

NED University of Engineering &

Technology Department of Electrical

Engineering

LAB MANUAL

For the course

FEEDBACK CONTROL

SYSTEMS

(EE-374) For T.E.(EE)

Instructor name:

Student name:

Roll no: Batch:

Semester: Year:

LAB MANUAL

For the course

FEEDBACK CONTROL

SYSTEMS (EE-374) For T.E.(EE),

Content Revision Team:

Muhammad Arshad and Muhammad Hassan ul Haq

 Last Revision Date:

Approved By

The Board of Studies of Department of Electrical Engineering

To
 b

e
fi

lle
d

 b
y

la
b

 t
ec

h
n

ic
ia

n

A
tt

en
d

an
ce

: P
re

se
n

t
o

u
t

o
f

_
__

__
 L

ab
 s

es
si

o
n

s

A
tt

en
d

an
ce

 P
er

ce
n

ta
ge

 _
__

_
__

__

To
 b

e
fi

lle
d

 b
y

La
b

 In
st

ru
ct

o
r

La
b

 S
co

re
 S

h
ee

t

R
o

ll
N

o
.

R
u

b
ri

c
b

as
ed

La

b
 I

R
u

b
ri

c
b

as
ed

La

b
 II

R
u

b
ri

c
b

as
ed

La

b
 II

I

R
u

b
ri

c
b

as
ed

La

b
 IV

R
u

b
ri

c
b

as
ed

La

b
 V

R
u

b
ri

c
b

as
ed

La

b
 V

I

O
EL

/P
B

L
R

u
b

ri
c

Sc
o

re

A

Fi
n

al
 L

A
B

R

u
b

ri
c

Sc
o

re

B

A
tt

en
d

an
ce

P

er
ce

n
ta

ge

 C

Fi
n

al
 w

e
ig

h
te

d
 S

co
re

 f
o

r
M

IS
 S

ys
te

m

[1
0

(A
)+

1
0

(B
)+

5
(C

)]
/2

5

R
o

u
n

d
 t

o
 n

ex
t

h
ig

h
er

m

u
lt

ip
le

 o
f

5

 EE
-3

74
 F

B
C

S
R

u
b

ri
c

B
as

ed
 L

ab
s

2
, 4

, 6
, 7

, 8
, 9

N
o

te
: A

ll
R

u
b

ri
c

Sc
o

re
s

m
u

st
 b

e
in

 t
h

e
n

ex
t

h
ig

h
er

 m
u

lt
ip

le
 o

f
5

 f
o

r
co

rr
ec

t
e

n
tr

y
in

 M
IS

 s
ys

te
m

.

CONTENTS

Psychomotor Level 3

S.No. Date Title of Experiment
Total

Marks
Signature

1 Introduction to MATLAB: Introduction to polynomials, script writing

and programming aspect of MATLAB from control systems point of

view, mathematical models of physical systems.

2 *Mathematical modeling of Mechanical Translation and Electrical

Systems

3 Developing linear model for DC motor, performance analysis of first

order and second order systems and development of time response

specifications function

4 *Study the three term PID controller and its effects on the feedback loop

response, investigating the characteristics of the each of proportional

(P), the integral (I), and the derivative (D) controls and obtaining a

desired response by using them

5 Introduction to Programmable Logic Controllers (PLCs), their use and

applications in industry, method for configuring and programming PLCs

using ladder language

6 *Digital I/O interfacing and manipulation in PLCs, their application in

designing On-Off type feedback control systems using ladder language

7 *Digital I/O manipulation in PLCs with timers, counters, and PWM

(Pulse Width Modulation) generators for designing On-Off type

feedback control systems using ladder language

8 *Analog I/O interfacing and manipulation in PLCs, their application in

sensing transducer outputs and transmitting signals to actuators

9 *Introduction to HMI (Human Machine Interface), its programming via

PLC and communication set-up between PLC and HMI for

measurement viasualisation

10 DC motor speed measurement and control via PLC utilising analogue

I/O, digital I/O, PWM generator HMI and other PLC peripherals

11 Open Ended Lab - To simulate and design hardware of a feedback

control system using Buck converter as plant

Lab titles marked with an asterisk (*) are assessed through OBE Lab Rubrics for Feedback Control Systems

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 01 (Part-1)

Objective:

Introduction to MATLAB briefly including tutorial of polynomials, script writing

and programming aspect of MATLAB from control systems view point.

THEORY:

MATLAB Stands for MATrix LABoratory.

MATLAB is a computer program that combines computation and visualization power that makes it particularly useful

tool for engineers. It is an executive program, and a script can be made with a list of MATLAB commands like other

programming language. The windows in MATLAB are:

• Command window: Commands can be entered, data and results are displayed

• Workspace: list all the variables you are using

• command history window: it displays a log of the command used.

• Graphic (Figure) Window: Displays plots and graphs, created in response to graphics commands.

• M-file editor/debugger window: Create and edit scripts of commands called M-files.

Variable declaration:

The variables are declared as:

Must start with a letter

May contain only letters, digits, and the underscore “_”

Matlab is case sensitive, i.e. one & ONE are different variables. For assigning statement:

Variable = number;

Special variables:

ans : default variable name for the result

pi: π = 3.1415926

NaN or nan: not-a-number

Commands involving variables:

who: lists the names of defined variables

whos: lists the names and sizes of defined variables

clear: clears all variables, reset the default values of special variables.

clear name: clears the variable name

clc: clears the command window

clf: clears the current figure and the graph window

Matrix Array

A Matrix array is two-dimensional, having both multiple rows and multiple columns, similar to vector arrays:

• It begins with [and ends with]

• spaces or commas are used to separate elements in a row.

• semicolon or enter is used to separate rows.

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Example:

>> f = [1 2 3; 4 5 6]

f =

1 2 3

4 5 6

A system of 3 linear equations with 3 unknowns (x1, x2, x3):

3x1+2x2-x3=10

-x1+3x2+2x3=5

 x1-x2-x3= -1

Let

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Some useful commands

Plotting Curves:

plot (x,y) – generates a linear plot of the values of x (horizontal axis) and y (vertical axis).

semilogx (x,y) – generate a plot of the values of x and y using a logarithmic scale for x and a linear scale for y

semilogy (x,y) – generate a plot of the values of x and y using a linear scale for x and a logarithmic scale for y.

loglog(x,y) – generate a plot of the values of x and y using logarithmic scales for both x and y

Example: (polynomial function)

Plot the polynomial using linear/linear scale, log/linear scale, linear/log scale, & log/log2 scale:

y = 2x2+ 7x + 9

Adding new curves to the existing graph:

Use the hold command to add lines/points to an existing plot.

hold on – retain existing axes, add new curves to current axes. Axes are rescaled when necessary.

hold off – release the current figure window for new plots

Grids and Labels:

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Additional commands for Plotting

Color of the point or curve Marker of the data point Plot line styles

Polynomial evaluation:

Function Description

Conv Multiply polynomials

Deconv Divide polynomials

Poly Polynomial with specified roots

Polyder Polynomial derivative

Polyfit Polynomial curve fitting

Polyval Polynomial evaluation

Polyvalm Matrix polynomial evaluation

Residue Partial-fraction expansion (residues)

Roots Find polynomial roots

Polynomial Roots

The roots function calculates the roots of a polynomial:

>>p = [1 0 -2 -5];

r =2.0946

-1.0473 + 1.1359i -1.0473 - 1.1359i

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Polynomial Evaluation

The polyval function evaluates a polynomial at a specified value. To evaluate p at s = 5, use

>>polyval(p,5)

ans = 110

To evaluate the polynomial p at X:

>>X = [2 4 5; -1 0 3; 7 1 5];

>>Y = polyvalm(p,X)

Y =

377 179 439

111 81 136

490 253 639

Convolution and Deconvolution

Polynomial multiplication and division correspond to the operations convolution and deconvolution. The functions

conv and deconv implement these operations. Consider the

>>a = [1 2 3]; b = [4 5 6];

 >>c = conv(a,b)

c =4 13 28 27 18

Use deconvolution to divide back out of the product:

>>[q,r] = deconv(c,a)

q =4 5 6

r =0 0 0 0 0

Polynomial Derivatives

The polyder function computes the derivative of any polynomial. To obtain the derivative of the polynomial

>>p= [1 0 -2 -5]

 >>q = polyder(p)

q =3 0 -2

polyder also computes the derivative of the product or quotient of two polynomials. For example, create two

polynomials a and b:

>>a = [1 3 5];

>>b = [2 4 6];

Calculate the derivative of the product a*b by calling polyder with a single output argument:

>>c = polyder(a,b)

c =

8 30 56 38

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Calculate the derivative of the quotient a/b by calling polyder with two output arguments:

>>[q,d] = polyder(a,b)

q =

-2 -8 -2

d =

4 16 40 48 36

q/d is the result of the operation.

Partial Fraction Expansion

‘residue’ finds the partial fraction expansion of the ratio of two polynomials. This is particularly useful for applications

that represent systems in transfer function form. If there are no multiple roots, where r is a column vector of residues, p

is a column vector of pole locations, and k is a row vector of direct terms.

Consider the transfer function >>b = [-4 8];

>>a = [1 6 8];

>>[r,p,k] = residue(b,a)

r = -12 8

p = -4 -2

k = []

Given three input arguments (r, p, and k), residue converts back to polynomial form:

>>[b2,a2] = residue(r,p,k)

b2 =-4 8

a2 =1 6 8

Scripts and Functions

MATLAB is a powerful programming language as well as an interactive computational environment. Files that contain

code in the MATLAB language are called M-files. You create M-files using a text editor, then use them as you would

any other MATLAB function or command. There are two kinds of M-files:

Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace.

MATLAB provides a full programming language that enables you to write a series of MATLAB statements into a file

and then execute them with a single command. You write your program in an ordinary text file, giving the file a name

of ‘filename.m’. The term you use for ‘filename’ becomes the new command that MATLAB associates with the

program. The file extension of .m makes this a MATLAB M-file.

Functions, which can accept input arguments and return output arguments. Internal variables are local to the function.

If you're a new MATLAB programmer, just create the M-files that you want to try out in the current directory. As you

develop more of your own M-files, you will want to organize them into other directories and personal toolboxes that

you can add to your MATLAB search path. If you duplicate function names, MATLAB executes the one that occurs

first in the search path.

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Scripts:

When you invoke a script, MATLAB simply executes the commands found in the file. Scripts can operate on existing

data in the workspace, or they can create new data on which to operate. Although scripts do not return output arguments,

any variables that they create remain in the workspace, to be used in subsequent computations. In addition, scripts can

produce graphical output using functions like plot. For example, create a file called ‘myprogram.m’ that contains these

MATLAB commands:

% Create random numbers and plot these numbers clc clear

r = rand(1,50);

plot(r)

Typing the statement ‘myprogram’ at command prompt causes MATLAB to execute the commands, creating fifty

random numbers and plots the result in a new window. After execution of the file is complete, the variable ‘r’ remains

in the workspace.

Functions:

Functions are M-files that can accept input arguments and return output arguments. The names of the M-file and of the

function should be the same. Functions operate on variables within their own workspace, separate from the workspace

you access at the MATLAB command prompt.

The first line of a function M-file starts with the keyword ‘function’. It gives the function name and order of arguments.

In this case, there is one input arguments and one output argument. The next several lines, up to the first blank or

executable line, are comment lines that provide the help text. These lines are printed when you type ‘help fact’. The first

line of the help text is the H1 line, which MATLAB displays when you use the ‘lookfor’ command or request help on a

directory. The rest of the file is the executable MATLAB code defining the function.

The variable n & f introduced in the body of the function as well as the variables on the first line are all local to the

function; they are separate from any variables in the MATLAB workspace. This example illustrates one aspect of

MATLAB functions that is not ordinarily found in other programming languages—a variable number of arguments.

Many M-files work this way. If no output argument is supplied, the result is stored in ans. If the second input argument

is not supplied, the function computes a default value.

Flow Control:

Conditional Control – if, else, switch

This section covers those MATLAB functions that provide conditional program control. if, else, and elseif. The if

statement evaluates a logical expression and executes a group of statements when the expression is true. The optional

elseif and else keywords provide for the execution of alternate groups of statements. An end keyword, which matches

the if, terminates the last group of statements.

The groups of statements are delineated by the four keywords—no braces or brackets are involved as given below:

if <condition> <statements>;

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

elseif <condition> <statements>;

else

<statements>;

end

It is important to understand how relational operators and if statements work with matrices. When you want to check

for equality between two variables, you might use if A == B.

This is valid MATLAB code, and does what you expect when A and B are scalars. But when A and B are matrices, A

== B does not test if they are equal, it tests where they are equal; the result is another matrix of 0's and 1's showing

element-by-element equality. (In fact, if A and B are not the same size, then A == B is an error.)

if isequal(A, B),

isequal returns a scalar logical value of 1 (representing true) or 0 (false), instead of a matrix, as the expression to be

evaluated by the if function.

Using the A and B matrices from above, you get

>>isequal(A, B) ans =0.

Mn Here is another example to emphasize this point. If A and B are scalars, the following program will never reach

the "unexpected situation". But for most pairs of matrices, including

if A > B 'greater' elseif A < B 'less' elseif A == B 'equal' else

error('Unexpected situation') end our magic squares with interchanged columns, none of the matrix conditions A > B,

A < B, or A == B is true for all elements and so the else clause is executed:

Several functions are helpful for reducing the results of matrix comparisons to scalar conditions for use with if,

including ‘isequal’, ‘isempty’, ‘all’, ‘any’.

Switch and Case:

The switch statement executes groups of statements based on the value of a variable or expression. The keywords case

and otherwise delineate the groups. Only the first matching case is executed. The syntax is as follows:

switch <condition or expression>

case <condition>

<statements>;

…

case <condition>

<statements>;

…

otherwise

<statements>;

end

There must always be an end to match the switch. An example is shown below.

n=5

switch rem(n,2) % to find remainder of any number ‘n’

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

case 0

disp(‘Even Number’) % if remainder is zero

case 1

disp(‘Odd Number’) % if remainder is one

end

Lab exercise:

Exercise: 1

Consider the two polynomials p(s)=s2+2s+1 and q(s)=s+1 .

Use MATLAB to compute

a. p(s)*q(s)

b. Roots of p(s) and q(s)

c. p(-1) and q(6)

Exercise 2:

Use MATLAB command to find the partial fraction of the following

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 01 (Part-2)

Objective: Mathematical models of physical systems in the design and analysis

of control systems.

Theory

Mass-Spring System Model

Consider the following Mass-Spring system shown in the figure. Where Fs(x) is the spring force, Fa(t) applied force:

a=dv(t)/dt = d2x(t)/dt2 is the acceleration dx(t) is the displacement

According to the laws of physics:

Ma + Ff(v) + Fs(x) = Fa(t)

The differential equation for the above Mass-Spring system can then be written as follows

M(d2x(t)/dt2) + B(dx(t)/dt) + Kx(t) = Fa(t) ------------------(1)

Where,

• B is called the friction coefficient and

• K is called the spring constant.

The linear differential equation of second order (2) describes the relationship between the displacement and the applied

force. The differential equation can then be used to study the time behavior of x(t) under various changes of the applied

force. In reality, the spring force and/or the friction force can have a more complicated expression or could be

represented by a graph or data table. For instance, a nonlinear spring can be designed (see figure 2.2) such that r > 1.

Solving the differential equation using MATLAB:

The objectives behind modeling the mass-damper system can be many and may include

• Understanding the dynamics of such system

• Studying the effect of each parameter on the system such as mass M, the friction coefficient B, and the elastic

characteristic Fs(x).

• Designing a new component such as damper or spring.

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

• Reproducing a problem in order to suggest a solution.

MATLAB can help solve linear or nonlinear ordinary differential equations (ODE). To show how you can solve ODE

using MATLAB we will proceed in two steps. We first see how can we solve first order ODE and second order ODE.

PROCEDURE:

Speed Cruise Control example:

When Fs(x)=0, which means that K=0, Equation (1) becomes

M(d2x(t)/dt2) + B(dx(t)/dt) = Fa(t)

Or,

M(dv(t)/dt) + Bv(t) = Fa(t)

Using MATLAB solver ode45 we can write do the following:

1) Create a MATLAB-function cruise_speed.m

function dvdt=cruise_speed(t, v)

%flow rate M=750; %(Kg)

B=30; %(Nsec/m) Fa=300; %N

% dv/dt=Fa/M-B/M v dvdt=Fa/M-B/M*v;

2) Create a new MATLAB m-file and write

v0= 0; %(initial speed)

[t,v]=ode45('cruise_speed', [0 200],v0);

plot(t,v);

grid on;

title('cruise speed time response to a constant traction force Fa(t) ')

In the above program the behavior of a car speed is shown in which the car starts with rest position, after that it attains

its maximum speed so that it reaches its maximum limit then after that its speed becomes constant throughout the time.

Mass-Spring System Example:

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

M(d2(t)/dt2) + B(dx(t)/dt) + Kx(t)= Fa(t)

In vector form

The system equations can be written as:

1) create a MATLAB-function mass_spring.m function dXdt=mass_spring(t,X)

M=705; % (Kg)

B=30; % (Nsec/m)

Fa=300; % (N)

K=15; % (N/m)

r=1; % dX/dt

dXdt(1,1)=X(2);

dXdt(2,1)=-B/M*X(2)-K/M*X(1)^r+Fa/M;

2) Program of mass spring system with r=1

clear all

close all

clc

X0=[0;0];% (Initial speed and position)

[t,X]=ode45('mass_spring',[0 200],X0);

figure;

plot(t,X(:,1));

xlabel('Time(t)'); ylabel('Position'); title('Mass spring system'); legend('Position ');

grid;

figure;

plot(t,X(:,2),'r');

xlabel('Time(t)');

label('Speed');

Lab01
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

title('Mass spring system'); legend('Speed ');

grid;

OBSERVATIONS:

Parameter Behavior of system

Mass

Friction
Coefficient

Stiffness

Applied
Force

CONCLUSION:

Lab02
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 02

Objective: Mathematical modeling of Multiple-Element Mechanical Translation

and Electrical Systems

Theory:

Consider the given multiple-element spring-mass-damper system, where;

• f(t) is applied force to the mass M1.

• B1 and B2 are the viscous friction coefficients indicating the sliding friction between the masses M1 and M2

and the surface.

According to the rules for node equations:

For node a:

(M1D2 + B1D + B3D + K1)xa – (B3D)xb = f

For node b:

-(B3D)xa + (M2D2 + B2D + B3D + K2)xb = 0

X1=Xb for spring K2 X2=Xʹ1=Vb

X3=Xa for spring K1 X4=Xʹ3=Va

The system equations are:

PROCEDURE:

1) Create a MATLAB-function multiple_element_sys.m

function dXdt=multiple_element_sys (t,X)

Lab02
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fa=300; %(N)

M1=750; %(Kg)

M2=750; %(Kg)

B1=20; %(Nsec/m)

B2=20; %(Nsec/m)

B3=30; %(Nsec/m)

K1=15; %(N/m)

K2=15; %(N/m)

dXdt(1,1)=X(2);

dXdt(2,1)=-K2/M2*X(1)-((B1+B2)/M2)*X(2)+B3*X(4)/M2;

dXdt(3,1)=X(4);

dXdt(4,1)=B3/M1*X(2)-K1/M1*X(3)-((B1+B3)/M1)*X(4)+Fa/M1;

2) Write another m file to call the function:

clear all;

close all;

clc;

X0=[0;0;0;0]; % (Initial xb, Vb, xa, Va)

[t,X]=ode45('multiple_element_sys',[0 200],X0);

figure;

subplot(2,1,1);

plot(t,X(:,1));

plot(t,X(:,2),'r');

xlabel('Time(t)');

ylabel('Position xb / Speed Vb');

title('Mass spring system'); legend('xb', 'Vb');

grid;

subplot(2,1,2);

plot(t,X(:,3));

hold;

plot(t,X(:,4),'r');

xlabel('Time(t)');

ylabel('Position xa / Speed Va');

title('Mass spring system');

legend('xa', 'Va');

Lab02
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

grid;

OBSERVATIONS:

Parameter Behavior of system

Mass M1

M2

Friction
Coefficient

B1

 B2

 B3

Stifness K1

 K2

Applied
Force

Fa

CONCLUSION:

Lab02
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Mathematical modeling of Electrical System

Theory:

Consider the 2nd order circuit shown in the above diagram.

• e is applied Potential.

• i is the mesh current.

The differential equations for the given figure.

According to Mesh Analysis:

e(t)=VL+VC+VR

e(t)=LD i + (1/CD) + R i

The state equations for the given figure.

This circuit contains two energy-storage elements, Inductor and capacitor.

Let state variables are

X1= Vc the voltage across the capacitor, and

X2= i the current in the inductor.

STATE EQUATION:

PROCEDURE:

1) create a MATLAB-function RLC.m

function dXdt=RLC(t,X)

e=60; % (V)

R=10; % (Ohm)

L=1; % (H)

C=10; % (F)

%dX/dt dXdt(1,1)=(1/C)*X(2);

dXdt(2,1)=(-1/L)*X(1)-(R/L)*X(2)+(1/L)*e;

Lab02
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

2) Write an other M. file to call the function:

clear all

close all

clc

X0=[0 0];

[t,X] =ode45('RLC',[0 500],X0);

subplot(2,1,1);

plot(t,X(:,1));

legend('Vc');

grid on;

title('Vc');

subplot(2,1,2);

plot(t,X(:,2),'r');

legend('i');

grid on;

title('i');

Graph:

 Time constant = RC = 10*10= 100 sec

For first time constant:

 Vc=63.2% * e = 0.632*60 =37.92 V

Lab02
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

OBSERVATIONS:

Parameter Behavior of system

Voltage

source(e)

Resistance(R)

Inductance(L)

Capacitance(C)

CONCLUSION:

EXERCISE:

Write the function and program of the following circuit diagram. Also explain the plots of the respective state

variables.

NED University of Engineering & Technology

Department of _____________________ Engineering

Course Code: EE-359 Course Title: Electrical Power Distribution and Utilization
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be
assessed

Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to initialise,
configure and
operate software
environment under
supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand
and use
software
menu

Little ability and
understanding
of software
menu
operation,
makes many
mistake

Moderate
ability and
understanding
of software
menu
operation,
makes lesser
mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

Procedural
Programming of
given model:
Practice procedural
programming
techniques, in order
to code specific
model

Little to no
understanding
of procedural
programming
techniques

Slight ability to
use procedural
programming
techniques for
coding given
algorithm

Mostly correct
recognition and
application of
procedural
programming
techniques but
makes crucial
errors for the
given model

Correctly
recognises and
uses procedural
programming
techniques with
no errors but
unable to run
model successfully

Correctly
recognises and
uses procedural
programming
techniques with
no errors and runs
model successfully

Relating Theoretical
Concepts,
Equations and
Transforms to
Code:
Recognise relation
between model
concepts and
written code and
manipulate the
code in accordance
of requirements

Completely
unable to
relate
between
model
concepts and
written code,
unable to do
manipulations

Able to
recognise some
relation
between model
concepts and
written code,
unable to do
manipulations

Able to
recognise
relation
between model
concepts and
written code,
unable to do
manipulations

Able to recognise
relation between
model concepts
and written code,
able to do some
manipulations

Able to recognise
relation between
model concepts
and written code,
able to completely
manipulate code
in line with
theoretical
concepts

Detecting and
Removing Errors:
Detect
Errors/Exceptions
and in simulation
and manipulate
code to rectify the
simulation

Unable to
check and
detect error
messages and
indications in
software

Able to find
error messages
and indications
in software but
no
understanding
of detecting
those errors
and their types

Able to find
error messages
and indications
in software as
well as
understanding
of detecting
some of those
errors and their
types

Able to find error
messages in
software as well as
understanding of
detecting all of
those errors and
their types

Able to find error
messages in
software along
with the
understanding to
detect and rectify
them

Graphical
Visualisation and
Comparison of
model Parameters:
Manipulate given
simulation under
supervision, in order
to produce
graphs/plots for
measuring and
comparing model
parameters

Unable to
understand
and utilise
visualisation or
plotting
features

Ability to
understand and
utilise
visualisation
and plotting
features with
frequent errors

Ability to
understand and
utilise
visualisation
and plotting
features
successfully but
unable to
compare and
analyse them

Ability to
understand and
utilise
visualisation and
plotting features
successfully,
partially able to
compare and
analyse them

Ability to
understand and
utilise
visualisation and
plotting features
successfully, also
able to compare
and analyse them

Following step-by-
step procedure to
complete lab work:
Observe, imitate
and operate
software to
complete the
provided sequence
of steps

Inability to
recognise and
perform given
lab procedures

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with frequent
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Recording
Simulation
Observations:
Observe and copy
prescribed or
required simulation
results in
accordance with lab
manual instructions

Inability to
recognise
prescribed or
required
simulation
measurements

Able to
recognise
prescribed or
required
simulation
measurements
but does not
record
according to
given
instructions

__

Able to recognise
prescribed or
required
simulation
measurements
but records them
incompletely

Able to recognise
prescribed or
required
simulation
measurements
and records them
completely, in
tabular form

Discussion and
Conclusion:
Demonstrate
discussion capacity
on the recorded
observations and
draw conclusions
from it, relating
them to theoretical
principles/concepts

Complete
inability to
discuss
recorded
observations
and draw
conclusions

Slight ability to
discuss
recorded
observations
and draw
conclusions

Moderate
ability to discuss
recorded
observations
and draw
conclusions

Reasonable ability
to discuss
recorded
observations and
draw conclusions

Full ability to
discuss recorded
observations and
draw conclusions

Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date

Lab03
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 03

Objective: To Develop a linear model for a DC motor, and Performance analysis

of First order and Second order systems and development of Time response

specification’s function.

THEORY:

Consider a DC motor, whose electric circuit of the armature and the free body diagram of the rotor are shown in

Figure.

Consider the following values for the physical parameters:

The input is the armature voltage V (ea) in Volts (driven by a voltage source).

Measured variables are the angular velocity of the shaft w in radians per second, and the shaft angle Q in radians.

We can write the following equations based on the Newton’s law combined with the Kirchhoff’s law:

L(di/dt) + Ri = V – K(dØ/dt)

J(d2Ø/dt2) + b(dØ/dt) = Ki

Or

LmDim + Rmim + em = ea

JDwn + Bwn = T

Transfer Function:

The transfer function from the input voltage, V(s), to the output angle, Q, directly follows:

And the transfer function from the input voltage, V(s), to the output velocity of the shaft

Lab03
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

w in radians per second.

PROCEDURE:

SIMULINK Model

J = 0.01 %kg m2

b = 0.1 %Nms

K = 0.01 %Nm/A

R = 1 %ohm

L = 0.5 %H

GRAPH:

Lab03
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

OBSERVATIONS:

Parameters Effects on system

Moment of

inertia

Resistance

Inductance

Friction

Coefficient

CONCLUSION:

EXERCISE:

1. Change the electrical parameters such as ‘R’ or ‘L’ to reduce the Time Constant of motor.

2. Also change the mechanical parameters such as ‘J’ or ‘B’ to reduce the Time Constant to zero.

3. What are the parameters which are responsible to change the speed of the rotor? Explain with graph.

Lab03
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Performance of First order and Second order systems and development of Time response specifications

function

THEORY:

First order system:

An electrical RC-circuit is the simplest example of a first order system. It comprises of a resistor and capacitor

connected in series to a voltage supply as shown below on Figure 1

Where ;

• Vc(t) is the voltage across the capacitor,

• R is the resistance and

• C is the capacitance.

Obtain the transfer function of the above electrical circuit. (Take Vc as output and Vc(0)=Vo)

For the RC-circuit as shown in Figure, the equation governing its behavior is given by :

The constant is the time constant of the system and is defined as the time required by the system output i.e. Vc(t) to

rise to 63% of its final value (which is E). Hence the above equation can be expressed in terms of the time constant as:

Transfer Function

Obtaining the transfer function of the above differential equation, we get

The above system is known as the first order system.

The performance measures of a first order system are its time constant and its steady state.

Second Order System:

Consider the following Mass-Spring system shown

Lab03
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Where ;

• K is the spring constant,

• B is the friction coefficient,

• x(t) is the displacement and

• F(t) is the applied force:

The differential equation for the above Mass-Spring system can be derived as follows:

Transfer Function

Applying the Laplace transformation, we get

Provided that, all the initial conditions are zero. Then the transfer function representation of the system is given by

The above system is known as a second order system.

The generalized notation for a second order system described above can be written as

With the step input applied to the system, we obtain

For which the transient output, as obtained from the Laplace transform table

o where 0 < ζ < 1.

o The transient response of the system changes for different values of damping ratio, ζ.

o Standard performance measures for a second order feedback system are defined in terms of step response of a

system.

Lab03
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

The performance measures could be described as follows

 Rise Time ‘Tr’:

measures the time from 10% to 90% of the response to the step input.

 Peak Time ‘Tp’:

The time for a system to respond to a step input and rise to peak response.

Overshoot

The amount by which the system output response proceeds beyond the desired response.

It is calculated as

where MPt is the peak value of the time response, and fv is the final value of the response.

Settling Time ‘Ts’:

The time required for the system’s output to settle within a certain percentage of the input amplitude (which is usually

taken as 2%). Then, settling time, Ts, is calculated as

Delay Time ‘Td’:

It is the time required for the response to reach 50% of the final value the very first time.

OBSERVATIONS:

1. Effect of damping ratio ‘ζ’ on performance measures of the second order system. Find the step response of the

system for values of ωn = 1 and ζ = 0.1, 0.4, 0.7, 1.0 and 2.0.

Lab03
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Plot all the results in the same figure window and fill the following table.

CONCLUSION:

Exercise

1. Given the values of R and C, obtain the unit step response of the first order system.

ii. R=2KΩ and C=0.01F

iii. R=2.5KΩ and C=0.003F

Verify in each case that the calculated time constant (τ=RC) and the one measured from the figure as 63% of the final

value are same. Obtain the steady state value of the system.

2. Understand the below codes for the time specification of second order.

Lab03
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Lab03
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Lab04
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 04

Objective: Study the three-term (PID) controller and its effects on the feedback

loop response. Also investigate the characteristics of the each of proportional (P),

the integral (I), and the derivative (D) controls and obtaining a desired response

by using them.

THEORY: Consider the following unity feedback system:

Plant: A system to be controlled.

Controller: Provides excitation for the plant; Designed to control the overall system behavior.

The three-term controller: The transfer function of the PID controller looks like the following:

KP = Proportional gain

KI = Integral gain

KD = Derivative gain

First, let's take a look at how the PID controller works in a closed-loop system using the schematic shown.

The variable (e) represents the tracking error, the difference between the desired input value (R) and the actual output

(Y).

This error signal (e) will be sent to the PID controller, and the controller computes both the derivative and the integral

of this error signal.

The signal (u) just past the controller is now equal to the proportional gain (KP) times the magnitude of the error plus

the integral gain (KI) times the integral of the error plus the derivative gain (KD) times the derivative of the error.

This signal (u) will be sent to the plant, and the new output (Y) will be obtained.

This new output (Y) will be sent back to the sensor again to find the new error signal (e). The controller takes this new

error signal and computes its derivatives and its internal again. The process goes on and on.

PROCEDURE:

For a simple mass, spring, and damper problem.

Lab04
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

The transfer function between the displacement X(s) and the input F(s) then becomes:

Let

 M = 1kg

 b = 10 N.s/m

 k = 20 N/m

 F(s) = 1

 Plug these values into the above transfer function

The goal of this problem is to show you how each of Kp, Ki and Kd contributes to obtain

o Fast rise time

o Minimum overshoot

o No steady-state error

o Open-loop step response:

o Let's first view the open-loop step response.

MATLAB command window should give you the plot shown below.

Lab04
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

o 0.05 is the final value of the output to a unit step input.

o This corresponds to the steady-state error of 0.95, quite large indeed.

o Furthermore, the rise time is about one second, and the settling time is about 1.5 seconds.

o Let's design a controller that will reduce the rise time, reduce the settling time, and eliminates the steady-state

error.

Proportional control:

• The closed-loop transfer function of the above system with a proportional controller is:

o Let the proportional gain (KP) equal 300: MATLAB PROGRAM:

Kp=300;

contr=Kp;

sys_cl=feedback(contr*plant,1); %by default –ve feedback t=0:0.01:2;

step(sys_cl,t)

Proportional-Derivative control:

 The closed-loop transfer function of the given system with a PD controller is:

Lab04
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

O Let KP equal 300 as before and let KD equal 10.

Proportional-Derivative control:

o Kp=300;

o Kd=10;

o contr=tf([Kd Kp],1);

o sys_cl=feedback(contr*plant,1);

o t=0:0.01:2;

o step(sys_cl,t)

Proportional-Integral control:

 The closed-loop transfer function of the given system with a PI controller is:

o Let KP equal 30 and let KI equal 70.

Proportional-Integral control:

o Kp=30;

o Ki=70;

o contr=tf([Kp Ki],[1 0]);

o sys_cl=feedback(contr*plant,1);

o t=0:0.01:2;

o step(sys_cl,t)

Proportional-Integral-Derivative control:

 Now, let's take a look at a PID controller. The closed-loop transfer function of the given system with a PID

controller is:

Lab04
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

After several trial and error runs, the gains Kp=350, Ki=300, and Kd=50 provided the desired response.

Proportional-Integral-Derivative control:

o Kp=350;

o Ki=300;

o Kd=50;

o contr=tf([Kd Kp Ki],[1 0]);

o sys_cl=feedback(contr*plant,1);

o t=0:0.01:2;

o step(sys_cl,t)

OBSERVATIONS:

CL Response Rise time Overshoot time Settling time S-S error
KP

KI

KD

RESULTS:

Plots of all the simulated systems with their rise time, settling time and final value

NED University of Engineering & Technology

Department of _____________________ Engineering

Course Code: EE-359 Course Title: Electrical Power Distribution and Utilization
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be
assessed

Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to initialise,
configure and
operate software
environment under
supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand
and use
software
menu

Little ability and
understanding
of software
menu
operation,
makes many
mistake

Moderate
ability and
understanding
of software
menu
operation,
makes lesser
mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

Procedural
Programming of
given model:
Practice procedural
programming
techniques, in order
to code specific
model

Little to no
understanding
of procedural
programming
techniques

Slight ability to
use procedural
programming
techniques for
coding given
algorithm

Mostly correct
recognition and
application of
procedural
programming
techniques but
makes crucial
errors for the
given model

Correctly
recognises and
uses procedural
programming
techniques with
no errors but
unable to run
model successfully

Correctly
recognises and
uses procedural
programming
techniques with
no errors and runs
model successfully

Relating Theoretical
Concepts,
Equations and
Transforms to
Code:
Recognise relation
between model
concepts and
written code and
manipulate the
code in accordance
of requirements

Completely
unable to
relate
between
model
concepts and
written code,
unable to do
manipulations

Able to
recognise some
relation
between model
concepts and
written code,
unable to do
manipulations

Able to
recognise
relation
between model
concepts and
written code,
unable to do
manipulations

Able to recognise
relation between
model concepts
and written code,
able to do some
manipulations

Able to recognise
relation between
model concepts
and written code,
able to completely
manipulate code
in line with
theoretical
concepts

Detecting and
Removing Errors:
Detect
Errors/Exceptions
and in simulation
and manipulate
code to rectify the
simulation

Unable to
check and
detect error
messages and
indications in
software

Able to find
error messages
and indications
in software but
no
understanding
of detecting
those errors
and their types

Able to find
error messages
and indications
in software as
well as
understanding
of detecting
some of those
errors and their
types

Able to find error
messages in
software as well as
understanding of
detecting all of
those errors and
their types

Able to find error
messages in
software along
with the
understanding to
detect and rectify
them

Graphical
Visualisation and
Comparison of
model Parameters:
Manipulate given
simulation under
supervision, in order
to produce
graphs/plots for
measuring and
comparing model
parameters

Unable to
understand
and utilise
visualisation or
plotting
features

Ability to
understand and
utilise
visualisation
and plotting
features with
frequent errors

Ability to
understand and
utilise
visualisation
and plotting
features
successfully but
unable to
compare and
analyse them

Ability to
understand and
utilise
visualisation and
plotting features
successfully,
partially able to
compare and
analyse them

Ability to
understand and
utilise
visualisation and
plotting features
successfully, also
able to compare
and analyse them

Following step-by-
step procedure to
complete lab work:
Observe, imitate
and operate
software to
complete the
provided sequence
of steps

Inability to
recognise and
perform given
lab procedures

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with frequent
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Recording
Simulation
Observations:
Observe and copy
prescribed or
required simulation
results in
accordance with lab
manual instructions

Inability to
recognise
prescribed or
required
simulation
measurements

Able to
recognise
prescribed or
required
simulation
measurements
but does not
record
according to
given
instructions

__

Able to recognise
prescribed or
required
simulation
measurements
but records them
incompletely

Able to recognise
prescribed or
required
simulation
measurements
and records them
completely, in
tabular form

Discussion and
Conclusion:
Demonstrate
discussion capacity
on the recorded
observations and
draw conclusions
from it, relating
them to theoretical
principles/concepts

Complete
inability to
discuss
recorded
observations
and draw
conclusions

Slight ability to
discuss
recorded
observations
and draw
conclusions

Moderate
ability to discuss
recorded
observations
and draw
conclusions

Reasonable ability
to discuss
recorded
observations and
draw conclusions

Full ability to
discuss recorded
observations and
draw conclusions

Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 05

Objective:

Introduction to Programmable Logic Controllers (PLCs), their use and

applications in industry, method for configuring and programming PLCs using

ladder language

Background of Industrial Automation:

Industrial automation refers to the use of advanced technologies and machines to automate manufacturing processes in

various industries such as automotive, aerospace, food and beverage, pharmaceuticals, and more. The goal of

industrial automation is to increase efficiency, productivity, and quality while reducing production costs and human

error.

One of the main components of industrial automation is the use of robotic systems to perform repetitive and hazardous

tasks. These robots can be programmed to perform a wide range of tasks, from assembly and welding to packaging

and material handling. By using robots, companies can improve production speed and accuracy while reducing the

risk of accidents and injuries to workers.

Another key aspect of industrial automation is the use of advanced sensors and monitoring systems to gather data

about production processes in real-time. This data can be used to optimize production processes, detect and prevent

equipment failures, and ensure consistent product quality. Additionally, automated systems can be equipped with

artificial intelligence and machine learning algorithms that can analyze data and make adjustments to improve

performance.

Fig.1 Depiction of the elements involved with Industrial Automation

Overall, industrial automation has revolutionized the manufacturing industry by making production processes faster,

more efficient, and safer. As technology continues to advance, we can expect to see even more innovative solutions

that further improve the capabilities of automated systems.

Methods for Deploying Industrial Control Systems:

In industries, control systems are deployed in a variety of ways. The major methods of such deployment is discussed

hereunder:

1) Discrete control systems where the system output is usually a simple on /off signal. They are sometimes called

on/off or bang-bang control systems. Examples of such systems include water tank filling system, conveyor belt object

detection etc.

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig. 2 On-Off control system inside an electric iron. (a) shows position of bi-metallic strip under normal temperature

and (b) shows it under high temperature

2) Continuous feedback control system where the system is constantly monitoring the set value and the measured

value and adjusting the output to minimise the error. Examples of such systems are motor seed control system, boiler

temperature control system etc.

Fig.3 A continuous feedback temperature controller

3) Open loop and Closed Loop Systems: Some processes require the measured output to be compared with an input

and fed back into the system. These are called closed loop systems. In other simpler processes input is changed

irrespective of the output e.g. traffic signals and such systems are called open loop systems.

4) State Machine / Sequential Control and Logic: Techniques used to design digital control systems using modules

like logic gates, flip-flops, timers, counters etc. A great example of such a deployment is the star-delta motor starter

circuit used to run high power induction motors. This method of deployment is sometimes called ‘Relay-Logic’

Fig. 4a Star-Delta Motor Starter designed with Relay

Logic

Fig. 4b An electromechanical relay lies at the core of

Relay Logic circuits

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

5) Computer Control: Includes PLCs, PLD, CPLDs etc. This is the state of the art in industrial control systems and

almost all newer systems are using this method of deployment.

Digital Control and Automation Hardware used in Industry:

Control and automation in industry is applied through a variety of hardware platforms. Most of the control system

implementation is done through digital control methods that are derived from those techniques that you have already

explored in the previous labs. Digital control is preferred in most cases due to its ‘reliability’ and ‘reprogrammable’

nature. A diverse selection of hardware is utilised for implementing digital control under different application

scenarios. The major technologies are enumerated below:

1. GAL : Generic Logic Array

2. PAL : Programmable Array Logic

3. PLD : Programmable Logic Device

4. CPLD : Complex Programmable Logic Device

5. FPGA : Field Programmable Gate Array

6. PLC: Programmable Logic Controllers

Introduction to Programmable Logic Controllers (PLCs):

Programmable logic controllers (PLCs) are digital electronic devices that are designed to control a wide variety of

industrial processes and machines. They are essentially specialized computers that are programmed to automate

specific tasks, such as monitoring and controlling temperature, pressure, and other parameters in manufacturing

processes. PLCs have become increasingly common in industry due to their versatility, reliability, and ability to

improve productivity and reduce costs.

The primary function of a PLC is to monitor inputs from sensors or other devices, and based on pre-programmed

logic, activate or deactivate outputs that control the operation of various machines and equipment. The programming

language used to program PLCs is typically ladder logic, a graphical language that is easy to understand and use for

people familiar with electrical circuit diagrams. The programming is done through specialized software and can be

modified as needed to adapt to changing production requirements or new technology.

PLCs are used in a wide range of industries, including automotive, food and beverage, pharmaceuticals, and

manufacturing. In automotive manufacturing, for example, PLCs are used to control robots that assemble parts, paint

cars, and perform other tasks. In the food and beverage industry, PLCs are used to monitor and control temperature,

humidity, and other conditions in the production process to ensure consistent quality and safety of the products.

The use of PLCs in industry has several advantages over traditional mechanical or electromechanical controls. One of

the main benefits is the ability to program the controller to perform complex tasks with high precision and accuracy.

This eliminates the need for manual adjustments or corrections, which can be time-consuming and error-prone.

Additionally, PLCs are more reliable than mechanical or electromechanical controls because they have no moving

parts and are not subject to wear and tear. They can also be easily integrated with other industrial control systems,

such as SCADA (Supervisory Control and Data Acquisition) systems, to provide a complete solution for monitoring

and controlling industrial processes.

Another advantage of PLCs is their flexibility. Because they are programmable, they can be easily modified to

accommodate changes in production requirements or to incorporate new technologies. This means that companies can

adapt quickly to changing market conditions or customer needs, which is essential in today's fast-paced business

environment.

PLC Brands and Manufacturers:

There are several manufacturers of PLCs, some of the well-known manufacturers are:

Siemens, Allen Bradley (Rockwell Automation), Schneider Electric, Mitsubishi Electric, ABB, Omron, Delta

Electronics, Beckhoff Automation, Bosch Rexroth, General Electric (GE).

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.5: Allen Bradley PLC

Fig.6: General Electric PLC

Fig.7: Mitsubishi PLC

Fig.8: Delta PLC

These are just a few of the many manufacturers of PLCs, and the choice of manufacturer often depends on specific

industrial needs and applications.

Introduction to our PLC experimental setup – The SIEMENS S7-1200

The Siemens S7-1200 is a popular programmable logic controller (PLC) used in various industries. It is a compact and

versatile controller that is designed for small to medium-sized automation projects, making it ideal for applications in

machine building, plant engineering, and building automation.

Fig.9: The SIEMENS PLC Portfolio. Note that the smallest (simplest) offering is SIEMENS Logo and the largest

(complex) is S7-400

Some of the features and specifications of the S7-1200 PLC are:

Modular design - The S7-1200 is a modular system that can be expanded by adding up to three communication

modules and eight I/O modules, allowing users to customize the controller to their specific needs.

Programming languages - The S7-1200 supports several programming languages, including ladder logic, function

block diagram, and structured text.

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Communication capabilities - The S7-1200 has built-in Ethernet and RS485 communication ports, allowing it to

communicate with other devices on the network.

Built-in digital and analog inputs and outputs - The S7-1200 has built-in digital and analog inputs and outputs, making

it suitable for a wide range of applications.

High-speed counters and pulse outputs - The S7-1200 has high-speed counters and pulse outputs, making it suitable

for applications that require precise timing and control.

Data logging - The S7-1200 can log data to a microSD card, allowing users to monitor and analyze system

performance over time.

Fig.10: Our SIEMENS S7-1200 PLC rack. The central module is the processor along with IO and communication

devices

Overall, the Siemens S7-1200 PLC is a versatile and reliable controller that is suitable for a wide range of automation

applications. Its modular design and support for multiple programming languages make it easy to customize and adapt

to specific needs, while its communication capabilities and built-in web server make it easy to monitor and control the

system remotely.

PLC Programming Languages

There are several programming languages used to program PLCs, each with its own strengths and weaknesses. Here

are some of the most commonly used programming languages for PLCs:

Ladder Logic - Ladder logic is the most widely used programming language for PLCs. It is a graphical language that

uses ladder-like diagrams to represent the control logic of a system. It is easy to learn and use for people familiar with

electrical circuit diagrams.

Fig.11(a): Example of Ladder Logic Program

Function Block Diagram (FBD) - FBD is another graphical programming language that uses blocks to represent

different functions and logic elements. It is well-suited for complex control systems.

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.11(b): Example of FBD Program

Structured Text (ST) - ST is a high-level programming language that resembles Pascal or C. It is used for more

complex programming tasks, such as mathematical calculations and data processing.

Fig.11(c): Example of ST Program

Instruction List (IL) - IL is a low-level programming language that is used for more advanced programming tasks,

such as configuring hardware interrupts and system functions.

Fig.11(d): Example of IL Program

Sequential Function Chart (SFC) - SFC is a graphical programming language that is used to model complex processes

with multiple steps and stages.

Fig.11(e): Example of SFC Program

Each programming language has its own strengths and weaknesses, and the choice of language depends on the

complexity of the task and the programmer's experience and familiarity with the language. Some PLCs support

multiple programming languages, allowing programmers to choose the language that best suits their needs. In this lab,

we shall use a combination of Ladder Logic and Function Block Diagram to attain our objectives.

SIEMENS S71200 Trainer Hardware

The training case comprises a SIMATIC S7-1200 automation system. The automation system is mounted in a carrying

case for transportation purposes. It consists of:

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

• S7-1200 Power Supply

• CPU1214 with Signal Board

• Analog output SB1234

• Analog input / output module SM 1234

• Digital input / output module SM 1223

• Ethernet Switch CSM 1277

• Basic Panel KTP600 (HMI LCD with six hard buttons)

Fig. 12 S71200 PLC Trainer (PLC Processor and modules on the top rack, input switches, knobs LEDs and HMI LCD

at the base)

In the following section we get to know the individual hardware components of this trainer system.

Getting to know the SIEMENS S71200 Hardware Trainer

Fig.13(a):The PLC rack

consists of , from left to

right, a power

supply(PM1207), an

ethernet switch (comm.

Module CSM1277) with

4 connections, a CPU

(1214C) with a

replaceable signal

module, an analogue i/o

module(SM1234) and a

digital i/o

module(SM1223)

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.13(b): KTP600

Human Machine Interface

that is composed of a 6”

touch screen LCD along

with six programmable

hardware buttons. The

HMI is connected to the

CPU via ethernet switch.

Fig.13(c): 14 digital input

switches connected to

digital inputs on the CPU.

They can work both as an

on/off toggle switch

(LEFT) and a momentary

switch (RIGHT). Also,

there are 10 LEDs

connected to the digital

outputs on the CPU.

Fig.13(d): An analogue

input connected to a

potentiometer with -12V

to +12V range. The input

goes to input number 0.1

of the analogue module.

Also, an LCD voltmeter

that is connected to

analogue output on the

signal module that is

present on the CPU.

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.13(e): Power plug

socket along with

ON/OFF switch

Fig.13(f): Ethernet

connector behind the

trainer connects the

ethernet switch to

SIMATIC PG

Programmer laptop.

Fig.13(g): The SIMATIC

FIELD PG Programming

Laptop. It is installed with

TIA Portal Version 10.

Fig.13(h): Ethernet

connector behind the

laptop that connects to the

trainer. Note two ethernet

cards being present of

which anyone can be

used.

Once the FIELD PG Laptop is connected to the PLC Trainer Via Ethernet cable, a star network topology is created as

shown in Fig. 14.

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.14: Star topology connecting the FIELD PG laptop to the ethernet switch (CSM 1277) that extends connection to

CPU and SIMATIC HMI (LCD) panel

Programming Environment – The SIEMENS TIA Portal

The Totally Integrated Automation Portal (TIA Portal) provides you with unrestricted access to our complete range of

digitalized automation services, from digital planning and integrated engineering to transparent operation.

TIA Portal shortens time to market by integrating all important components of your automation project in a single

framework: safety, security, control, HMI, drives, switchgear, decentralized peripherals and now also motion control

and power distribution. A shared database and a smart library concept allow you to use super-ordinate functions.

Siemens TIA Portal supports several programming languages for programmable logic controllers (PLCs), including:

• Ladder Diagram (LD): LD is a graphical programming language that uses ladder-like diagrams to represent

logical operations.

• Function Block Diagram (FBD): FBD is a graphical programming language that uses blocks to represent

logical operations and functions.

• Structured Text (ST): ST is a text-based programming language that uses structured programming concepts

such as loops and conditional statements.

• Sequential Function Chart (SFC): SFC is a graphical programming language that uses a flowchart-like

structure to represent the sequence of operations.

• Graphical Function Chart (GFC): GFC is a graphical programming language that combines the elements of

FBD and SFC.

• Statement List (STL): STL is a low-level programming language that uses a sequence of instructions to

represent logical operations.

Siemens TIA Portal also supports other programming languages for specific applications, such as C/C++ for

embedded systems programming and SIMATIC S7-GRAPH for graph-based programming. However, in this lab we

shall stick to Ladder Logic and Function Block Diagram only.

Exercise 1: Creating the First TIA Portal Project

The following table shall take us through the steps for creating our first PLC program on TIA Portal and deploy it on

the PLC.

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Step 1:

Fig.15(a): Open TIA PORTAL by clicking on the

desktop icon

Step 2:

Fig.15(b): Create a new project, assign it a name and

set its destination (keep it on the desktop)

Step 3:

Fig.15(c): From the Devices menu, choose Add

New Device

Step 4:

Fig.15(d): In the Devices menu that appear, select

CPU1214C DC/DC/DC

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Step 5:

Fig.15(e): To check your selected device, click on

Device View tab present on the top right. Your

device appears here on a virtual rack

Step 6:

Fig.15(f): Now check whether your device appears

in the network by clicking on the Network View tab

on the top right. Your device appearing here means

it is going to be connected to the LAN that contains

your PLC

Step 7:

Fig.15(g): Now go back to the Device View where

you can find Hardware Catalog tab on the right. In

this menu, select Signal Board. Pick the one with the

name AO1x12bits. This is the signal board

physically installed on the CPU. This completes the

hardware selection procedure for this lab

Step 8:

Fig.15(h): Double click on the CPU now. This shall

open configuration information for the CPU in the

bottom pane. Here, you must note down the IP

address of the CPU. This shall be helpful later. The

IP address is present in the PROFINET Interface

menu

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Step 9:

Fig.15(i): Now, set the IP Address of your computer

by clicking on the Network Adaptor settings in

Windows. This shall lead to the next step

Step 10:

Fig.15(j): Click on Properties and then select

Internet Protocol (TCP/IP)

Step 11:

Fig.15(k): Here, you shall see your computer’s IP

address. It must be different from that of the PLC

CPU that you set earlier. Note that the subnet shall

be the same as that of PLC.

Step 12:

Fig.15(l): Now, in TIA Portal, go to PLC_1 in the

project tree and in the Program Blocks sub-menu

select Main OB1. You need to double click on it.

This shall open a Ladder Logic programming

interface

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Step 13:

Fig.15(m): Inside Main_OB1, you can write your

PLC program just analogous to the main() function

in C/C++. Using the basic Ladder instructions

present in the highlighted location, create three

basic Ladders.

Step 14:

Fig.15(n): Note that you need to drag and drop the

instructions on the ladder rung. Each rung can have

multiple i/o’s. For now, just understand that inputs

are connected to the left side and outputs to the right

side. Add the tags %I0.0, %Q0.0, %I1.0, %Q1.0,

%I1.2, %I1.3 and %Q1.1 on the three rungs shown.

Step 15:

Fig.15(o): Once the program is created, click on the

Download button

Step 16:

Fig.15(p): The Download requires you to check the

Continue option and click Load

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

With this your first PLC Program is complete. What function does it perform? You can test that by turning ON/OFF

the switches on the PLC trainer. Turn all the switches ON and observe the LEDs. What do you observe? Write down

your observation.

Now, complete the following tasks:

Task 1: Complete the following truth-tables. They are each related to the first, second and third rung of your PLC

program, respectively. Turn the toggle switches ON/OFF on the trainer in order to complete the truth table. The

mentioned LEDs are to be observed for output

Toggle Switch 0.0 LED 0.0 (output – this is

the top LED)

ON

OFF

Toggle Switch 1.0 (This

is the lower .0 switch)

LED 1.0 (output – this is

the lower .0 LED)

ON

OFF

Toggle Switch

1.2 (this is the

lower .2 switch)

Toggle Switch

1.3 (this is the

lower .3 switch)

LED 1.1 (This

is the lower .1

LED, bottom

one)

ON ON

ON OFF

OFF ON

OFF OFF

Task 2: With reference to the following picture, identify and write down the name of each of the highlighted-

numbered component/device on the PLC trainer.

1. ___

2. ___

3. ___

4. ___

5. ___

6. ___

7. ___

8. ___

9. ___

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 06

Objective:

Digital I/O interfacing and manipulation in PLCs, their application in designing

On-Off type feedback control systems using ladder language.

What is a Digital I/O on a PLC?

Digital inputs have two states: OFF and ON. If voltage is present, the circuit is ON. If it’s not present, the circuit is

OFF. The voltage values for ON and OFF state depend on the type of digital logic used. In SIEMENS PLCs it is 24V

for HIGH/ON and 0V for LOW/OFF

Fig.1: A sensor connected to PLC Digital Input

The simplest control you can use over an electrical device is digital output. In this case, you would either turn

something OFF, or ON. Digital outputs are often used to control other electrical devices, through transistors or relays.

In S7-1200, digital output HIGH/ON is 24V and output LOW/OFF is 0V.

Fig.2: An actuator (LED) connected to PLC Digital Output

Digital I/O Nomenclature for SIEMENS S7-1200

Digital inputs are marked as DI, whereas, digital outputs are abbreviated as DQ in SIEMENS PLC portfolio. Every

digital input/output is called upon by its address in a PLC program. The address is given by the following format:

%IX.X for input. To spell it out, a percentage sign is followed by capital i ‘I’. Without any space, two single-digit

numbers follow, separated by a dot ‘.’. The first number is called Port Number and the second is called Pin Number.

%QX.X for output. To spell it out, a percentage sign is followed by capital q ‘Q’. Without any space, two single-

digit numbers follow, separated by a dot ‘.’. The first number is called Port Number and the second is called Pin

Number.

For example, in our trainer, the CPU has two digital input ports. Port 0 and port 1. Port 0 has eight pins with addresses

%I0.0 to %I0.7. Port 1 on the other hand has six pins with addresses %I1.0 to %I1.5. You can see them on the

processor as well as through the switches that connect to them on the trainer. See Fig. 6.

Similar to inputs, the CPU has two digital output ports; Port 0 and Port 1. Port 0 is eight bits wide containing

addresses %Q0.0 to %Q0.7. Port 1 has just two pins with addresses %Q1.0 and %Q1.1. See Fig. 7.

NOTE: I/O addresses are absolute and hardware defined in the Process Image which is a memory to store I/O states in

real-time. You can also associate Tags with each I/O address, which act as variable names and can help in keeping

track of logic in long programs. Default tags are assigned to each I/O address but it is advisable to rename them to

something that is logically meaningful, for example proximity_sensor, level_switch, alarm etc.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.3 I/O Addresses are in green whereas Tag Names are in black. Remember if you have made mistake in writing I/O

address, it turns red.

Digital I/O available on the CPU

The CPU has information about the type of Digital I/O it contains within its name. The CPU name 1214C DC/DC/DC

not only describes the processor specifications but also gives three key features of the CPU:

Fig.4 CPU Model Number used in the PLC Trainer

DC/DC/DC=> Power Supply/ Digital Input Type/ Digital Output Type

The first DC signifies the type of power supply for the processor. The second DC tells us about the kind of digital

input and the third one tells us about the kind of Digital output. In this case, the CPU is powered by a DC source, it

accepts a DC type of digital input and generates a DC type of digital output. Here DC means Direct Current. Just to

clarify, other options are also available in PLCs and are briefly explained below:

Other Power Supply options: AC (Alternating Current)

Other Digital Input Type options: none (only DC input is available)

Other Digital Output Type options: AC / RLY (RLY stands for Relay output. It means each output is a Normally

Open relay contact which closes when the output goes high. See Fig.3. AC Digital Output is a 24V AC signal turned

on by PLC)

Fig.5 Depiction of a Digital Output that is operated through a Relay built inside the PLC. This allows us to connect

high current loads/actuator to the PLC output, for example induction motor

The Digital Inputs available on the CPU is connected to the switches present on the trainer base. All these are simple

toggle switches that connect a 24V DC source to the CPU pin when turned ON. The only exception is the second

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

switch (from the top) I0.1, which is a Normally Closed switch. When these switches are toggled, an indicator LED on

the CPU lights up to show activity on the respective input pin. See Fig. 6

Fig. 6: Digital Inputs from the trainer connect to the respective input pin on the CPU

Digital Outputs from the CPU are also connected to the trainer. The LEDs at the trainer base are sequentially

connected to the respective digital output pin as marked on the CPU. Digital outputs also have status LEDs to show

their activity.

Fig. 7: Digital Outputs from the CPU connect to the respective LED on the trainer base

Digital I/O available through expansion module SM1223

The expansion digital I/O module SM1223 is present at the extreme right of the PLC rack. It also adds 8 digital inputs

and 8 digital outputs. However, its is not connected to any point on the trainer. We can use its to connect to other I/O

sensors and actuators.

Fig. 8: Digital I/O Expansion Module SM1223 (on the right). Its has no existing connections to the trainer

Types of PLC Digital Sensors and Methods to connect them

Digital Sensor is any physical sensor that has two stable output states. For a PLC, digital sensor has a built-in interface

circuit that converts sensor voltages to 0-24V range and limits current drawn by the sensor to 5mA. Fig. 9 depicts a

Digital Sensor model.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig. 9 Digital Input Sensor Model

Digital Sensors that can be connected to a PLC can be categorized into 3 groups:

1) Digital Level Sensors: Sensors with two o/p levels that hold for a measurable/observable amount of time (e.g.

fluid level sensor, elevator door switch)

Fig. 10 Depiction of Digital Level Sensor Signal

2) Digital Edge Trigger Sensors: Sensors with two o/p levels that change at a rate faster than the measuring

system OR generate momentary pulses that are few and far between (e.g. object counting proximity sensor on

conveyor belt, level sensors used in elevators for counting floors)

Fig. 11 Depiction of Digital Edge Trigger Sensor Signal

3) Digital Pulse Out Sensors: Sensors that generate a burst of pulses at high speed. Number of pulses represent a

physical quantity. (e.g. shaft encoder for dc motors for measuring speed). This kind of input cannot be

interfaced to all digital inputs and dedicated high-speed digital inputs are present for this.

Fig. 12 Depiction of Digital Pulse Out Sensor Signal where pulses are counted instead of measuring their time

Types of PLC Digital Actuators and Methods to connect them

Digital outputs of a PLC are connected to relays or other ON/OFF actuators that have only two discrete levels of

operation. These ON/OFF actuators can be categorized into two different kinds of outputs:

1) ON-OFF Outputs: Devices that simply turn ON or OFF. Interface to the device is usually a relay or high

power MOSFET (e.g. induction motor, lighting etc.)

Fig. 13 Depiction of Digital Level Actuator Output

2) PWM (Pulse Width Modulated) Output: A digital output of the form of a square wave with a certain

frequency. The on-time and off-time may be controlled. Ratio of on-time over total cycle time is called PWM

duty. This is used to control speed of DC motors and change angular position of servo motors. It is not

available on all digital outputs. And only dedicated outputs can perform this feature.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig. 14 Depiction of PWM Digital Output Signal

Wiring Digital Inputs and Outputs to PLC

The final thing we need to understand in order to interface digital inputs and outputs are the input/output wiring

connections. For our CPU 1214C DC/DC/DC, we can connect a 24V DC source between the L+ (+ve) and M(-ve)

terminals in the processor, these are exposed when the flaps of the CPU are turned over. For the individual sensors,

which can be taken as switches for all practical purposes, one terminal of the sensor needs to be connected to a 24V

DC voltage that has its negative terminal connected to 1M terminal. The other terminal then needs to connect to one of

the digital inputs (e.g. 0.0 or 0.1). This connection scheme works for normally open (NO) type sensors.

Fig. 15 Note DC supply on L+ and M terminals. Another DC supply is used to power the Digital Sensors and

grounded through 1M terminal

As for the digital outputs, the connection required connecting 24V DC source between 3L+ and 3M as shown in Fig.

14. All digital output actuators are then connected between the respective digital output and 3M (common ground).

Fig. 16 Note DC supply on 3L+ and 3M terminals. Digital Outputs are connected between the digital output pin and

common ground (3M)

NOTE: We are using simple LEDs and ON/OFF relays as digital output actuators for the major portion of these labs.

Types of Digital I/O Instructions and their Usage

Digital I/O is used in conjunction with specific software instructions in Ladder or FBD language. There is even more

specification with regards to the type of instruction to be used with certain kind of digital input sensor or digital output

actuator. In the following table, different kinds of digital I/O instructions are presented along with the type of

sensor/actuator they are designed to be used.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Digital Level Sensors

Sensors with two o/p levels that hold for a

measurable/observable amount of time (e.g.

fluid level sensor, elevator door switch)

Digital Edge Trigger Sensors

Sensors with two o/p levels that change at a

rate faster than the measuring system (e.g.

object counting proximity sensor on conveyor

belt, level sensors used in elevators for

counting floors)

Digital Pulse Out Sensors

Sensors that generate a burst of pulses at high

speed. Number of pulses represent a physical

quantity. (e.g. shaft encoder for dc motors for

measuring speed). Not available on all digital

inputs.

These can’t be used with regular digital inputs. They connect with

specialized digital inputs that have built-in functionality to

register and count pulses. This shall be used in later lab sessions.

ON-OFF Outputs:

Devices that simply turn ON or OFF. Interface

to the device is usually a relay or high power

MOSFET (e.g. induction motor, lighting etc.)

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

ON-OFF Outputs:

They can also be interfaced using SET/RESET

instructions

PWM (Pulse Width Modulated) Output:

A digital output of the form of a square wave

with a certain frequency. The on-time and off-

time may be controlled. Ratio of on-time over

total cycle time is called PWM duty. This is

used to control speed of DC motors and

change angular position of servo motors. It is

not available on all digital outputs. And only

dedicated outputs can perform this feature.

They are used with regular Output instructions but need to be

configured on specified Output connections in advance of writing

a Ladder program.

ON-OFF Memory Output:

This special instruction is not exactly an

output but simple a 1 bit memory location used

to store an ON-OFF output variable.

Exercise 1: Implementing basic Logic Gates in Ladder Language

Ladder programming is a graphical programming language used for creating logic circuits. It is commonly used in

industrial automation and control systems. Here is a brief tutorial on ladder programming:

1) Understand ladder logic elements:

The basic elements of ladder programming are contacts, coils, timers, and counters. Contacts represent input

signals, coils represent output signals, timers are used to create time delays, and counters are used to count the

number of times an input signal occurs.

2) Create a ladder diagram:

Ladder programming is based on creating a ladder diagram. The diagram consists of two vertical rails

representing the power supply, and horizontal rungs representing the logic circuit. You can add contacts, coils,

timers, and counters to the rungs by dragging and dropping them from a library.

3) Connect elements:

Contacts and coils are connected using vertical lines called rails. Contacts are connected to the left rail and

coils are connected to the right rail. When a contact is closed, it allows current to flow to the coil, which then

activates the output signal.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Now create the following logic gates in Ladder language and verify that the given truth-table verifies your

observations.

Fig.17 AND Logic Gate in Ladder Language. Take

%I0.0 and %I0.2 as inputs and %Q0.0 as output

Fig.19 NOT Logic Gate in Ladder Language. Take

%I0.5 as input and %Q0.2 as output

Fig.18 OR Logic Gate in Ladder Language. Take %I0.3

and %I0.4 as inputs and %Q0.1 as output

In order to make these logic gates, the following steps

need to be taken:

1) Create a new project in TIA Portal and name it.

2) Go to “Project View” and select “Add New

Device” from the Project Management pane

3) Add your PLC CPU (1214C DC/DC/DC) and

add the correct signal board (AI/AQ)

4) Now a CPU_1 has been added to the Project

Management pane, go into it and then go into

Program Blocks

5) Inside Program Blocks, go to Main_OB1

In order to complete this exercise, detailed steps are shown in Lab 05 with pictorial representation. Please follow it

and complete the following tables.

Table for recording output of AND Gate

%I0.0 %I0.2 %Q0.0

Table for recording output of NOT Gate

%I0.5 %Q0.2

Table for recording output of OR Gate

%I0.3 %I0.4 %Q0.1

Exercise 2: XOR Gate Application as a two-way switch

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig. 20 Wiring problem for a staircase light with two switches. The light needs to turn ON or OFF from both the

switches

Fig.20 demonstrates a common wiring challenge that allows a person going up stairs to switch the light ON and when

he has reached the top stair, he can turn it OFF. The switch works in the same way for the downwards journey also.

Conventionally, this problem is solved through a two-way switch, however, it can be easily solved with a XOR Gate

also. Complete the following table by making a Ladder language XOR gate.

Fig.21 XOR gate implementation in Ladder language.

Use %I0.6 and %I0.7 as inputs and %Q0.3 as output.

%I0.6 %I0.7 %Q0.3

Exercise 3: Operating a carwash “Enter” indicator using two proximity sensors

Modern carwash is an automated systems with many sensors and actuators. One basic sensor system in a carwash is an

“Enter/Stop” indicator. It works using two proximity sensors interfaced to digital inputs as shown in Fig. 22.

Fig. 22 “Enter/Stop” indicator outside a carwash. Note the two proximity sensors as the entrance and exit

How can we create a logic such that an entering car triggers and holds the indicator in ON state and when the car exits,

the indicator turns OFF? Look at the following description and complete the truth-table.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.23 Solving the carwash indicator problem with

SET/RESET output instructions. Complete this Ladder

on your PLC and record observations in the

accompanying table

 %I0.3

proximity

sensor at

entrance

%I0.4

proximity

sensor at

exit

%Q0.6

indicator

No car is

inside

Car enters,

still inside

Car exits

No car is

inside

Exercise 4: Fluid Tank Filling

A fluid tank needs to be filled with some process fluid. It has two float switches sensing level at the bottom and top of

the tank as shown in Fig. 24. The PLC needs to turn the motor ON to keep the fluid level maintained to the top level.

However, another input is also provided to the on-site operator in the form of a manual over-ride switch which stops

the motor at any point. A truth table for all three inputs and their impact on output is shown.

Fig.24 Fluid Tank Filing problem with three inputs and

one output

Write down the Boolean Logic expression for output Q0.0 in terms of the three inputs I1.1, I0.0 and I 1.0

Q0.0 = __

Now draw your Ladder logic solution to this problem in the space below:

Task 1: Using Flip-Flop to solve the Fluid Tank Filling problem

Using the same inputs and outputs, now solve the Fluid Tank Filling problem with SR or RS flipflop. Make sure to

attach your Ladder program and also shoe its output on a truth table. Comment on any undesired or unexpected

outcome. SR and RS instructions are part of the SIEMENS PLC instruction set. A quick recap of how SR and RS flip-

flops work is presented here.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Task 2: Creating a two-way switch system for corridor-lighting

Similar to staircase lighting, corridor lighting is also done conventionally through two-way switches. However, in

industrial settings, PLC can be used to solve it with more control. Consider the following case where a long corridor

with one entrance and one exit has three lights. For a person who could be walking into the corridor from either side,

we need to give him control of the light just in from of him. The logic should work in such a way that when he turns

on the first switch, the first light in front of him turns ON. When he approaches the second switch and flicks it, the

next light turns ON while the previous one turns OFF. When he reaches the third switch and flicks it, the third and

final light turns ON and the second light is turned. Finally, he leaves while flicking the last switch which turns the

third light OFF. Make a Ladder program and truth table for this.

Fig.25 Lighting for corridor using PLC. Inputs and outputs are defined with switches and lights

Attach Ladder program along with truth-table with your answer.

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-374 Course Title: Feedback Control Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Equipment
Identification and
Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

15%

Completely
unable to
identify
equipment
and
components
and no regard
to safe
handling

0

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent
equipment
handling capacity

30

__

Ability to
identify
equipment and
recognises all
components,
practices careful
and safe
handling

60

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and
establish connectivity
with software

15%

Unable to
perform
hardware and
software
connection
verification

0

__

Able to verify
hardware
connection but
unable to
establish
software
connection
verification

30

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

60

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with
software to complete
the provided sequence
of steps

15%

Inability to
recognise and
perform given
lab
procedures

0

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

15

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

30

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with occasional
mistakes

45

Able to
recognise given
lab procedures
and perform
them by
following
prescribed order
of steps, with no
mistakes

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Control System
Problem:
Imitate and practice
given Ladder
instructions for
implementing specific
control strategy and
store required variables

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/logical
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/logical
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no syntax/logical
errors

60

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision,
using menus, shortcuts,
instructions etc.

10%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

10

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

20

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

30

Demonstrates
command over
software menu
usage with
occasional use
of advance
menu options

40

Detecting and
Removing
Errors/Exceptions in
Hardware and
Software:
Detect
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Ladder program

10%

Unable to
check and
detect error
messages in
software and
hardware

0

Able to find
error messages
in software but
no sense of
hardware error
identification

10

Able to find error
messages in
software and
recognise them
on hardware. Still
unable to
understand the
error type and
possible causes

20

Able to find
error messages
in software and
recognise them
on hardware.
Moderately able
in
understanding
error type and
possible causes

30

Able to find
error messages
in software and
recognise them
on hardware.
Reasonably able
in
understanding
error type and
possible causes

40

Visualisation,
Comparison and
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

10%

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

0

Ability to
understand and
utilise
visualisation
and plotting
instructions
with errors.
Unable to
compute
standard indices

10

Ability to
understand and
utilise
visualisation and
plotting
instructions with
occasional errors.
Able to partially
compute
standard indices

20

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

30

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

40
Total Points (out of 400)
Weighted CLO (Psychomotor Score) (Points/4)

Remarks
Instructor’s Signature with Date

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 07

Objective:

Digital I/O manipulation in PLCs with timers, counters, and PWM (Pulse Width

Modulation) generators for designing On-Off type feedback control systems

using Ladder language.

Operating Modes of PLC CPU

The CPU has three modes of operation: STOP mode, STARTUP mode, and RUN mode. Status LEDs on the front of

the CPU indicate the current mode of operation.

● In STOP mode, the CPU is not executing the program, and you can download a project. The RUN/STOP LED is

solid yellow.

● In STARTUP mode, the CPU executes any startup logic (if present). The CPU does not process interrupt events

during the startup mode. The RUN/STOP LED alternates flashing between green and yellow.

● In RUN mode, the scan cycle executes repeatedly. Interrupt events can occur and the CPU can process them at any

point within the program cycle phase. You can download some parts of a project in RUN mode. The RUN/STOP LED

is solid green.

The CPU supports the warm restart method for entering the RUN mode. Warm restart does not include a memory

reset, but you can command a memory reset from TIA Portal. A memory reset clears all work memory, clears

retentive and non-retentive memory areas, copies load memory to work memory, and sets outputs to the configured

"Reaction to CPU STOP". A memory reset does not clear the diagnostics buffer or the permanently saved IP address.

A warm restart initializes all non-retentive system and user data. We can change the CPU mode by connecting to the

PLC and going online as depicted and described in Fig. 3

Brief overview of the Scan Cycle of SIEMENS S71200 CPU

Just like microcontrollers, PLCs also process instructions in two steps: 1) initialization of variables and inputs/outputs

and 2) continuous loop that keeps running the user program in an infinite fashion – this infinite loop is called Scan

Cycle or, simply, Cycle in SIEMENS PLCs. Each scan cycle includes writing the outputs, reading the inputs,

executing the user program instructions, and performing system maintenance or background processing. The cycle is

referred to as a scan cycle or scan. Under default conditions, all digital and analog I/O points are updated

synchronously with the scan cycle using an internal memory area called the Process Image (See Fig.1). The process

image contains a snapshot of the physical inputs and outputs on the CPU, signal board, and signal modules.

Fig.1 Process Image of CPU1214C. It stores the most recent I/O status in Memory and is used by the user program

The CPU reads the physical inputs just prior to the execution of the user program and stores the input values in the

process image input area. This ensures that these values remain consistent throughout the execution of the user

instructions.

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

The CPU executes the logic of the user instructions and updates the output values in the process image output area

instead of writing to the actual physical outputs.

After executing the user program, the CPU writes the resulting outputs from the process image output area to the

physical outputs. d outputs on the CPU, signal board, and signal modules This process provides consistent logic

through the execution of the user instructions for a given cycle and prevents the flickering of physical output points

that might change state multiple times in the process image output area.

Fig.2 Scan Cycle or simply Scan of a SIEMENS S71200 CPU. STARTUP processes take place when the CPU is in

the STOP mode. Once it starts and enter START mode, processes 1 through 5 are performed in a continuous loop.

While connected to the PLC, we can go to Online and Diagnostics and see the Scan Cycle duration, memory

consumption and other useful characteristics of the current settings.

Fig. 3 While running a program, we can click on “Go Online” (highlight 1), select “Online and Diagnostics” inside

CPU_1 (highlight 2) in order to see details related to Scan Cycle (highlight 3). Note that CPU Modes can also be

controlled from this pane

For each scan cycle, the CPU writes the outputs, reads the inputs, executes the user program, updates communication

modules, and responds to user interrupt events and communication requests. Communication requests are handled

periodically throughout the scan.

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

These actions (except for user interrupt events) are serviced regularly and in sequential order. User interrupt events

that are enabled are serviced according to priority in the order in which they occur. For interrupt events, the CPU reads

the inputs, executes the OB, and then writes the outputs, using the associated process image partition (PIP), if

applicable. The system guarantees that the scan cycle will be completed in a time period called the maximum cycle

time; otherwise, a time error event is generated. Please note that Interrupt and its handling are out of the scope of this

lab session.

SIEMENS S71200 Memory Area, Addressing and Data Types

The CPU provides the following memory areas to store the user program, data, and configuration:

● Load memory is non-volatile storage for the user program, data and configuration. When a project is downloaded to

the CPU, it is first stored in the Load memory area. This area is located either in a memory card (if present) or in the

CPU. This non-volatile memory area is maintained through a power loss. You can increase the amount of load

memory available for data logs by installing a memory card.

● Work memory is volatile storage for some elements of the user project while executing the user program. The CPU

copies some elements of the project from load memory into work memory. This volatile area is lost when power is

removed, and is restored by the CPU when power is restored.

● Retentive memory is non-volatile storage for a limited quantity of work memory values. The retentive memory area

is used to store the values of selected user memory locations during power loss. When a power down or power loss

occurs, the CPU restores these retentive values upon power up.

The Work Memory acts as the location for storing variables. In CPU1214C, this memory is 4kB (4096 Bytes). The

interesting aspect of this memory is that it is bit-addressable. Fig. 4 shows the layout of work memory and gives

examples for assigning bit, word and double word in this location.

Fig.4 Work Memory in S71200 CPU1214C. It consists of 4096 Bytes with bit-addressable access. In this figure, M3.3

is a bit declared in the 3rd bit of the 3rd Byte. Whereas, MW4 is a Word (2 Bytes) starting at Byte 4 and also consists

Byte 5 of the Work Memory

Data types are used to specify both the size of a data element as well as how the data are to be interpreted. Each

instruction parameter supports at least one data type, and some parameters support multiple data types. Hold the cursor

over the parameter field of an instruction to see which data types are supported for a given parameter.

Data

Type

Bit Size Number Range Address Examples

Bool 1 TRUE, FALSE %I0.1 (Input bit)

%Q0.3 (Output bit)

%M3.2 (Memory bit)

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Byte 8 0 to 255 %IB1 (Input byte)

%MB3 (Memory byte)

Word 16 0 to 65535 %MW4 (Memory Word)

Consists of Byte 4, 5, 6

and 7

Double

Word

32 0 to 4294967295 %MD7 (Memory Double

Word)

Consists of Bytes 7, 8, 9,

10, 11, 12, 13 and 14

Char 8 0 to 255 ‘A’, ‘t’, ‘@’

Table 1: Basic Data Types and their ranges and example syntax

In the following tables, more advanced data types are given along with their ranges and example values.

Table 2: Advance data-types

Table 3: More advance data-types

CPU Process Control and Online Monitoring of I/O

Once a PLC program is downloaded to the CPU we can connect to it in real-time and perform diagnostics and

debugging. This is done by connecting to the PLC via “Go Online” option. Please make sure that you have the same

project filed opened as that of the program downloaded to the PLC. In this way, we can monitor all the inputs and

outputs in real-time and thus can debug the program in an effective manner. Note that in Online mode, the input and

output states are being transmitted by the CPU and thus are accurate. If any physical input or output is not responding

in accordance with the activity reported by “Go Online” option then the physical connections to inputs/outputs must

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

be inspected. Moreover, remaining online also allows you to inspect the PLC Tags – a collection of all PLC variables

with values shown in real-time.

Fig.5 Online Monitoring can be turned on by connecting

to the PLC with the same project open in TIA Portal as

that downloaded to the PLC and clicking on Monitoring

Fig.6 Once Online, the connected circuits/outputs turn

green and the disconnected ones are shown with a

dotted blue line. To turn off monitoring, click on “Go

Offline”

Fig.7: PLC Tags, present in the PLC_1 Device in the Project Tree can be used to monitor all the variable live.

Exercise 1: Complete Task 01 of Lab 06 and observe its output using Online Monitoring and Watch-table.

Fig.8 Fluid Tank Filing problem – use online monitoring

and watch table to complete the accompanying table

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

PLC Timers and their usage

PLC Timer is a block used to create delays for turning on inputs, turning off inputs, or simply run an appliance for a

prescribed amount of time. In SIEMENS PLCs, three types of timer instructions are present:

1) On delay timer

2) Off delay timer

3) Pulse on timer

Before explaining these timer types, we discuss two timer connections that are present on each type of timer. These

connections are PT (Preset Time) and ET (Elapsed Time). Both connections require a variable and value to be

assigned before the timer could be used. These two connections are described in detail here.

a) PT (Preset Time): Pre- programmed time of operation. It is given as a constant of data type ‘Time’ in hours,

minutes and seconds. It’s value gives the timer a reference/threshold value of time.

b) ET(Elapsed Time): Elapsed Time is a variable that is initially zero but starts to increase in a linear fashion

once the timer input is activated. Once the ET value equals PT, the timer stops its working and the output is

changed.

Syntax for writing PT is elaborated through these examples:

PT value of 5000 milli-seconds: T#5000ms

PT value of 1 minute: T#1m

PT value of 2 seconds: T#2s

PT value of 1 hour: T#1h

Now, we shall quickly understand the operation of the three types of timers.

On Delay Timer

An On Delay Timer (ODT) in a PLC works by introducing a time delay between the occurrence of an input condition

and the activation of an output device or action. When the input condition is met, the ODT starts counting down from

its preset time, which is typically specified in milliseconds, seconds, or minutes. During the delay period, the ODT's

output remains off or inactive, regardless of the input condition. Once the preset time has elapsed, the ODT's output is

activated, allowing the connected output device or action to be triggered.

It is important to note that the ODT's output will stay active as long as the input condition is present. Once the input

condition is no longer met, the ODT's output will deactivate, and the timer will reset to its initial state, ready to start a

new delay cycle when the input condition occurs again.

Fig. 9 On Delay Timer instruction in TIA Portal

Fig.10 Timing diagram relating IN, ET and Q. Note that PT

is a fixed value

Off Delay Timer

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

An Off Delay Timer (ODT) in a PLC functions by introducing a time delay between the deactivation of an input

condition and the deactivation of an output device or action. When the input condition is deactivated, the ODT starts

counting down from its preset time, which is typically specified in milliseconds, seconds, or minutes. During the delay

period, the ODT's output remains active, even if the input condition is no longer present. This ensures that the output

device or action continues to operate for the specified duration. Once the preset time has elapsed, the ODT's output

deactivates, ceasing the operation of the connected output device or action.

It is important to note that if the input condition is reactivated during the delay period, the ODT's countdown will

reset, effectively extending the operation of the output device until the input condition remains inactive for the entire

preset time.

Fig. 11 Off Delay Timer instruction in TIA Portal

Fig.12 Timing diagram relating IN, ET and Q. Note that

PT is a fixed value

Pulse Timer

A Pulse Timer in a PLC operates by generating a fixed-duration pulse or signal upon the occurrence of an input

condition. When the input condition is met, the Pulse Timer immediately starts its countdown from the preset time,

which is typically specified in milliseconds or seconds. During the countdown, the Pulse Timer activates its output,

producing a pulse signal with a fixed duration. Once the preset time elapses, the Pulse Timer deactivates its output,

ending the pulse signal.

It's important to note that the Pulse Timer does not reset automatically. To generate subsequent pulses, the input

condition needs to be deactivated and reactivated, triggering the Pulse Timer to start a new countdown and generate

another pulse upon completion.

Fig. 13 Off Delay Timer instruction in TIA Portal

Fig.14 Timing diagram relating IN, ET and Q. Note that

PT is a fixed value

PLC Counters and their usage

Counters are sequential logic elements which can increase/decrease a variable value w.r.t. the change in input. A PLC

counter is a component that tracks the occurrence of a specific input condition or event. It operates by configuring its

parameters, including the counting mode (up or down), initial value, and storage address for the current count value.

The counter incrementally or decrementally changes its value based on the configured counting mode when the input

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

condition is met. The current count value is stored for further processing or display, and the counter's output can be

used to trigger actions or events at specific count values. Additionally, counters often have a reset functionality to

return the count value to its initial state. By utilizing counters, PLCs can accurately monitor and control events, cycles,

or processes in industrial applications, enabling precise automation.

In SIEMENS TIA Portal, we have three types of counters:

1) Up Counter

2) Down Counter

3) Up-Down Counter

Up Counter

An up counter in a PLC operates by incrementing its count value each time a specified input condition or event occurs.

Upon meeting the input condition, the up counter increases its count value by one, progressing towards the desired

count target. The up counter's count value is typically stored in a designated memory address for further processing or

display purposes. The counting operation of an up counter is continuous, and it keeps increasing the count value as

long as the input condition is met.

Up counters are commonly used to track the number of cycles, events, or objects in industrial processes, enabling

accurate monitoring and control of operations.

Fig. 15 Up Counter instruction in TIA Portal

Fig.16 Timing diagram relating CU(Count Up),R(Reset)

CV(Count Value) and Q(Output). Note that PV (Preset

Value) is 3 here.

Down Counter

A down counter in a PLC operates by decrementing its count value each time a specified input condition or event

occurs. When the input condition is met, the down counter reduces its count value by one, moving towards the desired

count target. The count value of the down counter is typically stored in a designated memory address for further

processing or display. The counting operation of a down counter continues until the count value reaches zero or a

specified stopping point.

Down counters are commonly used in applications such as countdown timers, where they track the remaining time or

number of cycles until a specific event or action occurs, enabling precise timing and control in industrial processes.

Fig. 17 Down Counter instruction in TIA Portal

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.18 Timing diagram relating CD(Count

Down),L(Load) CV(Count Value) and Q(Output). Note

that CV (Count Value) is 3 here.

Up-Down Counter

An up-down counter in a PLC combines the functionality of both an up counter and a down counter, allowing it to

increment or decrement its count value based on specified input conditions or events. The up-down counter can be

configured to increase its count value when one input condition is met and decrease the count value when another input

condition is met. The count value of the up-down counter is typically stored in a designated memory address and can be

used for further processing or display purposes. The up-down counter's counting operation is bidirectional, allowing it

to track both positive and negative changes in the count value.

Up-down counters are commonly used in applications where the count value needs to be adjusted in both directions,

such as keeping track of the net flow of items in a manufacturing process or controlling position movements in automated

systems.

Fig. 19 Up-Down Counter instruction in TIA Portal

Fig.20 Timing diagram relating CU(Cunt Up),

CD(Count Down), R(Reset), L(Load), CV(Count

Value), QU(Up Output) and QD (Dow Output).

Exercise 2: In TIA Portal open a new project and connect all three timers and all three counters in separate

networks.

Connect all timers with separate input switches and also attach separate outputs to them. Don’t forget to add Preset

Time to each of them and then observe their operation.

Connect all counters with input switches on their CU, CD, L, and R inputs. Timer outputs Q, QU and QD should be

connected with outputs. Don’t forget to assign PV(Preset Value) and attach a Memory Word (%MW) variable to their

respective CV outputs.

NOTE: All MW variables must be separate and must not overlap in the Work Memory

Exercise 3: Conveyor-Belt Tablet Filling example part-1: Detecting Bottles and Counting Tablets, separately

Consider the following conveyor system with a bottle proximity sensor and a motor that runs the conveyor. Design a

Ladder program such that motor runs until a bottle comes in front of bottle detector. As soon as the bottle is detected,

conveyor stops and after a delay of 2 seconds it starts running again.

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.21 Set-up and I/O connections for Conveyor-Belt Tablet Filling example part-1

Daw your Ladder network here:

Now, separately consider a tablet dispenser filled with tablets. The dispenser is placed just over the bottle that has

been stopped by the bottle detector. Create a Ladder network that opens the tablet dispenser valve, tablet sensor counts

10 tablets before closing the valve again.

Fig.22 Tablet counting for Conveyor-Belt Tablet Filling example part-1

Draw your Ladder network here, for the tablet counting part.

Task 1: Conveyor-Belt Tablet Filling example part-2: Detecting Bottles and Counting Tablets

In this task we need to combine both tablet filling and bottle detection operations. The sequence goes like this: The

conveyor runs until the bottle detector detects a bottle in front of it. At this point conveyor stops. After a delay of 1

second, the tablet dispenser valve opens to fill the bottle. The valve is closed only after counting 10 tablets. At this point

a delay of 1 s takes place and the conveyor starts running again. The cycle repeats afterwards.

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.23 Complete layout for Conveyor-Belt Tablet Filling example part-2

Task 2: To start asynchronous wound motors, resistors are connected in the rotor circuit to avoid a high inrush current.

After pushing the start button S1 (connected to %I0.3), the main relay (K1) is closed. Then relays K2 (connected to

%Q0.0), K3 (%Q0.1) and K4 (%Q0.2) are closed, each after a time delay of 5 seconds. Write the program to start the

motor M3 in this sequence. Note that M3 would not e connected directly to the PLC.

Fig.24 Asynchronous wound motor startup using time delayed relays

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-374 Course Title: Feedback Control Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Equipment
Identification and
Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

15%

Completely
unable to
identify
equipment
and
components
and no regard
to safe
handling

0

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent
equipment
handling capacity

30

__

Ability to
identify
equipment and
recognises all
components,
practices careful
and safe
handling

60

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and
establish connectivity
with software

15%

Unable to
perform
hardware and
software
connection
verification

0

__

Able to verify
hardware
connection but
unable to
establish
software
connection
verification

30

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

60

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with
software to complete
the provided sequence
of steps

15%

Inability to
recognise and
perform given
lab
procedures

0

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

15

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

30

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with occasional
mistakes

45

Able to
recognise given
lab procedures
and perform
them by
following
prescribed order
of steps, with no
mistakes

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Control System
Problem:
Imitate and practice
given Ladder
instructions for
implementing specific
control strategy and
store required variables

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/logical
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/logical
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no syntax/logical
errors

60

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision,
using menus, shortcuts,
instructions etc.

10%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

10

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

20

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

30

Demonstrates
command over
software menu
usage with
occasional use
of advance
menu options

40

Detecting and
Removing
Errors/Exceptions in
Hardware and
Software:
Detect
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Ladder program

10%

Unable to
check and
detect error
messages in
software and
hardware

0

Able to find
error messages
in software but
no sense of
hardware error
identification

10

Able to find error
messages in
software and
recognise them
on hardware. Still
unable to
understand the
error type and
possible causes

20

Able to find
error messages
in software and
recognise them
on hardware.
Moderately able
in
understanding
error type and
possible causes

30

Able to find
error messages
in software and
recognise them
on hardware.
Reasonably able
in
understanding
error type and
possible causes

40

Visualisation,
Comparison and
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

10%

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

0

Ability to
understand and
utilise
visualisation
and plotting
instructions
with errors.
Unable to
compute
standard indices

10

Ability to
understand and
utilise
visualisation and
plotting
instructions with
occasional errors.
Able to partially
compute
standard indices

20

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

30

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

40
Total Points (out of 400)
Weighted CLO (Psychomotor Score) (Points/4)

Remarks
Instructor’s Signature with Date

Lab08
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 08

Objective:

Analog I/O interfacing and manipulation in PLCs, their application in sensing

transducer outputs and transmitting signals to actuators.

Analog I/O present on the S71200 PLC Trainer

The Siemens S7-1200 PLC Trainer is a compact programmable logic controller (PLC) commonly used for industrial

automation and control applications. The S7-1200 series offers various models, and the availability of analog

input/output (I/O) modules may vary depending on the specific model and configuration.

Typically, the S7-1200 series PLC trainers have analog I/O capabilities through dedicated analog input and output

modules. These modules can be added to the PLC to expand its functionality and support analog signals.

Here are some common analog I/O modules that can be used with the S7-1200 series:

• SM 1231 AI: This module provides analog input channels for measuring voltage and current signals. It

supports a range of voltage and current inputs, such as 0-10V and 4-20mA.

• SM 1232 AO: This module offers analog output channels for generating analog signals. It can provide voltage

or current outputs, depending on the configuration.

• SM 1234 AI/AO: This module combines both analog input and output channels. It allows you to measure

analog signals and generate analog signals simultaneously.

These modules can be connected to the S7-1200 PLC using the onboard expansion port. In our trainer, we have the

SM 1234 AI/AO module that comprises of 4 analog inputs (13-bit ADC, each) and 2 analog outputs (14-bit DAC,

each).

Fig.1 Specifications of SM 1234 AI/AO. Note that inputs and outputs can be configured for current or voltage

Lab08
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

In this lab we shall use the potentiometer available on the trainer, which is connected to analog channel 0 (AI0) of SM

1234 to read analog voltage. Later, we shall use the digital voltmeter available on the trainer, which is connected to

analog output channel 0 (AQ0) of SM 1234 to observe voltages generated by the analog output.

Fig.2 Analog input from potentiometer connected to AI0 of SM1234, whereas, the output AQ0 goes to voltmeter

Types and Ranges of Analogue Inputs available on PLCs

PLCs (Programmable Logic Controllers) support various types and ranges of analog inputs, depending on the specific

model and manufacturer. Here are some common types of analog inputs found in PLCs:

1. Voltage Inputs (analog voltage): PLCs often include analog input channels that can measure voltage signals.

The voltage ranges supported can vary, but common ranges include 0-10V, -10V to +10V, and 0-5V.

2. Current Inputs (analog current): Some PLCs provide analog input channels capable of measuring current

signals. The current ranges supported may include 4-20mA, 0-20mA, or other ranges depending on the PLC

model.

3. Resistance Inputs: PLCs can have analog inputs designed to measure resistance. These inputs are often used

for applications such as temperature measurement using resistance temperature detectors (RTDs) or

thermistors. The input range for resistance inputs can vary depending on the specific PLC and the type of

resistance sensor being used.

4. Frequency Inputs: Certain PLCs have analog inputs capable of measuring frequency signals. These inputs can

be used for applications such as reading pulses from flow meters or other devices that provide frequency

output. The supported frequency range is typically specified by the manufacturer.

5. Thermocouple Inputs: Some PLCs offer analog inputs specifically designed for thermocouples.

Thermocouples are temperature sensors that generate small voltage signals proportional to the temperature

being measured. PLCs with thermocouple inputs typically support common thermocouple types such as J, K,

T, etc.

It's important to note that the supported ranges and types of analog inputs can vary significantly depending on the

specific PLC model and manufacturer. For example, in SIEMENS S71200 CPU 1214C DC/DC/DC, analogue inputs

can be configured as either voltage or current. On voltage setting, its range can be programmed for 10 volt to -10 volt

operation, 0 to 10 volt operation or 0 to 5 volt operation. On the other hand, if current setting is used, the analog input

can be configured to 0 to 20 mA or 4 to 20 mA setting.

In this lab we shall not discuss frequency inputs but the CPU 1214C does have high speed counter inputs which are

used for frequency measurement.

Types and Ranges of Analogue Outputs available on PLCs

PLCs (Programmable Logic Controllers) support various types and ranges of analog outputs, depending on the specific

model and manufacturer. Here are some common types of analog outputs found in PLCs:

Lab08
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

1. Voltage Outputs (analog voltage): PLCs often include analog output channels that can generate voltage

signals. The voltage ranges supported can vary, but common ranges include 0-10V, -10V to +10V, and 0-5V.

2. Current Outputs (analog current): Some PLCs provide analog output channels capable of generating current

signals. The current ranges supported may include 4-20mA, 0-20mA, or other ranges depending on the PLC

model.

3. Pulse Width Modulation (PWM) Outputs: Though they are not categorized strictly as analogue, certain PLCs

offer analog outputs that utilize pulse width modulation. PWM outputs generate square wave signals with

varying duty cycles, allowing control over the average voltage or current. PWM outputs are commonly used

for controlling motors, valves, or other devices.

4. Resistance Outputs: PLCs can have analog outputs designed to control resistance. These outputs are often

used for applications such as controlling variable resistors, heaters, or other devices that require resistance

control.

5. Frequency Outputs: Some PLCs provide analog outputs capable of generating frequency signals. These

outputs can be used for applications such as controlling variable frequency drives (VFDs) or generating pulse

signals for specific devices.

In SIEMENS S71200 CPU 1214C DC/DC/DC, analogue outputs can be configured as either voltage or current. On

voltage setting, its range can be programmed for 10 to -10 volt operation, 0 to 10 volt operation or 0 to 5 volt operation.

On the other hand, if current setting is used, the analog input can be configured to 0 to 20 mA or 4 to 20 mA setting.

PWM output is also present in CPU1214C which won’t be covered in this lab, however, it must be clarified that it is not

strictly a digital output.

Exercise 1: Interfacing Potentiometer on the PLC Trainer with Analogue Input present on the AI/AO module

As already described in Fig. 2, the potentiometer on the trainer is connected to SM 1234 module. Let’s configure it in

TIA Portal and read the analog voltage value through the PLC.

Fig.3 Create a new project

Fig.4 Add New Device from the Project Tree and

select SIEMENS PLC and then the CPU1214C

Lab08
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.5 From the Catalog pane on the right, select

signal board (AQ0) and analogue module (SM1234)

and drag them to the PLC rack

Fig.6 Double click on the CPU. In the Device

Overview section (bottom) go to Analog Inputs and

select Channel 0. This is where the potentiometer is

connected. Don’t change any settings but do explore

all the features. Note that the address for Channel 0

is %IW96

Fig.7 Now, go to Main_OB1 inside CPU_1 (from

Project Tree). Here start your Ladder network

Fig. 8 For reading ADC, we shall use the NORMx

and SCALEx instructions in this order.

Fig.9 NORMx needs to be configured in the way

shown here. Note that you need to set the input as Int

first then provide all the necessary arguments.

Notice IW96, the place where analogue channel 0

placed ADC data.

Lab08
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig. 10 SCALEx needs to be configured in the way

shown here. Note that you need to set the input as

Real first then provide all the necessary arguments.

Notice %MD4, the place where we are placing the

floating point value of voltage.

Fig. 11 Now download the program to the PLC

Fig.12 Click on the Spectacle like icon to monitor

the values online.

Fig. 13 Vary the potentiometer and observe the value

of %MD4

Observations:___

Exercise 2: Interfacing the LCD Voltmeter on PLC trainer with the Analogue Output present on AI/AO

module

Lab08
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.14 Keeping the same project intact, we shall now use

the DAC on AQ0 (%Q0.0 of SM1234) and generate an

analog voltage that is read by the LCD voltmeter on the

trainer. To see the analog output channel 0, double click

on SM1234 in the Devices menu. The details are

available at the bottom in the General info section, under

Analog Channel>Channel 0. The address of this channel

is %QW96

Fig.15 Now, add a new network in the Ladder program,

inside Main_OB1. We shall use the NORMx and

SCALEx instructions, in this order, again for this

exercise.

Fig. 16 NORMx needs to be configured in the way shown

here. Note that you need to set the input as Real first then

provide all the necessary arguments.

Fig.17 SCALEx needs to be configured in the way shown

here. Note that you need to set the output as Int first then

provide all the necessary arguments. Notice %QW96, the

place where we are placing the integer value of voltage.

Fig.18 Download the program to the PLC

Lab08
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.19 Turn on Real-time Monitoring and see the

variables (%IW96 – input from ADC- and %QW96 –

output to DAC). Also observe he trainer for the changes.

Observations___

__

Task: LED bar-graph for representing analogue input value as a percentage

Keeping the above PLC program intact, add more networks/rungs to achieve the following objective. Create an 8 LED

bar-graph using the digital outputs DQ0 to DQ7 (%Q0.0 to %Q0.7) such that when the analogue input from

potentiometer varies, the LEDs on the trainer start lighting up linearly from output 0.0 to 0.7. The exact voltage ranges

and the LEDs that need to turn on are presented in the table below.

Analogue Voltage Value (as read on LCD voltmeter) DQ0 to DQ7 Status

Less than or equal to 0 V ON OFF OFF OFF OFF OFF OFF OFF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 V to 1.5 V ON ON OFF OFF OFF OFF OFF OFF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.5 V to 3 V ON ON ON OFF OFF OFF OFF OFF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

3 V to 4.5 V ON ON ON ON OFF OFF OFF OFF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

4.5 V to 6 V ON ON ON ON ON OFF OFF OFF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

6 V to 7.5 V ON ON ON ON ON ON OFF OFF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

7.5 V to 9 V ON ON ON ON ON ON ON OFF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

9 V to 10 V or greater ON ON ON ON ON ON ON ON

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Attach your Ladder program along with a picture of the output on trainer showing voltage on LCD and LEDs.

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-374 Course Title: Feedback Control Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Equipment
Identification and
Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

15%

Completely
unable to
identify
equipment
and
components
and no regard
to safe
handling

0

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent
equipment
handling capacity

30

__

Ability to
identify
equipment and
recognises all
components,
practices careful
and safe
handling

60

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and
establish connectivity
with software

15%

Unable to
perform
hardware and
software
connection
verification

0

__

Able to verify
hardware
connection but
unable to
establish
software
connection
verification

30

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

60

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with
software to complete
the provided sequence
of steps

15%

Inability to
recognise and
perform given
lab
procedures

0

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

15

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

30

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with occasional
mistakes

45

Able to
recognise given
lab procedures
and perform
them by
following
prescribed order
of steps, with no
mistakes

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Control System
Problem:
Imitate and practice
given Ladder
instructions for
implementing specific
control strategy and
store required variables

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/logical
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/logical
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no syntax/logical
errors

60

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision,
using menus, shortcuts,
instructions etc.

10%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

10

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

20

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

30

Demonstrates
command over
software menu
usage with
occasional use
of advance
menu options

40

Detecting and
Removing
Errors/Exceptions in
Hardware and
Software:
Detect
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Ladder program

10%

Unable to
check and
detect error
messages in
software and
hardware

0

Able to find
error messages
in software but
no sense of
hardware error
identification

10

Able to find error
messages in
software and
recognise them
on hardware. Still
unable to
understand the
error type and
possible causes

20

Able to find
error messages
in software and
recognise them
on hardware.
Moderately able
in
understanding
error type and
possible causes

30

Able to find
error messages
in software and
recognise them
on hardware.
Reasonably able
in
understanding
error type and
possible causes

40

Visualisation,
Comparison and
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

10%

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

0

Ability to
understand and
utilise
visualisation
and plotting
instructions
with errors.
Unable to
compute
standard indices

10

Ability to
understand and
utilise
visualisation and
plotting
instructions with
occasional errors.
Able to partially
compute
standard indices

20

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

30

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

40
Total Points (out of 400)
Weighted CLO (Psychomotor Score) (Points/4)

Remarks
Instructor’s Signature with Date

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 09

Objective:
Introduction to HMI (Human Machine Interface), its programming via PLC and communication set-up between PLC

and HMI for measurement viasualisation

Concept and use of Human Machine Interface (HMI) in Industrial Automation

HMI, or Human-Machine Interface, is a critical component of industrial automation systems. It serves as a graphical

user interface that allows operators to interact with and monitor industrial processes and machinery. HMIs provide

visualization and monitoring capabilities, allowing operators to view real-time data, track trends, and monitor alarms.

They also enable control and operation of industrial processes, allowing operators to adjust setpoints, start/stop

processes, and activate alarms. HMIs incorporate features for alarm management, data logging, and analysis, allowing

operators to respond promptly to critical situations and perform troubleshooting and optimization tasks.

Fig.1 HMI installed in an industrial setup. It allows for real-time monitoring and configuration of industrial process

HMIs are configured and programmed using software tools, enabling customization and integration with various

devices within the automation system. They support connectivity with PLCs, DCS, motor drives, sensors, and other

devices through industrial protocols. Some HMIs also offer remote access and monitoring capabilities, allowing

authorized personnel to access and control the interface from remote locations using computers or mobile devices.

HMIs simplify complex systems, enhance operator efficiency, and improve overall productivity and safety in

industrial automation.

SIEMENS HMI Introduction – the KTP600

The Siemens KTP600 HMI (Human-Machine Interface) is a compact operator panel designed for use in industrial

automation applications. It serves as a user interface for interacting with a Siemens SIMATIC S7-1200 or S7-1500

PLC or other compatible Siemens devices. Here is a brief description of the Siemens KTP600 HMI:

1. Display: The KTP600 features a TFT (Thin-Film Transistor) color display with a size of 5.7 inches. It

provides clear and vibrant visualization of process data, alarms, and control elements.

2. Touchscreen: The HMI utilizes a resistive touchscreen that allows operators to interact with the displayed

information. The touchscreen supports single-touch inputs and offers reliable and precise touch response.

3. Function Keys: The KTP600 includes six tactile function keys positioned below the display. These keys can

be programmed to perform specific functions or to navigate through the HMI screens, enabling quick and easy

access to commonly used features.

4. Communication Interfaces: The HMI is equipped with various communication interfaces to establish

connections with the PLC or other devices. It supports industrial protocols such as Ethernet, MPI/Profibus DP,

and USB for seamless integration into the automation system.

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

5. HMI Software: The KTP600 uses the Siemens WinCC Basic software for configuration and runtime

functionality. This software allows users to create intuitive and visually appealing HMI screens, define alarms,

and set up data logging capabilities.

6. IP Rating: The KTP600 is designed to withstand industrial environments and has an IP65 rating, which means

it is dust-tight and protected against water jets, making it suitable for installation in harsh conditions.

7. Mounting Options: The KTP600 can be panel-mounted or mounted on a support arm, providing flexibility for

installation in different control cabinet designs.

Fig.2 SIEMENS KTP600 HMI

The Siemens KTP600 HMI offers a user-friendly interface that enables operators to monitor and control industrial

processes efficiently. It provides essential features and connectivity options for seamless integration into the Siemens

automation ecosystem.

HMI Connectivity and Interfacing

HMI KTP600 has ethernet connectivity and can be interfaced with the PLC either directly with the CPU or through an

internet switch (communication module CSM 1277). The actual connection is in our trainer system is depicted in Fig.

3, where a star network is formed.

Fig.3: Star topology connecting the FIELD PG laptop to the ethernet switch (CSM 1277) that extends connection to

CPU and SIMATIC HMI (LCD) panel

This connection requires both the PLC and the HMI to be under the same subnet address. This address can either be

set automatically using the DHCP protocol or manually through the HMI configuration interface. In the following

steps, we describe how to set the IP address and subnet manually on the HMI.

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.4 Turn the PLC trainer OFF by switching the power

switch and turn it back on again. The shown screen shall

greet you when it starts.

Fig. 5: A menu shall appear with three options: Transfer,

Start and Control Panel. This is going to disappear after 5

seconds so quickly press the Control Panel option.

Fig. 6 In the Control Panel, select Profinet. This is the

name for industrial ethernet connection that is used across

PLC models and manufacturers.

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.7 Now a screen with IP address and subnet mask shall

appear. You can change these by touching the respective

field and an on-screen keypad shall allow you o make the

changes.

Fig. 8 Finally set the IP as 192.168.0.3 and subnet mask

as 255.255.255.0. Later, when we create the PLC project

in TIA portal we will make sure that the PLC’s subnet

mask is the same.

Exercise: Taking analogue input from potentiometer and displaying it on the HMI panel

In this task, we shall measure analogue voltage from the potentiometer present on the trainer, and then display it on

the HMI via a readout and a bar-graph. The steps needed to be taken to complete the project are presented here.

Fig.9 Create a new project and enter into Project View

Fig.10 Add New Device from the Project Tree and

select SIEMENS PLC > S71200 > CPU1214C

(DC/DC/DC)

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.11 From the Catalog menu on the right, select the

appropriate Signal Board (AQ0) and Signal Module

(SM1234) and drag them to the PLC rail

Fig.12 Now, again go to Add New Device, this time

selecting SIMATIC HMI and subsequently select

KTP600 PN

Fig.13 Now set the IP address and subnet mask of the

HMI by selecting HMI_1 from the Project Tree and

then select Online and Diagnostics. Here, set the IP as

192.168.0.3 and subnet mask as 255.255.255.0

Fig.14 The PLCs IP address needs to be checked now.

Select CPU_1

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.15 Inside CPU_1, select Network and

Diagnostics. Here the subnet mask f the CPU needs to

be same as that of the HMI

Fig.16 Now create a Ladder program that measures

voltage from on-board potentiometer. Here, you can

follow Exercise 1 of Lab 8

Fig.17 For reference, the Ladder program for this lab

is available here

Fig.18 As the output of analogue input is stored in

%MD24, we need to transfer it to PLC Tags. PLC

Tags is present under HMI_1>PLC_Tags.

Fig.19 In PLC Tags, click on Add New. A menu will

appear beneath the PLC Tag column. From this

column, select the tag for %MD24

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.20 A few columns over to the right, click on the

Acquisitions column and select 500ms as the variable

acquisition time. Note that this is not the sampling

frequency. It is the update time of variable on the HMI

screen.

Fig.21 The PLC program is ready and now can be

downloaded to the PLC. For this first go to CPU_1 in

Project Tree and then select Program

Blocks>Main_OB1 and then click on the Download

button from the top menu.

Fig.22 This brings us to write program for the HMI,

which is written on the Root Screen. Select HMI_1 in

Project Tree and then choose HMI Screens>Root

Screen. A graphic window shall appear in the

programming pane.

Fig.23 Basic graphical programming can be done by

dragging any one of the Objects from the right

instructions pane and dropping them on the screen.

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.24 We shall use I/O Field to show our voltage on

screen. Once I/O Field is placed on the HMI Screen,

its tag can be associated in the I/O Field General menu

below.

Fig.25 This figure shows the tag being selected for the

I/O Field

Fig.26 In the same way as the I/O Field, select bar-

graph from the Toolbox and drag it to the HMI Screen.

Fig.27 Select the same tag for the bar-graph and set its

range from -10 to 10

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.28 Now, download the HMI program to the HMI

by clicking on the Download button on the top menu.

Fig. 29 HMI Program being downloaded to the PLC

Observation

Rotate the potentiometer and see the change it brings to

the HMI display. Report your observation:___________

Now, report what happens when the potentiometer

exceeds the +/-10 V range: _______________________

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Task: Program the PLC to accept two digital inputs from %I0.2 and %I0.4 and one analogue input from %IW96

(%I0.0 input of analogue module SM1234) and display them on the HMI via the following method.

Input Name Display Object When OFF When ON

Digital Input %I0.2 Circle Circle filled with green colour Circle filled with red colour

Digital Input %I0.4 Circle Circle filled with green colour Circle filled with red colour

Analogue Input %I0.0 Circle Time-series graph

Submit screen capture of your Ladder program, PLC Root Screen design and picture of the actual output as observed

on the HMI Screen.

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-374 Course Title: Feedback Control Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Equipment
Identification and
Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

15%

Completely
unable to
identify
equipment
and
components
and no regard
to safe
handling

0

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent
equipment
handling capacity

30

__

Ability to
identify
equipment and
recognises all
components,
practices careful
and safe
handling

60

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and
establish connectivity
with software

15%

Unable to
perform
hardware and
software
connection
verification

0

__

Able to verify
hardware
connection but
unable to
establish
software
connection
verification

30

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

60

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with
software to complete
the provided sequence
of steps

15%

Inability to
recognise and
perform given
lab
procedures

0

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

15

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

30

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with occasional
mistakes

45

Able to
recognise given
lab procedures
and perform
them by
following
prescribed order
of steps, with no
mistakes

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Control System
Problem:
Imitate and practice
given Ladder
instructions for
implementing specific
control strategy and
store required variables

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/logical
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/logical
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no syntax/logical
errors

60

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision,
using menus, shortcuts,
instructions etc.

10%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

10

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

20

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

30

Demonstrates
command over
software menu
usage with
occasional use
of advance
menu options

40

Detecting and
Removing
Errors/Exceptions in
Hardware and
Software:
Detect
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Ladder program

10%

Unable to
check and
detect error
messages in
software and
hardware

0

Able to find
error messages
in software but
no sense of
hardware error
identification

10

Able to find error
messages in
software and
recognise them
on hardware. Still
unable to
understand the
error type and
possible causes

20

Able to find
error messages
in software and
recognise them
on hardware.
Moderately able
in
understanding
error type and
possible causes

30

Able to find
error messages
in software and
recognise them
on hardware.
Reasonably able
in
understanding
error type and
possible causes

40

Visualisation,
Comparison and
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

10%

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

0

Ability to
understand and
utilise
visualisation
and plotting
instructions
with errors.
Unable to
compute
standard indices

10

Ability to
understand and
utilise
visualisation and
plotting
instructions with
occasional errors.
Able to partially
compute
standard indices

20

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

30

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

40
Total Points (out of 400)
Weighted CLO (Psychomotor Score) (Points/4)

Remarks
Instructor’s Signature with Date

Lab10
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

LAB SESSION 10

Objective:

DC motor speed measurement and control via PLC utilising analogue I/O, digital

I/O, PWM generator HMI and other PLC peripherals

Connecting DC Motor to PLC Digital Output

DC Motors are not connected directly with the digital outputs of a PLC in real-world settings. Power converter modules

are usually connected to the PLC output, which in turn drives DC Motor. However, for simple application where the

DC Motor does not require high drive current and inductive voltages are also constrained, we can connect DC Motor

with PLC digital output directly.

Two things must be verified before connecting DC Motor to a PLC digital output:

a) Current supplying limit of the PLC digital output

b) If speed of the Motor needs to be controlled, the digital output must have PWM(Pulse Width Modulation)

capability.

In our case, S71200 CPU 1214C has a current drive capacity of 0.5A on all its digital outputs. Moreover, two of the

CPU digital outputs - %Q0.0 and %Q0.1 – are also configurable as PWM Pulse Outputs.

Connecting Speed Transducer to PLC Digital Input

DC Motor in industries are coupled with shaft encoders to measure its speed and direction. This requires reading square

wave pulses by the PLC, counting them and then using formula to find the speed in RPM (Revolutions Per Minute). In

PLCs digital inputs generally don’t have high speed pulse counting capability. Some inputs can be configured as High

Speed Counters (HSCs). In S71200 CPU1214C, eight digital inputs - %I0.0 to %I0.7 – can be configured as HSC.

Requirements for this lab

Students need to bring geared DC motor with 24V input voltage and drive current less than 0.5A. Along with it, a single

phase Pulse sensor is also needed with its encoder disc. Note that this type pf pulse sensor – single phase – can only

measure speed and can’t discern the direction of the motor.

The detailed list of components needed for this lab are:

1) Henkwell 12-24 V DC geared motor (max. 142 RPM)

2) Optical slot speed sensor based on LM393

3) DC motor speed encoder disc (20 slots)

4) 1N4002 diode

5) Connection wires

Connections

The DC motor can be connected to the CPU DQ0 (%Q0.0) which can be accessed by lifting the bottom flap. The two

motor wires must be connected between %Q0.0 and M terminals. Diode 1N4002 must be connected such that its anode

goes to %Q0.0 terminal and its cathode to M terminal.

The pulse sensor output wire (Pulse Out) should be connected to CPU digital input DI0 (%I0.0). The other wire from

the sensor is connected to the M terminal. Note that DI0 and M can be accessed by lowering down the top flap of the

CPU.

Exercise 1: Ladder program for measuring DC Motor speed via Pulse Transducer

After creating a new project, Add New Hardware and select CPU1214C. Now add the signal board to the CPU.

Lab10
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.1 Select CPU1214C from Add New Device menu and add the Signal Board AO0

Here, we must configure the HSC on digital input DI0. Double click on the CPU and in the Device Overview section

choose High Speed Counter (HSC)> High Speed Counter (HSC) 1. Enable HSC 1 by checking the Enable box. Note

the address of the counter variable for HSC 1 (It is %ID1000).

Fig.2 High Speed Counter 1, enabling and configuring it

Another configuration you need to do is set the HSC 1 function as Frequency.

Fig.3 Setting HSC 1 to measure Frequency

Lab10
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Now create the following Ladder network in Main_OB1

Fig.4 Using MOVE instruction to read HSC1 ID1000 and storing it in MD10

Exercise 2: Ladder program for changing DC Motor speed via analogue input

In the same project as above, first interface the analogue input and read its value using the following network. This will

be the second network of this project.

Fig.5 Using NORM and SCALE to measure and store values from analogue channel 0

Now, configure the PWM output on digital output DQ0 by double clicking on the PLC in the Devices and Networks

menu.

Lab10
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.6 Enabling PTO/PWM 1 from Pulse Generator in Device Overview

Here, you can find, Pulse Generators (PTO/PWM), where two modules are shown. Enable PTO/PWM 1 and note down

its address.

Fig.7 Hardware address of PTO/PWM 1. This is the address where the PWM duty cycle needs to be written

Finally create the following Ladders in Main_OB1. With this you can download the program in the PLC and observe

the inputs and outputs via Online Monitoring.

Lab10
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.8 Using CTR_PWM instruction from Extended Instructions and then CONV and MOVE to use PWM output

Task: Draw the connection diagram of DC Motor and Pulse Sensor with the PLC CPU. Also, note down your

observations how DC motor speed varies with the rotation of potentiometer.

1

Cover Page for Each PBL/OEL
Course Code: EE-374

Course Name: Feedback Control Systems

Semester: Spring / Fall

Year: 20__

Section:

Batch:

Lab Instructor name:

Submission
deadline:

PBL or OEL Statement: To simulate and design hardware of a feedback control system

using Buck converter as plant.

Deliverables:
Write the report containing all calculations by hand and simulation on Matlab/Simulink. Include all

code and waveforms. Also submit hardware.

Methodology:
Task:
a) The mathematical model of Buck converter (Figure 1) in frequency domain is given by the
following transfer function:
T(s)= (V_0 (s))/(d(s)) = V_s/(LCs^2+(L/R)s+1)
where;
Vo(s)= output voltage in s-domain
d(s)= duty cycle in s-domain
L= inductance
C= capacitance
R= load resistance
Simulate the converter in Simulink (using powergui library) with given circuit parameters to find out
the step response.

Figure 1: Buck Converter

R= 1 Ω
L=0.5 mH
C=940 μF
d=0.5 to 0.8 (50% to 80%duty cycle), Switching frequency = 3.9 kHz
 V_s=5V

2

b) Identify the transfer function, (V_0 (s))/(d(s)) experimentally by recording the step response of the
output voltage V_o of the following buck converter either by using controller (For, e.g. PLC, Arduino,
PIC etc.) with following system parameters.

 R= 1 Ω 10 Watt
 L=0.5 mH
 C=940 μF
 d=0.5 to 0.8 (50% to 80%duty cycle), Switching frequency = 3.9 kHz
 V_s=5 -12 V (battery or dc adaptor with 1A current capacity, use of mobile chargers is
discouraged)
 N-channel MOSFET IRLZ44N (please note the L here as there are other versions of this
switch)
 10kΩ Resistors (0.25Watt) [2 Resistors]
 500Ω Resistor (0.25Watt) [1 Resistor]
 Microcontroller (Arduino Uno/Nano, PIC, 8051 etc)
 Potentiometer 100kΩ
 Vero-board

Guidelines: The report should be maximum 5 pages long which should include figures,

calculations, simulation results and waveforms Attach these two pages on top of the

report. Attach the screenshot of Simulink model along with the plot of Vo by giving

step PWM input of fixed duty cycle between 50% and 80%. Using the plot find ζ and

peak time and use these parameters to estimate transfer function. Attach the

screenshot of the plot of Vo. Using plot find ζ and peak time and use these parameters

to estimate transfer function. Also make a neat and labelled circuit diagram of your

setup with each detail.

c) Using potentiometer acquire voltage set value in the controller and then close the

control loop by automatically adjusting the PWM by sensing voltage output Vo and

comparing it with set value.

d) [Optional] Using PID control technique, adjust the PWM output by sensing Vo and

set value. You are allowed to use any open-source libraries for this task with proper

reference.

Rubrics: Standard software and hardware rubrics as defined for EE-374

NED University of Engineering & Technology

Department of _____________________ Engineering

Course Code: EE-359 Course Title: Electrical Power Distribution and Utilization
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be
assessed

Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to initialise,
configure and
operate software
environment under
supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand
and use
software
menu

Little ability and
understanding
of software
menu
operation,
makes many
mistake

Moderate
ability and
understanding
of software
menu
operation,
makes lesser
mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

Procedural
Programming of
given model:
Practice procedural
programming
techniques, in order
to code specific
model

Little to no
understanding
of procedural
programming
techniques

Slight ability to
use procedural
programming
techniques for
coding given
algorithm

Mostly correct
recognition and
application of
procedural
programming
techniques but
makes crucial
errors for the
given model

Correctly
recognises and
uses procedural
programming
techniques with
no errors but
unable to run
model successfully

Correctly
recognises and
uses procedural
programming
techniques with
no errors and runs
model successfully

Relating Theoretical
Concepts,
Equations and
Transforms to
Code:
Recognise relation
between model
concepts and
written code and
manipulate the
code in accordance
of requirements

Completely
unable to
relate
between
model
concepts and
written code,
unable to do
manipulations

Able to
recognise some
relation
between model
concepts and
written code,
unable to do
manipulations

Able to
recognise
relation
between model
concepts and
written code,
unable to do
manipulations

Able to recognise
relation between
model concepts
and written code,
able to do some
manipulations

Able to recognise
relation between
model concepts
and written code,
able to completely
manipulate code
in line with
theoretical
concepts

Detecting and
Removing Errors:
Detect
Errors/Exceptions
and in simulation
and manipulate
code to rectify the
simulation

Unable to
check and
detect error
messages and
indications in
software

Able to find
error messages
and indications
in software but
no
understanding
of detecting
those errors
and their types

Able to find
error messages
and indications
in software as
well as
understanding
of detecting
some of those
errors and their
types

Able to find error
messages in
software as well as
understanding of
detecting all of
those errors and
their types

Able to find error
messages in
software along
with the
understanding to
detect and rectify
them

Graphical
Visualisation and
Comparison of
model Parameters:
Manipulate given
simulation under
supervision, in order
to produce
graphs/plots for
measuring and
comparing model
parameters

Unable to
understand
and utilise
visualisation or
plotting
features

Ability to
understand and
utilise
visualisation
and plotting
features with
frequent errors

Ability to
understand and
utilise
visualisation
and plotting
features
successfully but
unable to
compare and
analyse them

Ability to
understand and
utilise
visualisation and
plotting features
successfully,
partially able to
compare and
analyse them

Ability to
understand and
utilise
visualisation and
plotting features
successfully, also
able to compare
and analyse them

Following step-by-
step procedure to
complete lab work:
Observe, imitate
and operate
software to
complete the
provided sequence
of steps

Inability to
recognise and
perform given
lab procedures

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with frequent
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Recording
Simulation
Observations:
Observe and copy
prescribed or
required simulation
results in
accordance with lab
manual instructions

Inability to
recognise
prescribed or
required
simulation
measurements

Able to
recognise
prescribed or
required
simulation
measurements
but does not
record
according to
given
instructions

__

Able to recognise
prescribed or
required
simulation
measurements
but records them
incompletely

Able to recognise
prescribed or
required
simulation
measurements
and records them
completely, in
tabular form

Discussion and
Conclusion:
Demonstrate
discussion capacity
on the recorded
observations and
draw conclusions
from it, relating
them to theoretical
principles/concepts

Complete
inability to
discuss
recorded
observations
and draw
conclusions

Slight ability to
discuss
recorded
observations
and draw
conclusions

Moderate
ability to discuss
recorded
observations
and draw
conclusions

Reasonable ability
to discuss
recorded
observations and
draw conclusions

Full ability to
discuss recorded
observations and
draw conclusions

Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-374 Course Title: Feedback Control Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Equipment
Identification and
Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

15%

Completely
unable to
identify
equipment
and
components
and no regard
to safe
handling

0

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent
equipment
handling capacity

30

__

Ability to
identify
equipment and
recognises all
components,
practices careful
and safe
handling

60

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and
establish connectivity
with software

15%

Unable to
perform
hardware and
software
connection
verification

0

__

Able to verify
hardware
connection but
unable to
establish
software
connection
verification

30

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

60

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with
software to complete
the provided sequence
of steps

15%

Inability to
recognise and
perform given
lab
procedures

0

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

15

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

30

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with occasional
mistakes

45

Able to
recognise given
lab procedures
and perform
them by
following
prescribed order
of steps, with no
mistakes

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Control System
Problem:
Imitate and practice
given Ladder
instructions for
implementing specific
control strategy and
store required variables

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/logical
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/logical
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no syntax/logical
errors

60

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision,
using menus, shortcuts,
instructions etc.

10%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

10

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

20

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

30

Demonstrates
command over
software menu
usage with
occasional use
of advance
menu options

40

Detecting and
Removing
Errors/Exceptions in
Hardware and
Software:
Detect
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Ladder program

10%

Unable to
check and
detect error
messages in
software and
hardware

0

Able to find
error messages
in software but
no sense of
hardware error
identification

10

Able to find error
messages in
software and
recognise them
on hardware. Still
unable to
understand the
error type and
possible causes

20

Able to find
error messages
in software and
recognise them
on hardware.
Moderately able
in
understanding
error type and
possible causes

30

Able to find
error messages
in software and
recognise them
on hardware.
Reasonably able
in
understanding
error type and
possible causes

40

Visualisation,
Comparison and
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

10%

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

0

Ability to
understand and
utilise
visualisation
and plotting
instructions
with errors.
Unable to
compute
standard indices

10

Ability to
understand and
utilise
visualisation and
plotting
instructions with
occasional errors.
Able to partially
compute
standard indices

20

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

30

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

40
Total Points (out of 400)
Weighted CLO (Psychomotor Score) (Points/4)

Remarks
Instructor’s Signature with Date

NED University of Engineering & Technology

Department of _____________________ Engineering

Course Code: EE-359 Course Title: Electrical Power Distribution and Utilization
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be
assessed

Extent of Achievement

0 1 2 3 4

Software Menu
Identification and
Usage:
Ability to initialise,
configure and
operate software
environment under
supervision, using
menus, shortcuts,
instructions etc.

Unable to
understand
and use
software
menu

Little ability and
understanding
of software
menu
operation,
makes many
mistake

Moderate
ability and
understanding
of software
menu
operation,
makes lesser
mistakes

Reasonable
understanding of
software menu
operation, makes
no major mistakes

Demonstrates
command over
software menu
usage with
frequent use of
advance menu
options

Procedural
Programming of
given model:
Practice procedural
programming
techniques, in order
to code specific
model

Little to no
understanding
of procedural
programming
techniques

Slight ability to
use procedural
programming
techniques for
coding given
algorithm

Mostly correct
recognition and
application of
procedural
programming
techniques but
makes crucial
errors for the
given model

Correctly
recognises and
uses procedural
programming
techniques with
no errors but
unable to run
model successfully

Correctly
recognises and
uses procedural
programming
techniques with
no errors and runs
model successfully

Relating Theoretical
Concepts,
Equations and
Transforms to
Code:
Recognise relation
between model
concepts and
written code and
manipulate the
code in accordance
of requirements

Completely
unable to
relate
between
model
concepts and
written code,
unable to do
manipulations

Able to
recognise some
relation
between model
concepts and
written code,
unable to do
manipulations

Able to
recognise
relation
between model
concepts and
written code,
unable to do
manipulations

Able to recognise
relation between
model concepts
and written code,
able to do some
manipulations

Able to recognise
relation between
model concepts
and written code,
able to completely
manipulate code
in line with
theoretical
concepts

Detecting and
Removing Errors:
Detect
Errors/Exceptions
and in simulation
and manipulate
code to rectify the
simulation

Unable to
check and
detect error
messages and
indications in
software

Able to find
error messages
and indications
in software but
no
understanding
of detecting
those errors
and their types

Able to find
error messages
and indications
in software as
well as
understanding
of detecting
some of those
errors and their
types

Able to find error
messages in
software as well as
understanding of
detecting all of
those errors and
their types

Able to find error
messages in
software along
with the
understanding to
detect and rectify
them

Graphical
Visualisation and
Comparison of
model Parameters:
Manipulate given
simulation under
supervision, in order
to produce
graphs/plots for
measuring and
comparing model
parameters

Unable to
understand
and utilise
visualisation or
plotting
features

Ability to
understand and
utilise
visualisation
and plotting
features with
frequent errors

Ability to
understand and
utilise
visualisation
and plotting
features
successfully but
unable to
compare and
analyse them

Ability to
understand and
utilise
visualisation and
plotting features
successfully,
partially able to
compare and
analyse them

Ability to
understand and
utilise
visualisation and
plotting features
successfully, also
able to compare
and analyse them

Following step-by-
step procedure to
complete lab work:
Observe, imitate
and operate
software to
complete the
provided sequence
of steps

Inability to
recognise and
perform given
lab procedures

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with frequent
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
occasional
mistakes

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with no
mistakes

Recording
Simulation
Observations:
Observe and copy
prescribed or
required simulation
results in
accordance with lab
manual instructions

Inability to
recognise
prescribed or
required
simulation
measurements

Able to
recognise
prescribed or
required
simulation
measurements
but does not
record
according to
given
instructions

__

Able to recognise
prescribed or
required
simulation
measurements
but records them
incompletely

Able to recognise
prescribed or
required
simulation
measurements
and records them
completely, in
tabular form

Discussion and
Conclusion:
Demonstrate
discussion capacity
on the recorded
observations and
draw conclusions
from it, relating
them to theoretical
principles/concepts

Complete
inability to
discuss
recorded
observations
and draw
conclusions

Slight ability to
discuss
recorded
observations
and draw
conclusions

Moderate
ability to discuss
recorded
observations
and draw
conclusions

Reasonable ability
to discuss
recorded
observations and
draw conclusions

Full ability to
discuss recorded
observations and
draw conclusions

Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date

Page 1 of 2

NED University of Engineering & Technology

 Department of Electrical Engineering

Course Code: EE-374 Course Title: Feedback Control Systems
Laboratory Session No.: ________________________ Date: ______________________________

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Software Initialisation
and Configuration:
Set up and recognise
software initialisation
and configuration steps

10%

Completely
unable to
recognise
initialisation
and
configuration

0

Able to
recognise
initialisation but
could not
configure

10

Able to recognise
initialisation but
configuration is
erroneous

20

Able to
recognise
initialisation and
configuration
with minimal
errors

30

Able to
recognise
initialisation and
configuration
with complete
success

40

Equipment
Identification and
Handling:
Sensory skill to identify
equipment and its
components along with
adherence to safe
handling

15%

Completely
unable to
identify
equipment
and
components
and no regard
to safe
handling

0

__

Ability to identify
equipment but
makes mistakes in
recognising
components,
demonstrates
decent
equipment
handling capacity

30

__

Ability to
identify
equipment and
recognises all
components,
practices careful
and safe
handling

60

Establish and Verify
Hardware-Software
Connection:
Recognise interface
between computer and
hardware kit and
establish connectivity
with software

15%

Unable to
perform
hardware and
software
connection
verification

0

__

Able to verify
hardware
connection but
unable to
establish
software
connection
verification

30

__

Able to verify
hardware
connection and
successfully
establishes
software
connection
verification

60

Following step-by-step
procedure to complete
lab work:
Observe, imitate and
operate hardware in
conjunction with
software to complete
the provided sequence
of steps

15%

Inability to
recognise and
perform given
lab
procedures

0

Able to
recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

15

Able to recognise
given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

30

Able to
recognise given
lab procedures
and perform
them by
following
prescribed
order of steps,
with occasional
mistakes

45

Able to
recognise given
lab procedures
and perform
them by
following
prescribed order
of steps, with no
mistakes

60

Page 2 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed
Extent of Achievement

0 1 2 3 4

Programming the
Controller for given
Control System
Problem:
Imitate and practice
given Ladder
instructions for
implementing specific
control strategy and
store required variables

15%

Incorrect
selection and
use of
programming
constructs
and
instructions

0

Correct
selection of
programming
constructs and
instructions but
their use is
incorrect

15

Correct selection
and use of
programming
constructs and
instructions with
many
syntax/logical
errors

30

Correct
selection and
use of
programming
constructs and
instructions
with little to no
syntax/logical
errors

45

Correct
selection and
use of
programming
constructs and
instructions with
no syntax/logical
errors

60

Software Menu
Identification and
Usage:
Ability to operate
software environment
under supervision,
using menus, shortcuts,
instructions etc.

10%

Unable to
understand
and use
software
menu

0

Little ability and
understanding
of software
menu
operation,
makes many
mistake

10

Moderate ability
and
understanding of
software menu
operation, makes
lesser mistakes

20

Reasonable
understanding
of software
menu
operation,
makes no major
mistakes

30

Demonstrates
command over
software menu
usage with
occasional use
of advance
menu options

40

Detecting and
Removing
Errors/Exceptions in
Hardware and
Software:
Detect
Errors/Exceptions and
manipulate, under
supervision, to rectify
the Ladder program

10%

Unable to
check and
detect error
messages in
software and
hardware

0

Able to find
error messages
in software but
no sense of
hardware error
identification

10

Able to find error
messages in
software and
recognise them
on hardware. Still
unable to
understand the
error type and
possible causes

20

Able to find
error messages
in software and
recognise them
on hardware.
Moderately able
in
understanding
error type and
possible causes

30

Able to find
error messages
in software and
recognise them
on hardware.
Reasonably able
in
understanding
error type and
possible causes

40

Visualisation,
Comparison and
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

10%

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

0

Ability to
understand and
utilise
visualisation
and plotting
instructions
with errors.
Unable to
compute
standard indices

10

Ability to
understand and
utilise
visualisation and
plotting
instructions with
occasional errors.
Able to partially
compute
standard indices

20

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

30

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

40
Total Points (out of 400)
Weighted CLO (Psychomotor Score) (Points/4)

Remarks
Instructor’s Signature with Date

