectly
perceives the
required
Input/Output
variable count
but data type is
correctly
recognized

15

Correctly
perceives the
required
Input/Output
variable count but
data type is not
recognized

30

Correctly
perceives the
required
Input/Output
variable count
and data type
with slight
issues

45

Correctly
perceives the
required
Input/Output
variable count
and data type

60

User Interface creation
for Input and Output
Variables:
Recognise and use
correct Input/Output
instructions for easy
user interaction

15%

Little to no
understanding
of
Input/Output
Instructions
and their use

0

Correctly
recognises
Output
instruction use
but incorrect
use of Input
instructions

15

Correctly
recognises Input
instruction use
but incorrect use
of Output
instructions

30

Correctly
recognises and
uses
Input/Output
instructions but
user interface is
ineffective

45

Correctly
recognises and
uses
Input/Output
instructions that
creates effective
user interface

60

Manipulating Input(s)
to create desired
Output(s):
Imitate and practice
given set of
programming
instructions to
compute/produce the
desired output.

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/semantic
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/semantic
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no
syntax/semantic
errors

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

15%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

15

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

30

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

45

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

60

Detecting and
Removing
Errors/Exceptions:
Detect common
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Code

10%

Unable to
check and
detect error
messages in
software

0

Able to find
error messages
in software but
no
understanding
of detecting
those errors and
their types

10

Able to find error
messages in
software as well
as understanding
of detecting some
of those errors
and their types

20

Able to find
error messages
in software as
well as
understanding
of detecting all
of those errors
and their types

30

Able to find
error messages
in software
along with the
understanding
to detect and
rectify them

40

Duplicating given
Code/Instructions:
Copying/Duplication of
given Code/Instructions
without syntax and
semantic errors from
lab manual or slides

10%

Unable to
reproduce
given piece of
code correctly
on software

0

Little ability to
reproduce given
piece of code
correctly on
software (major
syntax and
semantic errors)

10

Ability to
reproduce given
piece of code
correctly on
software with
minor syntax and
semantic errors

20

Ability to
reproduce given
piece of code
correctly on
software with
little to no
syntax and
semantic errors

30

Ability to
reproduce given
piece of code
correctly on
software with no
syntax and
semantic errors

40

Manipulating given
Code/Instructions
under guidance:
Manipulate given
Code/Instructions
under supervision, in
order to produce a
different result

10%

Unable to
understand
and follow
teacher’s
guidance to
manipulate
code

0

Ability to
understand
teacher’s
guidance
regarding
manipulation
but could not
follow

10

Ability to
understand
teacher’s
guidance
regarding code
manipulation but
lags behind in
following

20

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows
majority of
instructions

30

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows all
instructions
successfully

40

Total Points (out of 400)

Weighted CLO (Psychomotor Score) (Points/4)

Remarks

Instructor’s Signature with Date

EE-163 Computers & Programming Lab Session 10

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 10

OBJECTIVES:

Recursive Functions in C/C++

THEORY & PROGRAMS:

Recursion:

Recursion in Computer science is a method where the solution to a problem depends on a solution to

smaller instances of the same problem. The power of recursion evidently lies in the possibility of

defining infinite set of objects by a finite statement.

Recursive Functions:

Recursive function is the one that calls itself to repeat the code. Recursive function calls generally

work just like normal function calls. The most important difference with recursive function is you

must include a recursive termination condition, or they will run forever (actually, until the call stack

runs out of memory). A recursive termination condition is a condition that, when met, will cause the

recursive function to stop calling itself.

Recursive termination generally involves if statement.

Have a look at an examples on how recursion process can be used to convert decimal into binary and

to calculate factorial of a number.

//program to convert to decimal number into binary

#include<iostream>

using namespace std;

void convertToBin(unsigned int n);

int main()

{

 unsigned int num;

 cout<<"Enter a decimal number: ";

 cin>>num;

 convertToBin(num);

}

void convertToBin(unsigned int n)

{

 if((n/2) != 0)

 {

 convertToBin(n/2);

 }

 cout<<n%2;

}

EE-163 Computers & Programming Lab Session 10

NED University of Engineering & Technology Department of Electrical Engineering

Fabonacci sequence for nth number can be calculated using recursive functions.

//program to calculate the factorial of a number

#include<iostream>

using namespace std;

unsigned long factorial(unsigned long val);

int main()

{

 unsigned long num;

 cout<<"Enter a number to find its factorial: ";

 cin>>num;

 cout<<"Factorial of a "<<num<<" is: "<<factorial(num);

}

unsigned long factorial(unsigned long val)

{

 if(val == 1 || val == 0)

 {

 return 1;

 }

 if (val>1)

 {

 return val*factorial(val-1);

 }

}

//program to display nth fabonacci numbers

#include <iostream>

int fibonacci(int number)

{

 if (number == 0)

 return 0; // base case (termination condition)

 if (number == 1)

 return 1; // base case (termination condition)

 return fibonacci(number-1) + fibonacci(number-2);

}

// And a main program to display the first 13 Fibonacci numbers

int main()

{

 for (int count=0; count < 13; ++count)

 std:: cout << fibonacci(count) << " ";

 return 0;

}

EE-163 Computers & Programming Lab Session 10

NED University of Engineering & Technology Department of Electrical Engineering

Recursion vs Iteration:

One question that is often asked about recursive functions, “Why use a recursive function if the same

can be done through iteration (using for or while loops)?” It turns out that you can always solve the

recursive problem iteratively. However, for non-trivial problems, the recursive version is often much

simpler to write (and read).

Iterative functions (those using for or while loop) are always more efficient than recursive

counterparts. This is because every time you call a function there is some amount of overhead that

takes place in pushing and popping stack frames. Iterative functions avoid this overhead.

That’s not to say iterative functions are always a better choice. Sometimes the recursive

implementation of a function is so much cleaner and easier to follow that incurring a little extra

overhead is more than worth it for the benefit in maintainability, particularly if the algorithm doesn't

need to recurse too many times to find a solution.

In general, recursion is a good choice when most of the following are true:

• The recursive code is much simpler to implement.

• The recursion depth can be limited (e.g. there’s no way to provide an input that will cause it

to recurse down 100,000 levels).

• The iterative version of the algorithm requires managing a stack of data.

• This isn’t a performance-critical section of code.

However, if the recursive algorithm is simpler to implement, it may make sense to start recursively

and then optimize to an iterative algorithm later.

Exercise:

Q1: Write a recursive function to implement Newton Raphson Method algorithm to determine square

root of a number.

Q2: Write a recursive function to find Greatest Common Divisor of two numbers using Euclid

Remainder Algorithm.

Q3: Test for a number if it is prime or composite using recursion.

Q4: Write a recursive function to implement the following expansion (precision upto 0.0001)

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-163 Course Title: Computers and Programming
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Input/Output Variable
Recognition and
Definition:
Recognise and perceive
correct input/output
variables along with
data types

15%

Incorrect
perception for
both
Input/Output
variable count
and data type

0

Inorrectly
perceives the
required
Input/Output
variable count
but data type is
correctly
recognized

15

Correctly
perceives the
required
Input/Output
variable count but
data type is not
recognized

30

Correctly
perceives the
required
Input/Output
variable count
and data type
with slight
issues

45

Correctly
perceives the
required
Input/Output
variable count
and data type

60

User Interface creation
for Input and Output
Variables:
Recognise and use
correct Input/Output
instructions for easy
user interaction

15%

Little to no
understanding
of
Input/Output
Instructions
and their use

0

Correctly
recognises
Output
instruction use
but incorrect
use of Input
instructions

15

Correctly
recognises Input
instruction use
but incorrect use
of Output
instructions

30

Correctly
recognises and
uses
Input/Output
instructions but
user interface is
ineffective

45

Correctly
recognises and
uses
Input/Output
instructions that
creates effective
user interface

60

Manipulating Input(s)
to create desired
Output(s):
Imitate and practice
given set of
programming
instructions to
compute/produce the
desired output.

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/semantic
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/semantic
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no
syntax/semantic
errors

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision, using
menus, shortcuts,
instructions etc.

15%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

15

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

30

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

45

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

60

Detecting and
Removing
Errors/Exceptions:
Detect common
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Code

10%

Unable to
check and
detect error
messages in
software

0

Able to find
error messages
in software but
no
understanding
of detecting
those errors and
their types

10

Able to find error
messages in
software as well
as understanding
of detecting some
of those errors
and their types

20

Able to find
error messages
in software as
well as
understanding
of detecting all
of those errors
and their types

30

Able to find
error messages
in software
along with the
understanding
to detect and
rectify them

40

Duplicating given
Code/Instructions:
Copying/Duplication of
given Code/Instructions
without syntax and
semantic errors from
lab manual or slides

10%

Unable to
reproduce
given piece of
code correctly
on software

0

Little ability to
reproduce given
piece of code
correctly on
software (major
syntax and
semantic errors)

10

Ability to
reproduce given
piece of code
correctly on
software with
minor syntax and
semantic errors

20

Ability to
reproduce given
piece of code
correctly on
software with
little to no
syntax and
semantic errors

30

Ability to
reproduce given
piece of code
correctly on
software with no
syntax and
semantic errors

40

Manipulating given
Code/Instructions
under guidance:
Manipulate given
Code/Instructions
under supervision, in
order to produce a
different result

10%

Unable to
understand
and follow
teacher’s
guidance to
manipulate
code

0

Ability to
understand
teacher’s
guidance
regarding
manipulation
but could not
follow

10

Ability to
understand
teacher’s
guidance
regarding code
manipulation but
lags behind in
following

20

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows
majority of
instructions

30

Ability to
understand
teacher’s
guidance
regarding code
manipulation
and follows all
instructions
successfully

40

Total Points (out of 400)

Weighted CLO (Psychomotor Score) (Points/4)

Remarks

Instructor’s Signature with Date

EE-163 Computers & Programming Lab Session 11

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 11

OBJECTIVE:

Introduction to Pointers in C/C++

THEORY & PORGRAMS:

Pointers:

A pointer is a variable that holds a memory address as its value. Pointers are typically seen as one of

the most confusing part of the C++ language, but are surprisingly simple when explained properly.

Before moving deeper into Pointers we need to understand two basic concept related to it.

The address-of Operator (&):

The address-of operator (&) allows us to see what memory address is assigned to a variable. This is

pretty straightforward.

Note: Although the address-of operator looks just like the bitwise-and operator, you can distinguish

them because the address-of operator is unary, whereas the bitwise-and operator is binary.

The Dereference Operator (*):

The dereference operator (*) allows us to get the value at a particular address:

Note: Although the dereference operator looks just like the multiplication operator, you can distinguish

them because the dereference operator is unary, whereas the multiplication operator is binary.

#include <iostream>

int main()

{

 int x = 5;

 std::cout << x << '\n'; // print the value of variable x

 std::cout << &x << '\n'; // print the memory address of variable x

 std::cout << *&x << '\n';// print the value at the memory address of variable x

 return 0;

}

#include <iostream>

int main()

{

 int x = 5;

 std::cout << x << '\n'; // print the value of variable x

 std::cout << &x << '\n'; // print the memory address of variable x

 return 0;

}

EE-163 Computers & Programming Lab Session 11

NED University of Engineering & Technology Department of Electrical Engineering

Declaring a Pointer:

Pointer variables are declared just like normal variables, only with an asterisk between the data type

and the variable name.

For e.g:

int *iPtr; //a pointer to an integer value

double *dPtr; //a pointer to a double value

Note that the asterisk here is not a dereference. It is part of the pointer declaration syntax.

Syntactically, C++ will accept the asterisk next to the data type, next to the variable name, or even in

the middle.

However, when declaring multiple pointer variables, the asterisk has to be included with each variable.

If we get used to declare pointers with asterisk next to data type and we are declaring multiple

variables, then the first declared variable will be the pointer but the other will just be a plain variable.!

Have a look at this.

int* iPtr1, iPtr2; //iPtr1 is a pointer but iPtr2 is not

For this reason, when declaring pointers, it is recommended to put asterisk next to variable name.

Assigning a value to a Pointer:

Since pointers only hold addresses, when we assign a value to a pointer, that value has to be an address.

One of the most common things to do with pointers is have them hold the address of a different

variable.

To get the address of a variable, we use the address-of operator:

int value = 5;

int *ptr = &value; //initialize ptr with address of a variable value

Conceptually you think of the above snippet like this:

The type of the pointer has to match the type of the variable being pointed to:

int iValue = 5;

double dValue = 7.0;

int *iPtr = &iValue; //ok

double *dPtr = &dValue; //ok

iPtr = &dValue; //wrong

dPtr = & iValue; //wrong

Note that the following is also not legal:

int *ptr = 5;

EE-163 Computers & Programming Lab Session 11

NED University of Engineering & Technology Department of Electrical Engineering

This is because pointers can only hold addresses, and integer literal 5 doesn’t have a memory address.

If you try this, the compiler will tell you it cannot convert an integer to an integer pointer.

Dereferencing Pointers:

Once we have a pointer variable pointing at something, the other common thing to do with it is

dereference the pointer to get the value of what it’s pointing at. A dereferenced pointer evaluates to

the contents of the address it is pointing to.

int value = 5;

cout << &value; //prints address of value

cout << value; //prints contents of value

int *ptr = &value //ptr points to a value

cout << ptr; //prints address held in ptr, which is &value

cout << *ptr; //dereference ptr (get the value that ptr is pointing to)

This is why pointers must have a type. Without a type, a pointer wouldn’t know how to interpret the

contents it was pointing to when it was dereferenced.

What good are Pointers:

At this point, pointers may seem a little silly, academic, or obtuse. Why use a pointer if we can just

use the original variable?

It turns out that pointers are useful in many different cases:

➢ Arrays are implemented using pointers. Pointers can be used to iterate through an array (as an

alternative to array indices).

➢ They are the only way you can dynamically allocate memory in C++.

➢ They can be used to pass a large amount of data to a function in a way that doesn’t involve

copying the data, which is inefficient.

➢ They can be used to pass a function as a parameter to another function.

Passing Pointers to functions in C++:

C++ allows us to pass a pointer to a function. To do so, simply declare the function parameter as a pointer

type. Following a simple example where we pass an unsigned long pointer to a function and change the value

inside the function which reflects back in the calling function.

Following example calculates the average value of numbers stored in an array using pointer passed an

argument

EE-163 Computers & Programming Lab Session 11

NED University of Engineering & Technology Department of Electrical Engineering

Following example calculates the average value of numbers stored in an array by using pointer passed as an

argument.

#include <iostream>

#include <ctime>

using namespace std;

void getSeconds(unsigned long *par);

int main () {

 unsigned long sec;

 getSeconds(&sec);

 // print the actual value

 cout << "Number of seconds :" << sec << endl;

 return 0;

}

void getSeconds(unsigned long *par) {

 // get the current number of seconds

 *par = time(NULL);

 return;

}

#include <iostream>

using namespace std;

// function declaration:

double getAverage(int *arr, int size);

int main () {

 // an int array with 5 elements.

 int balance[5] = {1000, 2, 3, 17, 50};

 double avg;

 // pass pointer to the array as an argument.

 avg = getAverage(balance, 5) ;

 // output the returned value

 cout << "Average value is: " << avg << endl;

 return 0;

}

double getAverage(int *arr, int size) {

 int i, sum = 0;

 double avg;

 for (i = 0; i < size; ++i) {

 sum += arr[i];

 }

 avg = double(sum) / size;

 return avg;

}

EE-163 Computers & Programming Lab Session 11

NED University of Engineering & Technology Department of Electrical Engineering

Exercise:

Q1: Selection sort algorithm can be used to sort an array in ascending order. The first iteration of the

algorithm selects the smallest element in the array and swaps it with the first element. The second

iteration selects the second-smallest element (which is the smallest element of the remaining elements)

and swaps it with the second element. The algorithm continues until the last iteration selects the

second-largest element and swaps it with the second-to-last index, leaving the largest element in the

last index.

As an example, consider the array

34 56 4 10 77 51 93 30 5 52

A program that implements the selection sort first determines the smallest value (4) in the

array, which is contained in element 2. The program swaps the 4 with the value in element

0 (34), resulting in

4 56 34 10 77 51 93 30 5 52

The program then determines the smallest value of the remaining elements (all elements

except 4), which is 5, contained in element 8. The program swaps the 5 with the 56 in

element 1, resulting in

4 5 34 10 77 51 93 30 56 52

On the third iteration, the program determines the next smallest value, 10, and swaps it

with the value in element 2 (34).

4 5 10 34 77 51 93 30 56 52

The process continues until the array is fully sorted.

4 5 10 30 34 51 52 56 77 93

Using pass by reference feature of pointers, implement the selection sort algorithm.

Q.2 Explore all methods of viewing addresses of variables. Also explore address storing mechanisms

(pointer variables). Finally use this knowledge to access and manipulate arrays and call multiple

variables from functions using pointers.

EE-163 Computers & Programming Lab Session 12

NED University of Engineering & Technology Department of Electrical Engineering

Lab Session 12

OBJECTIVES:

An Introduction to Filing in C/C++

THEORY & PROGRAMS:

File:

The information / data stored under a specific name on a storage device, is called a file.

Stream:

It refers to a sequence of bytes.

Text file:

It is a file that stores information in ASCII characters. In text files, each line of text is terminated with

a special character known as EOL (End of Line) character or delimiter character. When this EOL

character is read or written, certain internal translations take place.

Classes for Stream Operation:

ofstream: Stream class to write on files

ifstream: Stream class to read from files

fstream: Stream class to both read and write from/to files

Opening a File:

Opening File using constructor

ofstream outFile(“sample.txt”); //output only

ifstream inFile(“sample.txt”); //input only

Opening File using open()

ofstream outFile;

outFile.open(“sample.txt”);

ifstream inFile;

inFile.open(“sample.txt”);

File mode Parameter Meaning

ios::app Append to end of file

ios::in Open file for reading only

ios::out Open file for writing only

Each of the open member functions of classes ofstream, ifstream and fstream has a default mode that is used

if the file is opened without a second argument:

Class Default Mode Parameter

ofstream ios::out

ifstream ios::in

fstream ios::in | ios::out

EE-163 Computers & Programming Lab Session 12

NED University of Engineering & Technology Department of Electrical Engineering

For fstream, the default value is only applied if the function is called without specifying any value for

the mode parameter. If the function is called with any value in that parameter the default mode is

overridden, not combined.

Closing a File:

outFile.close();

inFile.close();

Basic Operation in Text File in C++:

File I/O is a five-step process:

1. Include the header file fstream in the program.

2. Declare file stream object.

3. Open the file with the file stream object.

4. Use the file stream object with >>, <<, or other input/output functions.

5. Close the files.

Following are the example programs to illustrate the concept.

Program to write in a text file.

#include <fstream>

using namespace std;

int main()

{

 ofstream fout;

 fout.open("out.txt");

 char str[300] = "Time is a great teacher but

 unfortunately it kills all its pupils. Berlioz";

 //Write string to the file.

 fout << str;

 fout.close();

 return 0;

}

EE-163 Computers & Programming Lab Session 12

NED University of Engineering & Technology Department of Electrical Engineering

Program to read from text file and display it.

Where, eof() function returns a true (non-zero) if end of the file is encountered while reading;

otherwise return false (zero). This while loop will continue to run as long as we reached the end of the

file.

get() function is used take a single character from text file and print it on console.

Program to count number of character

#include<fstream>

#include<iostream>

using namespace std;

int main()

{

 ifstream fin;

 fin.open("out.txt");

 char ch;

 while(!fin.eof())

 {

 fin.get(ch);

 cout << ch;

 }

 fin.close();

 return 0;

}

#include<fstream>

#include<iostream>

using namespace std;

int main()

{

 ifstream fin;

 fin.open("out.txt");

 int count = 0;

 char ch;

 while(!fin.eof())

 {

 fin.get(ch);

 count++;

 }

 cout << "Number of characters in file are " << count;

 fin.close();

 return 0;

}

EE-163 Computers & Programming Lab Session 12

NED University of Engineering & Technology Department of Electrical Engineering

Program to copy content of file to another

Q.1 Develop a simple text editor application with File, Edit and Fonts Menus. It should be able to create new

files, display previously stored text files, edit files and save any changes.

#include<fstream>

using namespace std;

int main()

{

 ifstream fin;

 fin.open("out.txt");

 ofstream fout;

 fout.open("sample.txt");

 char ch;

 while(!fin.eof())

 {

 fin.get(ch);

 fout << ch;

 }

 fin.close();

 fout.close();

 return 0;

}

