NED University of Engineering &
TechnologyDepartment of Electrical
Engineering

LAB MANUAL
For the course

FEEDBACK CONTROL
SYSTEMS

(EE-374) For T.E.(EE)

Instructor name:

Student name:

Roll no: Batch:

Semester: Year:

LAB MANUAL
For the course

FEEDBACK CONTROL
SYSTEMS(EE-374) For T.E.(EE).

Content Revision Team;

Muhammad Arshad and Muhammad Hassan ul Haq

Last Revision Date:

Approved By

The Board of Studies of Department of Electrical Engineering

*Wd3SAS S| Ul AJ1ud 1994400 404 G JO 3jdi3nW JaySiy IXaU 3yl Ul 9q ISNW $2403S d1gNY ||V 910N

6 ‘8 ‘L ‘9 ‘v ‘z sqe7 paseg dlqny SO94 ¥/€-33

G jo 9|dinw
J9y31y Ixau 03 punoy
s¢/[(0)s+(g)oT+(v)oT]
wa1sAs SIN

10} 9409S pajy3iam |euld

2

98ejuadiad
9JUBPUINY

d

24025
a1gny
av jeutd

v

902§
ougny
19d4/130

IAge
paseq
ougny

A gel
paseq
augny

Alge [qeq I1gel 19e
paseq paseq paseq paseq
augny augny uqny ougny | “oN ||oY

193ys 24025 ge1

Joonaisu| geq Aq pajjiy aq o1

93e3U9249d dduUepuany
SuOISS3s e J0 1IN0 JUSS3Ud :92UBPUIY

ueipIuYI3} qe| Aq pa||y 3q o1

CONTENTS

Psychomotor Level 3

S.No.

Date

Title of Experiment

Total
Marks

Signature

Introduction to MATLAB: Introduction to polynomials, script writing
and programming aspect of MATLAB from control systems point of
view, mathematical models of physical systems.

*Mathematical modeling of Mechanical Translation and Electrical
Systems

Developing linear model for DC motor, performance analysis of first
order and second order systems and development of time response
specifications function

*Study the three term PID controller and its effects on the feedback loop
response, investigating the characteristics of the each of proportional
(P), the integral (1), and the derivative (D) controls and obtaining a
desired response by using them

Introduction to Programmable Logic Controllers (PLCs), their use and
applications in industry, method for configuring and programming PLCs
using ladder language

*Digital /O interfacing and manipulation in PLCs, their application in
designing On-Off type feedback control systems using ladder language

*Digital 1/0 manipulation in PLCs with timers, counters, and PWM
(Pulse Width Modulation) generators for designing On-Off type
feedback control systems using ladder language

*Analog /O interfacing and manipulation in PLCs, their application in
sensing transducer outputs and transmitting signals to actuators

*Introduction to HMI (Human Machine Interface), its programming via
PLC and communication set-up between PLC and HMI for
measurement viasualisation

10

DC motor speed measurement and control via PLC utilising analogue
I/0, digital 1/0, PWM generator HMI and other PLC peripherals

11

Open Ended Lab - To simulate and design hardware of a feedback
control system using Buck converter as plant

Lab titles marked with an asterisk (*) are assessed through OBE Lab Rubrics for Feedback Control Systems

Lab0l o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 01 (part-1)

Objective:
Introduction to MATLAB briefly including tutorial of polynomials, script writing

and programming aspect of MATLAB from control systems view point.
THEORY:
MATLAB Stands for MATrix LABoratory.

MATLARB is a computer program that combines computation and visualization power that makes it particularly useful
tool for engineers. It is an executive program, and a script can be made with a list of MATLAB commands like other
programming language. The windows in MATLAB are:

¢ Command window: Commands can be entered, data and results are displayed

o Workspace: list all the variables you are using

e command history window: it displays a log of the command used.

e Graphic (Figure) Window: Displays plots and graphs, created in response to graphics commands.
e M-file editor/debugger window: Create and edit scripts of commands called M-files.

Variable declaration:
The variables are declared as:
Must start with a letter

[T

May contain only letters, digits, and the underscore “
Matlab is case sensitive, i.e. one & ONE are different variables. For assigning statement:
Variable = number;

Special variables:

ans : default variable name for the result

pi: ©=3.1415926

NaN or nan: not-a-number

Commands involving variables:

who: lists the names of defined variables

whos: lists the names and sizes of defined variables

clear: clears all variables, reset the default values of special variables.

clear name: clears the variable name

clc: clears the command window

clf: clears the current figure and the graph window

Matrix Array

A Matrix array is two-dimensional, having both multiple rows and multiple columns, similar to vector arrays:

e It begins with [and ends with]
e spaces or commas are used to separate elements in a row.
e semicolon or enter is used to separate rows.

Lab0l o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Example:

>>f=[123;456]

f=
1 2 3
4 5 6
Transpose B=A
Identity Matrix eye(n) =>» returns an n x n identity matrix

eye(m,n) <> returns an m x n matrix with ones on the main
diagonal and zeros elsewhere.

Addition and subtraction |C=A+B

C=A-B
Scalar Multiplication B = aA, where a is a scalar.
Matrix Multiplication C=A*B
Matrix Inverse B = inv(A), A must be a square matrix in this case.
rank (A) = returns the rank of the matrix A.
Matrix Powers B = A.~2 =>» squares each element in the matrix

C=A*A - computes A*A, and A must be a square matrix.

Determinant det (A), and A must be a square matrix.
A, B, C are matrices, and m, n, a are scalars.

A system of 3 linear equations with 3 unknowns (x1, x2, x3):
3x1+2x2-x3=10
-X1+3x2+2x3=5

X1-x2-x3=-1
Let
¢ 3 3 1 % 10
A=|-1 3 2 ¥=|.x b=| 3
I -1 -1 %]
= Solution by Matrix Inverse: = Solution by Matrix Division:
Ax=Db The solution to the equation
A'Ax = A“b Ax=b
x=A"b can be computed using left division
= MATLAB: = MATLAB:
>A=[32-1,-132;1-1-1]; >>A=[32-1;-132;1-1-1];
>>b =[10; 5; -1 >> b =[10; 5; -1];
>> x = inv(A)*b ‘ >> x = A\b
x — H X =
-2.0000 -2.0000
5.0000 a 5.0000
-6.0000 -6.0000
Answer: Answer:
X1=‘2,X2=5,X3='6 X.|=-2,X2=5,X3=-6

Lab0l o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Some useful commands

command description

axis ([xmin xmax ymin ymax]) | Define minimum and maximum values of the axes

axis square Produce a square plot

axis equal equal scaling factors for both axes
axis normal turn off axis square, equal

axis (auto) return the axis to defaults

Plotting Curves:

plot (x,y) — generates a linear plot of the values of x (horizontal axis) and y (vertical axis).

semilogx (x,y) — generate a plot of the values of x and y using a logarithmic scale for x and a linear scale for y
semilogy (x,y) — generate a plot of the values of x and y using a linear scale for x and a logarithmic scale for y.

loglog(x,y) — generate a plot of the values of x and y using logarithmic scales for both x and y

Example: (polynomial function)
Plot the polynomial using linear/linear scale, log/linear scale, linear/log scale, & log/log2 scale:

y=2X+7Xx+9
% Generate the polynomial:
x = linspace (0, 10, 100):
y = 2*x.*2 + T¥x + 9;

% plotting the polynomial:

figure (1):

subplot (2,2,1), plot {x,vy}:

title ('Polynomial, linear/linear scale'};:
ylabel ('y"), gqrid;

subplot (2,2,2), semilogx {(x,¥):

title ('Polynomial, log/linear scale'):
ylabel {('y'), grid;

subplot (2,2,3), semilogy {(x,¥y):?

title ('Polynomial, linear/log scale'):
xlabel{'x'), ylabel ('y'), grid;
subplot (2,2,4), loglog (x,y):

title ('Polynomial, log/log scale'):
xlabel {"x"'), ylabel ('y'"}, grid:

Adding new curves to the existing graph:

Use the hold command to add lines/points to an existing plot.

hold on — retain existing axes, add new curves to current axes. Axes are rescaled when necessary.
hold off — release the current figure window for new plots

Grids and Labels:

Lab01 Feedback Control Systems (EE-374)

NED University of Engineering and Technology Department of Electrical Engineering
Command Description
grid on Adds dashed grids lines at the tick marks
grid off removes grid lines (default)
grid toggles grid status (off to on, or on to off)
title (‘text’) labels top of plot with text in quotes
xlabel (‘text”) labels horizontal (x) axis with text is quotes
ylabel (‘text”) labels vertical (y) axis with text is quotes
text (x,y,text) Adds text in quotes to location (x,y) on the current axes, where (x,y) is in
units from the current plot.

Additional commands for Plotting

Color of the point or curve Marker of the data point Plot line styles
Symbol Marker
Symbol Color . Symbol Line Style
y yellow S v - solid line
m magenta % - : dotted line
C cyan + ' =5 dash-dot line
r red ® - —— dashed line
S (=]
reen
a a 3 2
b blue o v
w white ~n A
k black h hexagram
——"_ o~}
Polynomial evaluation:
Function Description
Conv Multiply polynomials
Deconv Divide polynomials
Poly Polynomial with specified roots
Polyder Polynomial derivative
Polyfit Polynomial curve fitting
Polyval Polynomial evaluation
Polyvalm Matrix polynomial evaluation
Residue Partial-fraction expansion (residues)
Roots Find polynomial roots

Polynomial Roots

The roots function calculates the roots of a polynomial:
>>p=[10-2-5];

r =2.0946

-1.0473 + 1.1359i -1.0473 - 1.1359i

Lab0l o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Polynomial Evaluation

The polyval function evaluates a polynomial at a specified value. To evaluate p ats = 5, use
>>polyval(p,5)

ans = 110

To evaluate the polynomial p at X:
>>X =[245;-103;715];

>>Y = polyvalm(p,X)

Y =

377 179 439

11181136

490 253 639

Convolution and Deconvolution

Polynomial multiplication and division correspond to the operations convolution and deconvolution. The functions
conv and deconv implement these operations. Consider the

>>a=[123];b=[456];
>>c = conv(a,b)

c=413282718

Use deconvolution to divide back out of the product:

>>[q,r] = deconv(c,a)

g=456

r=00000

Polynomial Derivatives

The polyder function computes the derivative of any polynomial. To obtain the derivative of the polynomial
>>p=[10-2-5]

>>(= polyder(p)

g=30-2

polyder also computes the derivative of the product or quotient of two polynomials. For example, create two
polynomials a and b:

>>a =[135];

>>h =[246];

Calculate the derivative of the product a*b by calling polyder with a single output argument:
>>c = polyder(a,b)

c=

83056 38

Lab0l o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Calculate the derivative of the quotient a/b by calling polyder with two output arguments:
>>[q,d] = polyder(a,b)

q=

-2-8-2

d=

416 40 48 36

g/d is the result of the operation.

Partial Fraction Expansion

‘residue’ finds the partial fraction expansion of the ratio of two polynomials. This is particularly useful for applications
that represent systems in transfer function form. If there are no multiple roots, where r is a column vector of residues, p
is a column vector of pole locations, and k is a row vector of direct terms.

Consider the transfer function >>b = [-4 8];
>>a=[16 8];
>>[r,p,k] = residue(b,a)

r=-128
p=-4-2
k=1]

Given three input arguments (r, p, and k), residue converts back to polynomial form:
>>[b2,a2] = residue(r,p,k)

b2 =-48

a2=168

Scripts and Functions

MATLAB is a powerful programming language as well as an interactive computational environment. Files that contain
code in the MATLAB language are called M-files. You create M-files using a text editor, then use them as you would
any other MATLAB function or command. There are two kinds of M-files:

Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace.
MATLAB provides a full programming language that enables you to write a series of MATLAB statements into a file
and then execute them with a single command. You write your program in an ordinary text file, giving the file a name
of ‘filename.m’. The term you use for ‘filename’ becomes the new command that MATLAB associates with the
program. The file extension of .m makes this a MATLAB M-file.

Functions, which can accept input arguments and return output arguments. Internal variables are local to the function.

If you're a new MATLAB programmer, just create the M-files that you want to try out in the current directory. As you
develop more of your own M-files, you will want to organize them into other directories and personal toolboxes that
you can add to your MATLAB search path. If you duplicate function names, MATLAB executes the one that occurs
first in the search path.

Lab0l o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Scripts:

When you invoke a script, MATLAB simply executes the commands found in the file. Scripts can operate on existing
data in the workspace, or they can create new data on which to operate. Although scripts do not return output arguments,
any variables that they create remain in the workspace, to be used in subsequent computations. In addition, scripts can
produce graphical output using functions like plot. For example, create a file called ‘myprogram.m’ that contains these
MATLAB commands:

% Create random numbers and plot these numbers clc clear
r =rand(1,50);
plot(r)

Typing the statement ‘myprogram’ at command prompt causes MATLAB to execute the commands, creating fifty
random numbers and plots the result in a new window. After execution of the file is complete, the variable ‘r’ remains
in the workspace.

Functions:

Functions are M-files that can accept input arguments and return output arguments. The names of the M-file and of the
function should be the same. Functions operate on variables within their own workspace, separate from the workspace
you access at the MATLAB command prompt.

M-File Element Description
Function definition line [Defines the function name, and the number and order of input and
{functions onlv) output arguments.
H1 line |4 one line summary description of the program, displaved when
vou request help on an entire directorv, or when vou use
Tookfor’
Help text A more detailed description of the program, displaved together

with the H1 line when vou request help on a specific function

Function or script body [Program code that performs the actual computations and assigns
values to anv output arguments.

Comments Text in the bodw of the program that explains the intemal
workings of the program.

The first line of a function M-file starts with the keyword ‘function’. It gives the function name and order of arguments.
In this case, there is one input arguments and one output argument. The next several lines, up to the first blank or
executable line, are comment lines that provide the help text. These lines are printed when you type ‘help fact’. The first
line of the help text is the H1 line, which MATLAB displays when you use the ‘lookfor’ command or request help on a
directory. The rest of the file is the executable MATLAB code defining the function.

The variable n & f introduced in the body of the function as well as the variables on the first line are all local to the
function; they are separate from any variables in the MATLAB workspace. This example illustrates one aspect of
MATLAB functions that is not ordinarily found in other programming languages—a variable number of arguments.
Many M-files work this way. If no output argument is supplied, the result is stored in ans. If the second input argument
is not supplied, the function computes a default value.

Flow Control:
Conditional Control — if, else, switch

This section covers those MATLAB functions that provide conditional program control. if, else, and elseif. The if
statement evaluates a logical expression and executes a group of statements when the expression is true. The optional
elseif and else keywords provide for the execution of alternate groups of statements. An end keyword, which matches
the if, terminates the last group of statements.

The groups of statements are delineated by the four keywords—no braces or brackets are involved as given below:

if <condition> <statements>;

Lab0l o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

elseif <condition> <statements>;
else

<statements>;

end

It is important to understand how relational operators and if statements work with matrices. When you want to check
for equality between two variables, you might use if A == B.

This is valid MATLAB code, and does what you expect when A and B are scalars. But when A and B are matrices, A
== B does not test if they are equal, it tests where they are equal; the result is another matrix of 0's and 1's showing
element-by-element equality. (In fact, if A and B are not the same size, then A == B is an error.)

if isequal(A, B),

isequal returns a scalar logical value of 1 (representing true) or O (false), instead of a matrix, as the expression to be
evaluated by the if function.

Using the A and B matrices from above, you get
>>jsequal(A, B) ans =0.

Mn Here is another example to emphasize this point. If A and B are scalars, the following program will never reach
the "unexpected situation™. But for most pairs of matrices, including

if A > B 'greater' elseif A < B 'less' elseif A == B 'equal’ else

error('Unexpected situation’) end our magic squares with interchanged columns, none of the matrix conditions A > B,
A < B, or A == B is true for all elements and so the else clause is executed:

Several functions are helpful for reducing the results of matrix comparisons to scalar conditions for use with if,
including ‘isequal’, ‘isempty’, ‘all’, ‘any’.

Switch and Case:

The switch statement executes groups of statements based on the value of a variable or expression. The keywords case
and otherwise delineate the groups. Only the first matching case is executed. The syntax is as follows:

switch <condition or expression>
case <condition>

<statements>;

case <condition>

<statements>;

otherwise

<statements>;

end

There must always be an end to match the switch. An example is shown below.
n=5

switch rem(n,2) % to find remainder of any number ‘n’

Lab01
NED University of Engineering and Technology

case 0

disp(‘Even Number’) % if remainder is zero

case 1

disp(‘Odd Number’) % if remainder is one

end

Lab exercise:

Exercise: 1

Consider the two polynomials p(s)=s?+2s+1 and g(s)=s+1 .

Use MATLAB to compute
a. p(s)*a(s)

b. Roots of p(s) and q(s)
C. p(-1) and q(6)
Exercise 2:

Use MATLAB command to find the partial fraction of the following

B(s) 25°#55°+35%6

Als) s33Gst+ids5%6

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Lab01 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 01 (part-2)

Objective: Mathematical models of physical systems in the design and analysis
of control systems.

Theory
Mass-Spring System Model

Consider the following Mass-Spring system shown in the figure. Where Fs(x) is the spring force, Fa(t) applied force:

> x()

Fs(x)
VWA
_[F. M

@) ()
Va4 S VA4

— Fa(t)

NN N N

a=dv(t)/dt = d?x(t)/dt? is the acceleration dx(t) is the displacement
According to the laws of physics:
Ma + Ff(v) + Fs(x) = Fa(t)

The differential equation for the above Mass-Spring system can then be written as follows

M(d?x(t)/dt?) + B(dx(t)/dt) + Kx(t) = Fa(t) ------------------ (1)
Where,
. B is called the friction coefficient and
. K is called the spring constant.

The linear differential equation of second order (2) describes the relationship between the displacement and the applied
force. The differential equation can then be used to study the time behavior of x(t) under various changes of the applied
force. In reality, the spring force and/or the friction force can have a more complicated expression or could be
represented by a graph or data table. For instance, a nonlinear spring can be designed (see figure 2.2) such that r > 1.

Solving the differential equation using MATLAB:
The objectives behind modeling the mass-damper system can be many and may include
. Understanding the dynamics of such system

. Studying the effect of each parameter on the system such as mass M, the friction coefficient B, and the elastic
characteristic Fs(x).

. Designing a new component such as damper or spring.

Lab0l o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

. Reproducing a problem in order to suggest a solution.

MATLARB can help solve linear or nonlinear ordinary differential equations (ODE). To show how you can solve ODE
using MATLAB we will proceed in two steps. We first see how can we solve first order ODE and second order ODE.

PROCEDURE:

Speed Cruise Control example:

When Fs(x)=0, which means that K=0, Equation (1) becomes
M(d2x(t)/dt?) + B(dx(t)/dt) = Fa(t)

Or,

M(dv(t)/dt) + Bv(t) = Fa(t)

Using MATLAB solver ode45 we can write do the following:
1) Create a MATLAB-function cruise_speed.m

function dvdt=cruise_speed(t, v)

%flow rate M=750; %(KQ)

B=30; %(Nsec/m) Fa=300; %N

% dv/dt=Fa/M-B/M v dvdt=Fa/M-B/M*v;

2) Create a new MATLAB m-file and write
v0=0; %(initial speed)
[t,v]=0de45('cruise_speed', [0 200],v0);
plot(t,v);

grid on;

title(‘cruise speed time response to a constant traction force Fa(t) ")

cruise speed time response to a constant fraction force Faf(t)
1 D T T T T T T T T

o 20 40 &0 80 100 120 140 160 180 200

In the above program the behavior of a car speed is shown in which the car starts with rest position, after that it attains
its maximum speed so that it reaches its maximum limit then after that its speed becomes constant throughout the time.

Mass-Spring System Example:

Lab0l o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

M(d?(t)/dt?) + B(dx(t)/dt) + Kx(t)= Fa(t)

Variables New Differential equation
variable
x(t) X1 dX;
d d ®
dx(t)/dt X2 X, B K F,(t
— ==X, ——X,"(t) + —=
dt Mz X Oy

In vector form

dXy
- X dX dt
X — X —
2 dt dX;
dt

The system equations can be written as:

dxX BX KX"‘ E,(t)
dt M2 MO? (&) + M

1) create a MATLAB-function mass_spring.m function dXdt=mass_spring(t,X)
M=705;% (Kg)

B=30; % (Nsec/m)

Fa=300; % (N)

K=15; % (N/m)

r=1; % dX/dt

dXdt(1,1)=X(2);
dXdt(2,1)=-B/M*X(2)-KIM*X (1) r+Fa/M;
2) Program of mass spring system with r=1
clear all

close all

cle

X0=[0;0];% (Initial speed and position)
[t,X]=0de45('mass_spring',[0 200],X0);
figure;

plot(t,X(:,1));

xlabel('Time(t)"); ylabel('Position'); title('Mass spring system"); legend('Position *);
grid;

figure;

plot(t,X(:,2),'r;

xlabel('Time(t));

label('Speed");

Lab01
NED University of Engineering and Technology

title("Mass spring system'); legend('Speed ');

Feedback Control Systems (EE-374)
Department of Electrical Engineering

grid;
% Mana spong syatem h - [:""S‘] Masns sbring syutom
4 R = IR =
L) S 7 2 3 Pl
| i | -
- o AR R 5l L
/ '.k o ol foioy
0 f ' f4 Y ¥ > - i : :
' i o 3 Mm% o0s } irenneed
g\s " 5 } "'% ! : |
! E of i) |
1) ! - : :
' : | o
sH i a ok :
| : : : : i\ g :
O30 W 60 80 00 130 0 W0 e 300 1820 w0 90 80 100 120 140 90 300 300
Terw() A~ Trpeit)
OBSERVATIONS:
Parameter | Behavior of system
Mass
Friction
Coefficient
Stiffness
Applied
Force

CONCLUSION:

Lab02 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 02

Objective: Mathematical modeling of Multiple-Element Mechanical Translation
and Electrical Systems

Theory:

Consider the given multiple-element spring-mass-damper system, where;
. f(t) is applied force to the mass M1.

. B1 and B2 are the viscous friction coefficients indicating the sliding friction between the masses M1 and M2
and the surface.

x“ !j; xb

K, M, \:ﬂﬂz

7 2 o 7 4 L o 2 e o o

==

fmTO S ‘——}

——

According to the rules for node equations:

For node a:

(M1D2 + B1D + B3D + K1)xa — (B3D)xb = f

For node b:

-(B3D)xa + (M2D2 + B2D + B3D + K2)xb = 0

X1=Xb for spring K2 X2=X"1=Vb
X3=Xa for spring K1 X4=X"3=Va

The system equations are:

~ 0 I 0 0 0
Ky BitBs B,
o RN MR S 0
M, M, V.,
A = bi= 0
0 0 0 1
B; & B -
0 e —%E = M
L M, M, M, 2] Sl b=

PROCEDURE:
1) Create a MATLAB-function multiple_element_sys.m

function dXdt=multiple_element_sys (t,X)

Lab02
NED University of Engineering and Technology

Fa=300; %(N)
M1=750; %(KQ)
M2=750; %(Kg)

B1=20; %(Nsec/m)

B2=20; %(Nsec/m)

B3=30; %(Nsec/m)

K1=15; %(N/m)

K2=15; %(N/m)

dXdt(1,1)=X(2);
dXdt(2,1)=-K2/M2*X(1)-((B1+B2)/M2)*X(2)+B3*X (4)/M2;
dXdt(3,1)=X(4);
dXdt(4,1)=B3/M1*X(2)-K1/M1*X(3)-((B1+B3)/M1)*X(4)+Fa/M1;
2) Write another m file to call the function:

clear all;

close all;

clc;

X0=[0;0;0;0]; % (Initial xb, Vb, xa, Va)
[t,X]=0ded5('multiple_element_sys',[0 200],X0);
figure;

subplot(2,1,1);

plot(t,X(:,1));

plot(t,X(:,2),r");

xlabel('Time(t)");

ylabel(‘Position xb / Speed Vb');

title("Mass spring system'); legend('xb’, 'Vb");
grid;

subplot(2,1,2);

plot(t,X(:,3));

hold;

plot(t,X(:,4),'r");

xlabel('Time(t)");

ylabel(‘Position xa / Speed Va');

title("Mass spring system’);

legend('xa’, 'Va');

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Lab02

Feedback Control Systems (EE-374)

NED University of Engineering and Technology Department of Electrical Engineering

grid;

Paosition xa / Speed Va

Mass spring system

| i | i
20 40 60 80 100 120 140 160 180 200
Time(t)

Mass spring system

20 40 60 80 100 120 140 160 180 200
Time(t)

OBSERVATIONS:
Parameter Behavior of system
Mass M1

M2
Friction Bl
Coefficient

B2

B3
Stifness K1l

K2
Applied Fa
Force

CONCLUSION:

Lab02 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Mathematical modeling of Electrical System

Theory:
s R
o © AN
+ VR
P)
e(~ \) V|_ 3 L
N
Cc
|l
1]
+w VC -

Consider the 2" order circuit shown in the above diagram.

e e isapplied Potential.
e i isthe mesh current.

The differential equations for the given figure.

According to Mesh Analysis:

e(t)=VL+Vct+Vr

e()=LD i + (L/CD) + R i

The state equations for the given figure.

This circuit contains two energy-storage elements, Inductor and capacitor.
Let state variables are

X1=Vcthe voltage across the capacitor, and

X2=1i the current in the inductor.

STATE EQUATION:

PROCEDURE:

1) create a MATLAB-function RLC.m
function dXdt=RLC(t,X)

e=60; % (V)

R=10; % (Ohm)

L=1; % (H)

C=10; % (F)

%dX/dt dXdt(1,1)=(1/C)*X(2);
dXdt(2,1)=(-1/L)*X(1)-(R/IL)*X(2)+(1/L)*e;

Lab02 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

2) Write an other M. file to call the function:
clear all
close all
clc
X0=[00];
[t,X] =ode45('RLC",[0 500],X0);
subplot(2,1,1);
plot(t,X(:,1));
legend('Vc');
grid on;
title("Vc");
subplot(2,1,2);
plot(t,X(:,2),'r;
legend('i");
grid on;
title('i");
Graph:
\ Time constant = RC = 10*10= 100 sec
For first time constant:

\ Vc=63.2% * e = 0.632*60 =37.92 V

Vc
60 5 ; T T) e
¥: 55955 ___,_,.,—'-.I 300 Ve
V200 ¥ 57.02
----- 5189 IR R

200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

Lab02 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

OBSERVATIONS:

Parameter Behavior of system
Voltage
source(e)
Resistance(R)

Inductance(L)

Capacitance(C)

CONCLUSION:

EXERCISE:

Write the function and program of the following circuit diagram. Also explain the plots of the respective state
variables.

Rl L] Ve=2x3 LZ

~ AAA-
o — i1 =X — iz =13
elt) = u CT §Rz

Course Code: EE-359

Laboratory Session No.:

NED University of Engineering & Technology

Department of

Engineering

Course Title: Electrical Power Distribution and Utilization

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be Extent of Achievement
assessed 0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate Reasonable Demonstrates
Identification and | understand understanding | ability and | understanding of | command over
Usage: and use | of software | understanding software menu | software menu
Ability to initialise, | software menu of software | operation, makes | usage with
configure and | menu operation, menu no major mistakes | frequent use of
operate software makes many | operation, advance menu
environment under mistake makes lesser options
supervision, using mistakes
menus, shortcuts,
instructions etc.
Procedural Little to no | Slight ability to | Mostly correct | Correctly Correctly
Programming of | understanding | use procedural | recognition and | recognises and recognises and
given model: of procedural | programming application of | uses procedural uses procedural
Practice procedural | programming | techniques for | procedural programming programming
programming techniques coding given | programming techniques with techniques with
techniques, in order algorithm techniques but | no errors but no errors and runs
to code specific makes crucial | unable to run model successfully
model errors for the | model successfully
given model
Relating Theoretical | Completely Able to | Able to | Able to recognise | Able to recognise
Concepts, unable to | recognise some | recognise relation between | relation between
Equations and | relate relation relation model concepts | model concepts
Transforms to | between between model | between model | and written code, | and written code,
Code: model concepts and | concepts and | able to do some | able to completely
Recognise relation | concepts and | written code, | written code, | manipulations manipulate code
between model | written code, | unable to do | unable to do in line with
concepts and | unable to do | manipulations manipulations theoretical
written code and | manipulations concepts

manipulate the
code in accordance

of requirements

Detecting and
Removing Errors:
Detect
Errors/Exceptions

and in simulation
and manipulate

code to rectify the
simulation

Unable to
check and
detect error

messages and
indications in
software

Able to find
error messages
and indications
in software but
no
understanding
of detecting
those errors
and their types

Able to find
error messages
and indications
in software as
well as
understanding
of detecting
some of those
errors and their
types

Able to find error
messages in
software as well as
understanding of
detecting all of
those errors and
their types

Able to find error

messages in
software along
with the

understanding to
detect and rectify
them

Graphical
Visualisation and
Comparison of
model Parameters:

Manipulate given
simulation under
supervision, in order
to produce
graphs/plots for
measuring and
comparing model
parameters

Unable to
understand
and utilise
visualisation or
plotting
features

Ability to
understand and
utilise
visualisation
and plotting
features with
frequent errors

Ability to
understand and
utilise
visualisation
and plotting
features
successfully but
unable to
compare and

analyse them

Ability to
understand and
utilise

visualisation and

plotting features
successfully,
partially able to
compare and
analyse them

Ability to
understand and
utilise

visualisation and

plotting features
successfully, also
able to compare
and analyse them

Following step-by-

Inability to

Able to

Able to

Able to recognise

Able to recognise

step procedure to | recognise and | recognise given | recognise given | given lab | given lab
complete lab work: | perform given | lab procedures | lab procedures | procedures and | procedures and
Observe, imitate | lab procedures | and perform | and perform | perform them by | perform them by
and operate them but could | them by | following following
software to not follow the | following prescribed order | prescribed order
complete the prescribed prescribed of steps, with | of steps, with no
provided sequence order of steps order of steps, | occasional mistakes
of steps with frequent | mistakes
mistakes

Recording Inability to | Able to Able to recognise | Able to recognise
Simulation recognise recognise prescribed or | prescribed or
Observations: prescribed or | prescribed or required required
Observe and copy | required required simulation simulation
prescribed or | simulation simulation measurements measurements
required simulation | measurements | measurements _ but records them | and records them
results in but does not incompletely completely, in
accordance with lab record tabular form
manual instructions according to

given

instructions
Discussion and | Complete Slight ability to | Moderate Reasonable ability | Full ability to
Conclusion: inability to | discuss ability to discuss | to discuss | discuss recorded
Demonstrate discuss recorded recorded recorded observations and
discussion capacity | recorded observations observations observations and | draw conclusions
on the recorded | observations and draw | and draw | draw conclusions
observations and | and draw | conclusions conclusions
draw conclusions | conclusions
from it, relating

them to theoretical
principles/concepts

Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date

Lab03 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 03

Obijective: To Develop a linear model for a DC motor, and Performance analysis
of First order and Second order systems and development of Time response
specification’s function.

THEORY:

Consider a DC motor, whose electric circuit of the armature and the free body diagram of the rotor are shown in
Figure.

Consider the following values for the physical parameters:

moment of inertia of the rotor J =0.01 kg- m?
damping (friction) of the mechanical system b =0.1 Nms
(back-)electromotive force constant K =0.01 Nm/A
electric resistance R=1Q
electric inductance L=05H

The input is the armature voltage V (ea) in Volts (driven by a voltage source).
Measured variables are the angular velocity of the shaft w in radians per second, and the shaft angle Q in radians.
We can write the following equations based on the Newton’s law combined with the Kirchhoff’s law:
L(di/dt) + Ri = V — K(d@/dt)

J(d*@/dt?) + b(d@/dt) = Ki
Or

LmDim + Rmim + em = ea

JDwn +Bwn=T

Transfer Function:
The transfer function from the input voltage, V(s), to the output angle, Q, directly follows:

o(s) K
V(s) s[(R+Ls)(Js+b)+ K2]

And the transfer function from the input voltage, V(s), to the output velocity of the shaft

w(s) K

V(s) (R+Ls)(Js+b)+K?2

Lab03
NED University of Engineering and Technology

w in radians per second.
PROCEDURE:
SIMULINK Model

Feedback Control Systems (EE-374)
Department of Electrical Engineering

J= 0.01 %kgm2
b= 0.1 %NmMs
K = 0.01 %NmM/A
R = 1 %ohm
L = 0.5 %H
Voltage Ataiieg Torque Loud Velocity Angle
(s) K s) | ! 5 1] s
Ls +R Js+b §
Vi(s)
K
Back emf
Step Input Armature Load
] Kis) | | 1 g
= Ls+R Js+b

|
K |¢
!

To Workspace

@ » t angular
speed
Clock To Workspace
omega
To Workspace
GRAPH:
Angular Speed in RPS
01 T
0.09+ E
008+ B
X 0.6161
007 | v 00636 1
|]

0.06 B

z 0.05 4
0.04 B
003+ B
002+ B
0.01F -

0 1 1 1 1 1 1 1 1 1

tout

Lab03 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

OBSERVATIONS:

Parameters | Effects on system
Moment of
inertia

Resistance

Inductance

Friction
Coefficient

CONCLUSION:

EXERCISE:
1. Change the electrical parameters such as ‘R’ or ‘L’ to reduce the Time Constant of motor.
2. Also change the mechanical parameters such as ‘J” or ‘B’ to reduce the Time Constant to zero.

3. What are the parameters which are responsible to change the speed of the rotor? Explain with graph.

Lab03 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Performance of First order and Second order systems and development of Time response specifications
function

THEORY:
First order system:

An electrical RC-circuit is the simplest example of a first order system. It comprises of a resistor and capacitor
connected in series to a voltage supply as shown below on Figure 1

EEAVAVA Vv, —

R

Ew) () = g

Where ;

. Vc(t) s the voltage across the capacitor,
. R is the resistance and

. C is the capacitance.

Obtain the transfer function of the above electrical circuit. (Take V¢ as output and Vc¢(0)=Vo)

For the RC-circuit as shown in Figure, the equation governing its behavior is given by :

dvc(t)

1 1 - —
e+ 'IEVC('C) = oo E where v.(0) = v,

The constant is the time constant of the system and is defined as the time required by the system output i.e. Vc(t) to
rise to 63% of its final value (which is E). Hence the above equation can be expressed in terms of the time constant as:

dvc(t)

= A vo(t) = E

Transfer Function

Obtaining the transfer function of the above differential equation, we get
Ve(s) 1
E(s) Ts+1

The above system is known as the first order system.
The performance measures of a first order system are its time constant and its steady state.
Second Order System:

Consider the following Mass-Spring system shown

2]—» x(t)
K

S
HF—

B

M > F(t)

Lab03 Feedback Control Systems (EE-374)

NED University of Engineering and Technology Department of Electrical Engineering
Where ;

. K is the spring constant,

. B is the friction coefficient,

. X(t) is the displacement and

. F(t) is the applied force:

The differential equation for the above Mass-Spring system can be derived as follows:

EPx(t) ax(D)
M ;2 +B ’;t + Kx(t) = F(t)

Transfer Function
Applying the Laplace transformation, we get
(Ms?2 +Bs+K)*X(s) = F(s)
Provided that, all the initial conditions are zero. Then the transfer function representation of the system is given by

_ Output F(s) 1
~ Input X(s) (Ms?2+Bs+K)

The above system is known as a second order system.

The generalized notation for a second order system described above can be written as

2
()

YE)= z R(s)

2 2
s +2¢0w,s + o,

With the step input applied to the system, we obtain

, o
Y ()=
s(s”+2las +@,)

For which the transient output, as obtained from the Laplace transform table

y(@)=1- ¢ sin(, ,/1 — %t +cosH ()
L="
0 where 0 <{ < 1.
0 The transient response of the system changes for different values of damping ratio, L.
0 Standard performance measures for a second order feedback system are defined in terms of step response of a

system.

Lab03 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

10 p======= ===

(1 52} ety primley 1
y(1.0-6

0.1~

/S T Time
T, Peak Settling
| . .
time time
—,

Rise time

T =%

The performance measures could be described as follows

ad Rise Time ‘Tr’:

measures the time from 10% to 90% of the response to the step input.

O Peak Time ‘Tp’:

The time for a system to respond to a step input and rise to peak response.

Overshoot

The amount by which the system output response proceeds beyond the desired response.

It is calculated as

M_ —fovu
P.O.=P’—fx100%
)

where Mg is the peak value of the time response, and fv is the final value of the response.
Settling Time ‘Ts’:

The time required for the system’s output to settle within a certain percentage of the input amplitude (which is usually
taken as 2%). Then, settling time, Ts, is calculated as

I =—
‘o,
Delay Time ‘Td’:
It is the time required for the response to reach 50% of the final value the very first time.

OBSERVATIONS:

1. Effect of damping ratio ‘€’ on performance measures of the second order system. Find the step response of the
system for values of on=1and {=10.1, 0.4, 0.7, 1.0 and 2.0.

Lab03 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Plot all the results in the same figure window and fill the following table.

i Rise time | Peak Time | % Overshoot | Settling time | Steady state value
0.1
04
0.7
1.0
2.0

CONCLUSION:

Exercise

1. Given the values of R and C, obtain the unit step response of the first order system.
ii. R=2KQ and C=0.01F

iii. R=2.5KQ and C=0.003F

Verify in each case that the calculated time constant (=RC) and the one measured from the figure as 63% of the final
value are same. Obtain the steady state value of the system.

2. Understand the below codes for the time specification of second order.

Lab03 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

function steptimespec % find time specification for ste
response of a second order system and calculates the rise
time,

%delay time, maximum overshoot, peak time and settling time
cf a system

$whose damping ratico and natural frequency are known.

clc;
zeta=input ('Enter the wvalue of damping ratio '"):
wn=input ('Enter the walue of Natural frequency '}:

n=wn*wn;
d=[1 2*zeta*wn wn*wn];
disp('The transfer function is: ')
printsys(n,d):
£t=0:0.02:6.0;
[y,x,t]=step(n,d, t);
plot (t,y):
grid ons
title('step response'):
%to find rise time 1i.e. time taken for output teo rise from
10% to 90%
k=1;
while v(k)<=0.1;
k=k+1;
end

tenpercent=t (k) ;
while y(k)<=0.9;
k=k+1:
end
nintypercent=t (k) :
rtime=nintypercent-tenpercent;
fprintf('The rise time 1is: %f sec \n',rtime);
format short
% to find delay time i.e. time taken to rise to 50% of step
k=1;
while y(k)<=0.5;
k=k+1;
end
dtime=t (k) :
fprintf ('The delay time is: %f sec\n', dtime);

% to find maximum
overshootfor k=1:1:300;
if y(k+l)<=y (k)
% to find walue of k till response keeps
risingbreak;
end
;end;

Lab03 Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering
Oshoot=y(k)-1;
fprintf('The overshoot 1s: %f sec\n', Oshoot):;
% to find the peak
timetp=t (k) ;
fprintf('the peak time iz :%
% to find the settling time

tmaximum tolerance for comnsidering output to be in
steadystate taken as

£2%

tol=0.02;

for k=300:-1:2;
if(abs(y(k)-y(300))>tol)

break:;

end;

end;

stime=t (k)

-

fprintf('the settling time is :%

Lab04 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 04

Objective: Study the three-term (PID) controller and its effects on the feedback
loop response. Also investigate the characteristics of the each of proportional (P),
the integral (1), and the derivative (D) controls and obtaining a desired response
by using them.

THEORY: Consider the following unity feedback system:

R e
;b?—b Controller d Plant L1

Plant: A system to be controlled.

A 4

A 4

Controller: Provides excitation for the plant; Designed to control the overall system behavior.

The three-term controller: The transfer function of the PID controller looks like the following:

Kps? + Kps + K;
S

K;
Kp+?+KDS =

KP = Proportional gain
KI = Integral gain
KD = Derivative gain

First, let's take a look at how the PID controller works in a closed-loop system using the schematic shown.

R e
—-Pb?—b{ Controller M Plant }—Y—b

The variable (e) represents the tracking error, the difference between the desired input value (R) and the actual output
(Y).

This error signal (e) will be sent to the PID controller, and the controller computes both the derivative and the integral
of this error signal.

The signal (u) just past the controller is now equal to the proportional gain (KP) times the magnitude of the error plus
the integral gain (KI) times the integral of the error plus the derivative gain (KD) times the derivative of the error.

de(t)
dt

U= er(t) + KI J’ e(t)dt + KD

This signal (u) will be sent to the plant, and the new output (Y) will be obtained.

This new output (YY) will be sent back to the sensor again to find the new error signal (e). The controller takes this new
error signal and computes its derivatives and its internal again. The process goes on and on.

PROCEDURE:

For a simple mass, spring, and damper problem.

Lab04 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

bk

LJ

The transfer function between the displacement X(s) and the input F(s) then becomes:

X(s) 1
F(s) Ms2+bs+k

O M = 1kg
0 b =10 N.s/m
O k =20 N/m
O F(s)=1
O Plug these values into the above transfer function
X(s) 1L
F(s) s2+10s+ 20

The goal of this problem is to show you how each of Kp, Ki and Kd contributes to obtain

0 Fast rise time

0 Minimum overshoot

0 No steady-state error

0 Open-loop step response:

0 Let's first view the open-loop step response.

MATLAB command window should give you the plot shown below.
num=1;

gﬁrl:[l 10 20];

plant=tf(num,den);

step(plant)

Lab04 Feedback Control Systems (EE-374)

NED University of Engineering and Technology Department of Electrical Engineering
Open-Loop Step
0.05 //_,
0.04 /
3 4
=003
:
éu 0z
g
oo
0 A " A
0 05 1 15 2
Tima (s8c)
0 0.05 is the final value of the output to a unit step input.
0 This corresponds to the steady-state error of 0.95, quite large indeed.
0 Furthermore, the rise time is about one second, and the settling time is about 1.5 seconds.
0 Let's design a controller that will reduce the rise time, reduce the settling time, and eliminates the steady-state
error.
Proportional control:
. The closed-loop transfer function of the above system with a proportional controller is:
Plant
P Controller
R + e_» < u > 1 Y >
_ s24+10s + 20
X(s) Kp
F(s) s2+10s+ (20 + Kp)
0 Let the proportional gain (KP) equal 300: MATLAB PROGRAM:
Kp=300;
contr=Kp;
sys_cl=feedback(contr*plant,1); %by default —ve feedback t=0:0.01:2;
step(sys_cl,t)
Proportional-Derivative control:
(] The closed-loop transfer function of the given system with a PD controller is:
Plant
R ¥ e PD Controller | 1 Y
—> Kp+Kps i - B >
5 s2+10s + 20
X(S) - KDS o Kp

F(s) s24 (10+Kp)s+ (20 + Kp)

Lab04

NED University of Engineering and Technology

O Let KP equal 300 as before and let KD equal 10.

Proportional-Derivative control:

0 Kp=300;

0 Kd=10;

0 contr=tf([Kd Kp],1);

0 sys_cl=feedback(contr*plant,1);
0 t=0:0.01:2;

0 step(sys_cl,t)

Proportional-Integral control:

Feedback Control Systems (EE-374)
Department of Electrical Engineering

(] The closed-loop transfer function of the given system with a PI controller is:
R + e Pl Controller u Plant Y
— Ke+Ky/s < [>
. s2+10s + 20
X(s) Kps + K;

F(s) s3+10s2+ (20 +Kp)s +K;

0 Let KP equal 30 and let KI equal 70.

Proportional-Integral control:

0 Kp=30;

0 Ki=70;

0 contr=tf([Kp Ki],[1 0]);

0 sys_cl=feedback(contr*plant,1);

o] t=0:0.01:2;
0 step(sys_cl,t)

Proportional-Integral-Derivative control:

N Now, let's take a look at a PID controller. The closed-loop transfer function of the given system with a PID

controller is:

PID Controller
KP+K|/S+ Kps

Y

R +/\fe

Plant
1

s2+10s + 20

A\ 4

X(s)

KDSZ + KPS + K]

F(s) s34+ (10+Kp)s?2+ (204 Kp)s +K;

Lab04 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

After several trial and error runs, the gains Kp=350, Ki=300, and Kd=50 provided the desired response.

Proportional-Integral-Derivative control:

0 Kp=350;
0 Ki=300;
0 Kd=50;

0 contr=tf([Kd Kp Kil],[1 0]);

0 sys_cl=feedback(contr*plant,1);
0 t=0:0.01:2;

0 step(sys_cl,t)
OBSERVATIONS:

CL Response Rise time Qvershoot time | Settling time S-S error
Kp
Ki
Kb
RESULTS:

Plots of all the simulated systems with their rise time, settling time and final value

Course Code: EE-359

Laboratory Session No.:

NED University of Engineering & Technology

Department of

Engineering

Course Title: Electrical Power Distribution and Utilization

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be Extent of Achievement
assessed 0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate Reasonable Demonstrates
Identification and | understand understanding | ability and | understanding of | command over
Usage: and use | of software | understanding software menu | software menu
Ability to initialise, | software menu of software | operation, makes | usage with
configure and | menu operation, menu no major mistakes | frequent use of
operate software makes many | operation, advance menu
environment under mistake makes lesser options
supervision, using mistakes
menus, shortcuts,
instructions etc.
Procedural Little to no | Slight ability to | Mostly correct | Correctly Correctly
Programming of | understanding | use procedural | recognition and | recognises and recognises and
given model: of procedural | programming application of | uses procedural uses procedural
Practice procedural | programming | techniques for | procedural programming programming
programming techniques coding given | programming techniques with techniques with
techniques, in order algorithm techniques but | no errors but no errors and runs
to code specific makes crucial | unable to run model successfully
model errors for the | model successfully
given model
Relating Theoretical | Completely Able to | Able to | Able to recognise | Able to recognise
Concepts, unable to | recognise some | recognise relation between | relation between
Equations and | relate relation relation model concepts | model concepts
Transforms to | between between model | between model | and written code, | and written code,
Code: model concepts and | concepts and | able to do some | able to completely
Recognise relation | concepts and | written code, | written code, | manipulations manipulate code
between model | written code, | unable to do | unable to do in line with
concepts and | unable to do | manipulations manipulations theoretical
written code and | manipulations concepts

manipulate the
code in accordance

of requirements

Detecting and
Removing Errors:
Detect
Errors/Exceptions

and in simulation
and manipulate

code to rectify the
simulation

Unable to
check and
detect error

messages and
indications in
software

Able to find
error messages
and indications
in software but
no
understanding
of detecting
those errors
and their types

Able to find
error messages
and indications
in software as
well as
understanding
of detecting
some of those
errors and their
types

Able to find error
messages in
software as well as
understanding of
detecting all of
those errors and
their types

Able to find error

messages in
software along
with the

understanding to
detect and rectify
them

Graphical
Visualisation and
Comparison of
model Parameters:

Manipulate given
simulation under
supervision, in order
to produce
graphs/plots for
measuring and
comparing model
parameters

Unable to
understand
and utilise
visualisation or
plotting
features

Ability to
understand and
utilise
visualisation
and plotting
features with
frequent errors

Ability to
understand and
utilise
visualisation
and plotting
features
successfully but
unable to
compare and

analyse them

Ability to
understand and
utilise

visualisation and

plotting features
successfully,
partially able to
compare and
analyse them

Ability to
understand and
utilise

visualisation and

plotting features
successfully, also
able to compare
and analyse them

Following step-by-

Inability to

Able to

Able to

Able to recognise

Able to recognise

step procedure to | recognise and | recognise given | recognise given | given lab | given lab
complete lab work: | perform given | lab procedures | lab procedures | procedures and | procedures and
Observe, imitate | lab procedures | and perform | and perform | perform them by | perform them by
and operate them but could | them by | following following
software to not follow the | following prescribed order | prescribed order
complete the prescribed prescribed of steps, with | of steps, with no
provided sequence order of steps order of steps, | occasional mistakes
of steps with frequent | mistakes
mistakes

Recording Inability to | Able to Able to recognise | Able to recognise
Simulation recognise recognise prescribed or | prescribed or
Observations: prescribed or | prescribed or required required
Observe and copy | required required simulation simulation
prescribed or | simulation simulation measurements measurements
required simulation | measurements | measurements _ but records them | and records them
results in but does not incompletely completely, in
accordance with lab record tabular form
manual instructions according to

given

instructions
Discussion and | Complete Slight ability to | Moderate Reasonable ability | Full ability to
Conclusion: inability to | discuss ability to discuss | to discuss | discuss recorded
Demonstrate discuss recorded recorded recorded observations and
discussion capacity | recorded observations observations observations and | draw conclusions
on the recorded | observations and draw | and draw | draw conclusions
observations and | and draw | conclusions conclusions
draw conclusions | conclusions
from it, relating

them to theoretical
principles/concepts

Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date

Lab05 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 05

Objective:
Introduction to Programmable Logic Controllers (PLCs), their use and

applications in industry, method for configuring and programming PLCs using
ladder language

Background of Industrial Automation:

Industrial automation refers to the use of advanced technologies and machines to automate manufacturing processes in
various industries such as automotive, aerospace, food and beverage, pharmaceuticals, and more. The goal of
industrial automation is to increase efficiency, productivity, and quality while reducing production costs and human
error.

One of the main components of industrial automation is the use of robotic systems to perform repetitive and hazardous
tasks. These robots can be programmed to perform a wide range of tasks, from assembly and welding to packaging
and material handling. By using robots, companies can improve production speed and accuracy while reducing the
risk of accidents and injuries to workers.

Another key aspect of industrial automation is the use of advanced sensors and monitoring systems to gather data
about production processes in real-time. This data can be used to optimize production processes, detect and prevent
equipment failures, and ensure consistent product quality. Additionally, automated systems can be equipped with
artificial intelligence and machine learning algorithms that can analyze data and make adjustments to improve
performance.

Fig.1 Depiction of the elements involved with Industrial Automation

Overall, industrial automation has revolutionized the manufacturing industry by making production processes faster,
more efficient, and safer. As technology continues to advance, we can expect to see even more innovative solutions
that further improve the capabilities of automated systems.

Methods for Deploying Industrial Control Systems:

In industries, control systems are deployed in a variety of ways. The major methods of such deployment is discussed
hereunder:

1) Discrete control systems where the system output is usually a simple on /off signal. They are sometimes called
on/off or bang-bang control systems. Examples of such systems include water tank filling system, conveyor belt object
detection etc.

Lab05 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Fig. 2 On-Off control system inside an electric iron. (a) shows position of bi-metallic strip under normal temperature
and (b) shows it under high temperature

2) Continuous feedback control system where the system is constantly monitoring the set value and the measured
value and adjusting the output to minimise the error. Examples of such systems are motor seed control system, boiler
temperature control system etc.

Fig.3 A continuous feedback temperature controller

3) Open loop and Closed Loop Systems: Some processes require the measured output to be compared with an input
and fed back into the system. These are called closed loop systems. In other simpler processes input is changed
irrespective of the output e.g. traffic signals and such systems are called open loop systems.

4) State Machine / Sequential Control and Logic: Techniques used to design digital control systems using modules
like logic gates, flip-flops, timers, counters etc. A great example of such a deployment is the star-delta motor starter
circuit used to run high power induction motors. This method of deployment is sometimes called ‘Relay-Logic’

Fig. 4a Star-Delta Motor Starter designed with Relay
Logic

NC (Normally Closed

pivot \

Common

NO (Normally Open) Fig. 4b An electromechanical relay lies at the core of

Relay Logic circuits

Energizing
Coil

Lab05 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

5) Computer Control: Includes PLCs, PLD, CPLDs etc. This is the state of the art in industrial control systems and
almost all newer systems are using this method of deployment.

Digital Control and Automation Hardware used in Industry:

Control and automation in industry is applied through a variety of hardware platforms. Most of the control system
implementation is done through digital control methods that are derived from those techniques that you have already
explored in the previous labs. Digital control is preferred in most cases due to its ‘reliability’ and ‘reprogrammable’
nature. A diverse selection of hardware is utilised for implementing digital control under different application
scenarios. The major technologies are enumerated below:

1. GAL : Generic Logic Array

PAL : Programmable Array Logic

PLD : Programmable Logic Device

CPLD : Complex Programmable Logic Device
FPGA : Field Programmable Gate Array

PLC: Programmable Logic Controllers

oA~

Introduction to Programmable Logic Controllers (PLCs):

Programmable logic controllers (PLCs) are digital electronic devices that are designed to control a wide variety of
industrial processes and machines. They are essentially specialized computers that are programmed to automate
specific tasks, such as monitoring and controlling temperature, pressure, and other parameters in manufacturing
processes. PLCs have become increasingly common in industry due to their versatility, reliability, and ability to
improve productivity and reduce costs.

The primary function of a PLC is to monitor inputs from sensors or other devices, and based on pre-programmed
logic, activate or deactivate outputs that control the operation of various machines and equipment. The programming
language used to program PLCs is typically ladder logic, a graphical language that is easy to understand and use for
people familiar with electrical circuit diagrams. The programming is done through specialized software and can be
modified as needed to adapt to changing production requirements or new technology.

PLCs are used in a wide range of industries, including automotive, food and beverage, pharmaceuticals, and
manufacturing. In automotive manufacturing, for example, PLCs are used to control robots that assemble parts, paint
cars, and perform other tasks. In the food and beverage industry, PLCs are used to monitor and control temperature,
humidity, and other conditions in the production process to ensure consistent quality and safety of the products.

The use of PLCs in industry has several advantages over traditional mechanical or electromechanical controls. One of
the main benefits is the ability to program the controller to perform complex tasks with high precision and accuracy.
This eliminates the need for manual adjustments or corrections, which can be time-consuming and error-prone.
Additionally, PLCs are more reliable than mechanical or electromechanical controls because they have no moving
parts and are not subject to wear and tear. They can also be easily integrated with other industrial control systems,
such as SCADA (Supervisory Control and Data Acquisition) systems, to provide a complete solution for monitoring
and controlling industrial processes.

Another advantage of PLCs is their flexibility. Because they are programmable, they can be easily modified to
accommodate changes in production requirements or to incorporate new technologies. This means that companies can
adapt quickly to changing market conditions or customer needs, which is essential in today's fast-paced business
environment.

PLC Brands and Manufacturers:
There are several manufacturers of PLCs, some of the well-known manufacturers are:

Siemens, Allen Bradley (Rockwell Automation), Schneider Electric, Mitsubishi Electric, ABB, Omron, Delta
Electronics, Beckhoff Automation, Bosch Rexroth, General Electric (GE).

Lab05 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Fig.6: General Electric PLC

OCOONCON20CO00000 000200000000

| nn N

PEUOU|0ECUESVLUOIDBVERIRL IV

Fig.7: Mitsubishi PLC

Fig.8: Delta PLC

These are just a few of the many manufacturers of PLCs, and the choice of manufacturer often depends on specific
industrial needs and applications.

Introduction to our PLC experimental setup — The SIEMENS S7-1200

The Siemens S7-1200 is a popular programmable logic controller (PLC) used in various industries. It is a compact and
versatile controller that is designed for small to medium-sized automation projects, making it ideal for applications in
machine building, plant engineering, and building automation.

S7-400

S7 Safety
PLC

Fig.9: The SIEMENS PLC Portfolio. Note that the smallest (simplest) offering is SIEMENS Logo and the largest
(complex) is S7-400

Some of the features and specifications of the S7-1200 PLC are:

Modular design - The S7-1200 is a modular system that can be expanded by adding up to three communication
modules and eight 1/0 modules, allowing users to customize the controller to their specific needs.

Programming languages - The S7-1200 supports several programming languages, including ladder logic, function
block diagram, and structured text.

Lab05 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Communication capabilities - The S7-1200 has built-in Ethernet and RS485 communication ports, allowing it to
communicate with other devices on the network.

Built-in digital and analog inputs and outputs - The S7-1200 has built-in digital and analog inputs and outputs, making
it suitable for a wide range of applications.

High-speed counters and pulse outputs - The S7-1200 has high-speed counters and pulse outputs, making it suitable
for applications that require precise timing and control.

Data logging - The S7-1200 can log data to a microSD card, allowing users to monitor and analyze system
performance over time.

Fig.10: Our SIEMENS S7-1200 PLC rack. The central module is the processor along with 10 and communication
devices

Overall, the Siemens S7-1200 PLC is a versatile and reliable controller that is suitable for a wide range of automation

applications. Its modular design and support for multiple programming languages make it easy to customize and adapt
to specific needs, while its communication capabilities and built-in web server make it easy to monitor and control the
system remotely.

PLC Programming Languages

There are several programming languages used to program PLCs, each with its own strengths and weaknesses. Here
are some of the most commonly used programming languages for PLCs:

Ladder Logic - Ladder logic is the most widely used programming language for PLCs. It is a graphical language that
uses ladder-like diagrams to represent the control logic of a system. It is easy to learn and use for people familiar with
electrical circuit diagrams.

INPUT OUTPUT
A Y

| | T
[1 \$)
INPUT OUTPUT
B Y

| | TR
| 1 \R)

Fig.11(a): Example of Ladder Logic Program

Function Block Diagram (FBD) - FBD is another graphical programming language that uses blocks to represent
different functions and logic elements. It is well-suited for complex control systems.

Lab05 Feedback Control Systems (EE-374)

NED University of Engineering and Technology Department of Electrical Engineering
>= 1 &
=— IN2 IN2
=i IN1 ouT
= IN2

Fig.11(b): Example of FBD Program

Structured Text (ST) - ST is a high-level programming language that resembles Pascal or C. It is used for more
complex programming tasks, such as mathematical calculations and data processing.

IF Start THEN
Start:=FALSE; Remove Start Latch
WHILE Initialised = FALSE DO

System E
END WHILE
System Prime:=FALSE; Turn Off Output For System Primer Once Initialised
END_IF

Fig.11(c): Example of ST Program

Instruction List (IL) - IL is a low-level programming language that is used for more advanced programming tasks,
such as configuring hardware interrupts and system functions.

LD %T1.1
R %C8
LD =I1.2
AND =MO
CU =C8
LD %C8.D
ST =%02.0

Fig.11(d): Example of IL Program

Sequential Function Chart (SFC) - SFC is a graphical programming language that is used to model complex processes
with multiple steps and stages.

[Init |
;I— TRUE
Step 1

Stepltt#2s

step2_|-{<[tomy |

+ Step2.tti2s

Fig.11(e): Example of SFC Program

Each programming language has its own strengths and weaknesses, and the choice of language depends on the
complexity of the task and the programmer’s experience and familiarity with the language. Some PLCs support
multiple programming languages, allowing programmers to choose the language that best suits their needs. In this lab,
we shall use a combination of Ladder Logic and Function Block Diagram to attain our objectives.

SIEMENS S71200 Trainer Hardware

The training case comprises a SIMATIC S7-1200 automation system. The automation system is mounted in a carrying
case for transportation purposes. It consists of:

Lab05 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

+ S$7-1200 Power Supply

» CPU1214 with Signal Board

* Analog output SB1234

* Analog input / output module SM 1234

* Digital input / output module SM 1223

« Ethernet Switch CSM 1277

* Basic Panel KTP600 (HMI LCD with six hard buttons)

Fig. 12 S71200 PLC Trainer (PLC Processor and modules on the top rack, input switches, knobs LEDs and HMI LCD
at the base)

In the following section we get to know the individual hardware components of this trainer system.

Getting to know the SIEMENS S71200 Hardware Trainer

Fig.13(a):The PLC rack
consists of , from left to
right, a power
supply(PM1207), an
ethernet switch (comm.
Module CSM1277) with
4 connections, a CPU
(1214C) with a
replaceable signal
module, an analogue i/o
module(SM1234) and a
digital i/o
module(SM1223)

nqwt\-)_']-u---q—,nkkm-
§ s T o uvdg

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.13(b): KTP600
Human Machine Interface
that is composed of a 6”
touch screen LCD along
with six programmable
hardware buttons. The
HMI is connected to the
CPU via ethernet switch.

Fig.13(c): 14 digital input
switches connected to
digital inputs on the CPU.
They can work both as an
on/off toggle switch
(LEFT) and a momentary
switch (RIGHT). Also,
there are 10 LEDs
connected to the digital
outputs on the CPU.

Analog 1/P Eiie i
To Analog Analog O/P from

Module. CPU (voltmeter LCD)
(potentiometg ¢ 4

Fig.13(d): An analogue
input connected to a
potentiometer with -12V
to +12V range. The input
goes to input number 0.1
of the analogue module.
Also, an LCD voltmeter
that is connected to
analogue output on the
signal module that is
present on the CPU.

Lab05

NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Z ct_"(gﬂ'\ﬂ*'- n N ”Lﬂfﬂ

Power plug socket
with ON/OFF switch

E=EN
Illllll\\\\\\
o A
A e s

&

e

Fig.13(e): Power plug
socket along with
ON/OFF switch

Fig.13(f): Ethernet
connector behind the
trainer connects the
ethernet switch to
SIMATIC PG
Programmer laptop.

Fig.13(g): The SIMATIC
FIELD PG Programming
Laptop. It is installed with
TIA Portal Version 10.

Fig.13(h): Ethernet
connector behind the
laptop that connects to the
trainer. Note two ethernet
cards being present of
which anyone can be
used.

Once the FIELD PG Laptop is connected to the PLC Trainer Via Ethernet cable, a star network topology is created as

shown in Fig. 14.

Lab05 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

=1] SIMATIC
|| Panel Basic

; SIMATIC S7-1200
- I- with CSM 1277

L1

Industrial Ethernet H

Field PG

(—>

Fig.14: Star topology connecting the FIELD PG laptop to the ethernet switch (CSM 1277) that extends connection to
CPU and SIMATIC HMI (LCD) panel

Programming Environment — The SIEMENS TIA Portal

The Totally Integrated Automation Portal (TIA Portal) provides you with unrestricted access to our complete range of
digitalized automation services, from digital planning and integrated engineering to transparent operation.

TIA Portal shortens time to market by integrating all important components of your automation project in a single
framework: safety, security, control, HMI, drives, switchgear, decentralized peripherals and now also motion control
and power distribution. A shared database and a smart library concept allow you to use super-ordinate functions.

Siemens TIA Portal supports several programming languages for programmable logic controllers (PLCs), including:

e Ladder Diagram (LD): LD is a graphical programming language that uses ladder-like diagrams to represent
logical operations.

e Function Block Diagram (FBD): FBD is a graphical programming language that uses blocks to represent
logical operations and functions.

e Structured Text (ST): ST is a text-based programming language that uses structured programming concepts
such as loops and conditional statements.

e Sequential Function Chart (SFC): SFC is a graphical programming language that uses a flowchart-like
structure to represent the sequence of operations.

e Graphical Function Chart (GFC): GFC is a graphical programming language that combines the elements of
FBD and SFC.

e Statement List (STL): STL is a low-level programming language that uses a sequence of instructions to
represent logical operations.

Siemens TIA Portal also supports other programming languages for specific applications, such as C/C++ for
embedded systems programming and SIMATIC S7-GRAPH for graph-based programming. However, in this lab we
shall stick to Ladder Logic and Function Block Diagram only.

Exercise 1: Creating the First TIA Portal Project

The following table shall take us through the steps for creating our first PLC program on TIA Portal and deploy it on
the PLC.

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Totally Integrated Automation

PORTAL

~ Details view

Step 1:

Fig.15(a): Open TIA PORTAL by clicking on the
desktop icon

Tools Window Help
A OR Y

nserc Onbine Optons

Totally Integrated Automation
PORT.

» (4 SIMATIC Card Reader

v Details view

+} Info | 4] Diagnostics

TS Overview

Step 2:

Fig.15(b): Create a new project, assign ita name and
set its destination (keep it on the desktop)

lemens - getting_ started
Project Edt View Insert Onine Options
=X W BG s

Tools Window Hel
19 Totally Integrated Automation
PO!

RTAL

SR SASL)

Step 3:

Fig.15(c): From the Devices menu, choose Add
New Device

cPU 121aC DODEDE

Orderne. BE57 214-1AE30-0580

SIMATIC HMI

~ Details view

Step 4:

Fig.15(d): In the Devices menu that appear, select
CPU1214C DC/DC/DC

Lab05
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Totally Integrated Automation
PORTAL

ETIT TP T

SHEAN] SSELG)] S

~ Detalls view

Step 5:

Fig.15(e): To check your selected device, click on
Device View tab present on the top right. Your
device appears here on a virtual rack

Totally Integrated Automation
d MM x PORTAL

Devices & Hevwork view (O} Device view

BT

T T

TS] L) sea s

Step 6:

Fig.15(f): Now check whether your device appears
in the network by clicking on the Network View tab
on the top right. Your device appearing here means
it is going to be connected to the LAN that contains
your PLC

pions Teols Totally Integrated Automation
& Xwx @AMa = r BB N L PORTAL

Devices & Networkview [} Device view | v Catalog E2)
~ o

aienpiey|

S0 S

»
SO] SIELQ) 5100

Dewece
~ Details view RIS z X -
c s %y Info 4 b
. o1 signal board

......

Step 7:

Fig.15(g): Now go back to the Device View where
you can find Hardware Catalog tab on the right. In
this menu, select Signal Board. Pick the one with the
name AO1x12bits. This is the signal board
physically installed on the CPU. This completes the
hardware selection procedure for this lab

Totally Integrated Autamation
R PORTAL

This-shouid be different|
for the programming
computer

Ld Overveen by Pc 1

Step 8:

Fig.15(h): Double click on the CPU now. This shall
open configuration information for the CPU in the
bottom pane. Here, you must note down the IP
address of the CPU. This shall be helpful later. The
IP address is present in the PROFINET Interface
menu

Lab05

NED University of Engineering and Technology

s project & | X 1 x| E 5 M@ S & Goottine | by M 18| ¢

Feedback Control Systems (EE-374)
Department of Electrical Engineering

PORTAL
“]
Davicas & Metworkview | Df Device view (&
™ | e esvars] 11 connections - | R e =] é
+ Local Area Connection... [[Iz
— =S g
e 4
Sta Comecind 3
Duaator msste s
Spenct 1000 Mbps H
s —] 5
=l

Pachats " s =

= Details view [(Piopmiies] [oisie]

{ Status: Connected

T4 C\Pocume r

Local Area Connection 2
Speed: 100.0 Mbps

EEEE ey @)0 xR SR T B

7:25 PM

Step 9:

Fig.15(i): Now, set the IP Address of your computer
by clicking on the Network Adaptor settings in
Windows. This shall lead to the next step

[y

= 0
(%) Show icon i robic.ahon when corrected
[E] ol me whethie comectin has mked o o comecivy
Dastie]
__ Home T = | [_Gore

B Network view [f Device view

W
TR LG SR O Bomes S [

o Properties | Info | y) Diagnostics | W,

Step 10:

Fig.15(j): Click on Properties and then select
Internet Protocol (TCP/IP)

% Elseeproiest & | X 5 W x @AM o o ottine | Ay I8 [| ¢) 1) PORTAL

Devices

You £an 0et P settings assiged sutomaiicaly i your network: mupposts
i capal sk s stk SdINNOF o1

Ve the foawsing P scde =3 s
Raceived
P ackbess [CRCEEIE]
=
Subret mask) e
Dasfoukt pabemeay.

w Details viey g
Pralered DNS server

Hame Aemaie DN soever

s Network view | [Df Device view

w I
SRR AL SO0 S0 | oINS SmRIE

s] feral

g Properties 1) Info | y) Diagnostics |

+ Hseveprje & | X 5 X @ A M@ ¥ ¥ Go of

Step 11:

Fig.15(k): Here, you shall see your computer’s 1P
address. It must be different from that of the PLC
CPU that you set earlier. Note that the subnet shall
be the same as that of PLC.

Totally Integrated Automation
PORTAL

Devices & Hetwork view [Device view
2 [dr n = zEe =

W
TR] SELG ee a0 BOIees sieApe [A

' Properties | %) Info | | Diagnostics |

Step 12:

Fig.15(1): Now, in TIA Portal, go to PLC_1 in the
project tree and in the Program Blocks sub-menu
select Main OBL1. You need to double click on it.
This shall open a Ladder Logic programming

interface

Lab05

NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Tatally Integrated Automation
PORTAL

~ Details view

Saie] el ol suspnnel

Step 13:

Fig.15(m): Inside Main_OB1, you can write your
PLC program just analogous to the main() function
in C/C++. Using the basic Ladder instructions
present in the highlighted location, create three
basic Ladders.

e — .
[S —
Wil = 2 B R EEHE R e B =T

- A O —_ =

comment
%l0.0 %00.0
“Tag_1" “Tag_2"
— I { }——
- Network 2:
Comment
%11.0 %Q1.0
“Tag_3" Tag_4"
——/t { F——
- Network 3
Cormment
1.2 %11.3 %Q1.1
“Tag_5" “Tag_6 “Tag_7"
— 1} —
> :§

Step 14:

Fig.15(n): Note that you need to drag and drop the
instructions on the ladder rung. Each rung can have
multiple i/0’s. For now, just understand that inputs
are connected to the left side and outputs to the right
side. Add the tags %10.0, %Q0.0, %I1.0, %Q1.0,
%I1.2, %I11.3 and %Q1.1 on the three rungs shown.

ne options Teris
X W i MG
——

LY getting_stai C_1 » Program blocks » Main

0

A=EE8:EHE €6 e

N

il

-

dr B[R

Tatally Integrated Automation
PORTAL

4
155 winc [z

E
eI Bl

i
“Tag_x Tog 4 BES
Iy 3 i
v Network 3:
smment
oo 0.
— { =
> N =
| Properties | *i] Info | | Diagnostics | &

Step 15:

Fig.15(0): Once the program is created, click on the
Download button

Totally Integrated Automation
PORTAL

~ Details viey|

Hame

SUAPASUIL &

anostics W

‘
Sauen] el Bl

Ings Tume

Step 16:

Fig.15(p): The Download requires you to check the
Continue option and click Load

Lab05 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

With this your first PLC Program is complete. What function does it perform? You can test that by turning ON/OFF
the switches on the PLC trainer. Turn all the switches ON and observe the LEDs. What do you observe? Write down

your observation.

Now, complete the following tasks:

Task 1: Complete the following truth-tables. They are each related to the first, second and third rung of your PLC
program, respectively. Turn the toggle switches ON/OFF on the trainer in order to complete the truth table. The
mentioned LEDs are to be observed for output

oot Toggle Switch 0.0 LED 0.0 (output — this is
the top LED)
®l0.0 %Q0.0
"Tag_1" "Tag_2"
[{ — ON
OFF
v Netvork: Toggle Switch 1.0 (This | LED 1.0 (output — this is

Comment

is the lower .0 switch) the lower .0 LED)

%l1.0 %01.0
"Tag_i" "Tag_=1"
. { — ON

OFF
v Netorks: Toggle Switch | Toggle Switch | LED 1.1 (This
— 1.2 (thisisthe | 1.3 (thisisthe | is the lower .1
TS Tegs Tao 7 lower .2 switch) | lower .3 switch) | LED, bottom
: T =a=—% one)
ON ON
e bletworkcd:
ON OFF
OFF ON
OFF OFF

Task 2: With reference to the following picture, identify and write down the name of each of the highlighted-
numbered component/device on the PLC trainer.

©oN~wD PR

Lab06 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 06

Objective:
Digital 1/0 interfacing and manipulation in PLCs, their application in designing

On-Off type feedback control systems using ladder language.

What is a Digital 1/0 ona PLC?

Digital inputs have two states: OFF and ON. If voltage is present, the circuit is ON. If it’s not present, the circuit is
OFF. The voltage values for ON and OFF state depend on the type of digital logic used. In SIEMENS PLCs it is 24V
for HIGH/ON and 0V for LOW/OFF

o o O
SWI TCH
Source/ J—— PLC
Sensor vsa Input
(max 24V =
OUND

Fig.1: A sensor connected to PLC Digital Input

The simplest control you can use over an electrical device is digital output. In this case, you would either turn
something OFF, or ON. Digital outputs are often used to control other electrical devices, through transistors or relays.
In S7-1200, digital output HIGH/ON is 24V and output LOW/OFF is OV.

OUTPUT

PLC Output Q‘D‘ LED at Output

GROUND

Fig.2: An actuator (LED) connected to PLC Digital Output
Digital 1/0 Nomenclature for SIEMENS S7-1200

Digital inputs are marked as DI, whereas, digital outputs are abbreviated as DQ in SIEMENS PLC portfolio. Every
digital input/output is called upon by its address in a PLC program. The address is given by the following format:

%I1X.X for input. To spell it out, a percentage sign is followed by capital i ‘I’. Without any space, two single-digit
numbers follow, separated by a dot °.”. The first number is called Port Number and the second is called Pin Number.

%QX.X for output. To spell it out, a percentage sign is followed by capital q ‘Q’. Without any space, two single-
digit numbers follow, separated by a dot °.”. The first number is called Port Number and the second is called Pin
Number.

For example, in our trainer, the CPU has two digital input ports. Port 0 and port 1. Port 0 has eight pins with addresses
%I10.0 to %I10.7. Port 1 on the other hand has six pins with addresses %11.0 to %I1.5. You can see them on the
processor as well as through the switches that connect to them on the trainer. See Fig. 6.

Similar to inputs, the CPU has two digital output ports; Port 0 and Port 1. Port 0 is eight bits wide containing
addresses %Q0.0 to %Q0.7. Port 1 has just two pins with addresses %Q1.0 and %Q1.1. See Fig. 7.

NOTE: I/O addresses are absolute and hardware defined in the Process Image which is a memory to store 1/0 states in
real-time. You can also associate Tags with each 1/0 address, which act as variable names and can help in keeping
track of logic in long programs. Default tags are assigned to each 1/0 address but it is advisable to rename them to
something that is logically meaningful, for example proximity_sensor, level_switch, alarm etc.

Lab06 Feedback Control Systems (EE-374)

NED University of Engineering and Technology Department of Electrical Engineering
- Network 2:
Cornment
%Il1.0 %0Q1.0
i/} { }

| “Tag_3" “Tag_4"

Fig.3 1/0 Addresses are in green whereas Tag Names are in black. Remember if you have made mistake in writing 1/0
address, it turns red.

Digital 1/0 available on the CPU

The CPU has information about the type of Digital I/O it contains within its name. The CPU name 1214C DC/DC/DC
not only describes the processor specifications but also gives three key features of the CPU:

Fig.4 CPU Model Number used in the PLC Trainer
DC/DC/DC=> Power Supply/ Digital Input Type/ Digital Output Type

The first DC signifies the type of power supply for the processor. The second DC tells us about the kind of digital
input and the third one tells us about the kind of Digital output. In this case, the CPU is powered by a DC source, it
accepts a DC type of digital input and generates a DC type of digital output. Here DC means Direct Current. Just to
clarify, other options are also available in PLCs and are briefly explained below:

Other Power Supply options: AC (Alternating Current)
Other Digital Input Type options: none (only DC input is available)

Other Digital Output Type options: AC/ RLY (RLY stands for Relay output. It means each output is a Normally
Open relay contact which closes when the output goes high. See Fig.3. AC Digital Output is a 24V AC signal turned
on by PLC)

| Internal Circuit |
CoIL COoIL COoIL
contact contact contact
gic
L & T, g I
COoM 0500 0501 COM outputs

Fig.5 Depiction of a Digital Output that is operated through a Relay built inside the PLC. This allows us to connect
high current loads/actuator to the PLC output, for example induction motor

The Digital Inputs available on the CPU is connected to the switches present on the trainer base. All these are simple
toggle switches that connect a 24V DC source to the CPU pin when turned ON. The only exception is the second

Lab06 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

switch (from the top) 10.1, which is a Normally Closed switch. When these switches are toggled, an indicator LED on
the CPU lights up to show activity on the respective input pin. See Fig. 6

Digital Input LEDs

Digital Outputs

Fig. 6: Digital Inputs from the trainer connect to the respective input pin on the CPU

Digital Outputs from the CPU are also connected to the trainer. The LEDs at the trainer base are sequentially
connected to the respective digital output pin as marked on the CPU. Digital outputs also have status LEDs to show
their activity.

0.0
0.1
0.2
0.3
0.4
0.5
0.6 Digital Outputs
0.7
1.0
11

Digital Inputs

Q vl N iy 1) D NS -
Co0o0O0O0O0O0 O

Fig. 7: Digital Outputs from the CPU connect to the respective LED on the trainer base

Digital 1/0 available through expansion module SM1223

The expansion digital 1/O module SM1223 is present at the extreme right of the PLC rack. It also adds 8 digital inputs
and 8 digital outputs. However, its is not connected to any point on the trainer. We can use its to connect to other 1/0
sensors and actuators.

Fig. 8: Digital 1/0 Expansion Module SM1223 (on the right). Its has no existing connections to the trainer
Types of PLC Digital Sensors and Methods to connect them

Digital Sensor is any physical sensor that has two stable output states. For a PLC, digital sensor has a built-in interface
circuit that converts sensor voltages to 0-24V range and limits current drawn by the sensor to 5mA. Fig. 9 depicts a
Digital Sensor model.

Lab06 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

PLC

digital i/p

Fig. 9 Digital Input Sensor Model
Digital Sensors that can be connected to a PLC can be categorized into 3 groups:
1) Digital Level Sensors: Sensors with two o/p levels that hold for a measurable/observable amount of time (e.g.

fluid level sensor, elevator door switch)
HIGH/ ON LEVEL

LOW/ OFF LEVEL
Fig. 10 Depiction of Digital Level Sensor Signal

2) Digital Edge Trigger Sensors: Sensors with two o/p levels that change at a rate faster than the measuring
system OR generate momentary pulses that are few and far between (e.g. object counting proximity sensor on
conveyor belt, level sensors used in elevators for counting floors)

Rising/Positive Falling/Negative

Edge \ Edge

Fig. 11 Depiction of Digital Edge Trigger Sensor Signal
3) Digital Pulse Out Sensors: Sensors that generate a burst of pulses at high speed. Number of pulses represent a
physical quantity. (e.g. shaft encoder for dc motors for measuring speed). This kind of input cannot be
interfaced to all digital inputs and dedicated high-speed digital inputs are present for this.

JpppiiL

1 2 3 456

Fig. 12 Depiction of Digital Pulse Out Sensor Signal where pulses are counted instead of measuring their time
Types of PLC Digital Actuators and Methods to connect them

Digital outputs of a PLC are connected to relays or other ON/OFF actuators that have only two discrete levels of
operation. These ON/OFF actuators can be categorized into two different kinds of outputs:

1) ON-OFF Outputs: Devices that simply turn ON or OFF. Interface to the device is usually a relay or high

power MOSFET (e.g. induction motor, lighting etc.)
HIGH/ ON LEVEL

LOW/ OFF LEVEL
Fig. 13 Depiction of Digital Level Actuator Output

2) PWM (Pulse Width Modulated) Output: A digital output of the form of a square wave with a certain
frequency. The on-time and off-time may be controlled. Ratio of on-time over total cycle time is called PWM
duty. This is used to control speed of DC motors and change angular position of servo motors. It is not
available on all digital outputs. And only dedicated outputs can perform this feature.

Lab06 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

. n_n. n
m_mn_rmn. r
N e e
N | A | R | |

Fig. 14 Depiction of PWM Digital Output Signal

Wiring Digital Inputs and Outputs to PLC

The final thing we need to understand in order to interface digital inputs and outputs are the input/output wiring
connections. For our CPU 1214C DC/DC/DC, we can connect a 24V DC source between the L+ (+ve) and M(-ve)
terminals in the processor, these are exposed when the flaps of the CPU are turned over. For the individual sensors,
which can be taken as switches for all practical purposes, one terminal of the sensor needs to be connected to a 24V
DC voltage that has its negative terminal connected to 1M terminal. The other terminal then needs to connect to one of
the digital inputs (e.g. 0.0 or 0.1). This connection scheme works for normally open (NO) type sensors.

214-1AG40-0XB0

(X[213]

Fig. 15 Note DC supply on L+ and M terminals. Another DC supply is used to power the Digital Sensors and
grounded through 1M terminal

As for the digital outputs, the connection required connecting 24V DC source between 3L+ and 3M as shown in Fig.
14. All digital output actuators are then connected between the respective digital output and 3M (common ground).

24VDC OUTPUTS
a o0y |
RS 3 2 348385 7 83

T [
-
y | DDHHGGDHGG
Fig. 16 Note DC supply on 3L+ and 3M terminals. Digital Outputs are connected between the digital output pin and
common ground (3M)

NOTE: We are using simple LEDs and ON/OFF relays as digital output actuators for the major portion of these labs.
Types of Digital I/O Instructions and their Usage

Digital 1/0 is used in conjunction with specific software instructions in Ladder or FBD language. There is even more
specification with regards to the type of instruction to be used with certain kind of digital input sensor or digital output
actuator. In the following table, different kinds of digital 1/0 instructions are presented along with the type of
sensor/actuator they are designed to be used.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Digital Level Sensors

Sensors with two o/p levels that hold for a
measurable/observable amount of time (e.g.
fluid level sensor, elevator door switch)

Digital Level Sensors
These sensors are used with simple input contacts

"IN "IN
— —/—
NO Input NC Input

“IN” is a boolean address of the input e.g. %10.5

Digital Edge Trigger Sensors

Sensors with two o/p levels that change at a
rate faster than the measuring system (e.g.
object counting proximity sensor on conveyor
belt, level sensors used in elevators for
counting floors)

Digital Edge Trigger Sensors
These sensors are used with edge trigger input
contacts

VINT N
—iP— —IN
“M_BIT" "M_BIT"

+ve edge input -ve edge input

“IN” is boolean digital i/p, “M_BIT” is boolean
memory address e.g. %MO0.0

Digital Pulse Out Sensors

Sensors that generate a burst of pulses at high
speed. Number of pulses represent a physical
guantity. (e.g. shaft encoder for dc motors for
measuring speed). Not available on all digital
inputs.

These can’t be used with regular digital inputs. They connect with
specialized digital inputs that have built-in functionality to
register and count pulses. This shall be used in later lab sessions.

ON-OFF Qutputs:

Devices that simply turn ON or OFF. Interface
to the device is usually a relay or high power
MOSFET (e.g. induction motor, lighting etc.)

ON-OFF Outputs
These actuators can be connected with simple
output coils in the PLC programming

"ouT” "ouT”
— — —/—
NO output NC output

“OUT” is boolean address of the output e.g. %Q0.3

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

ON-OFF Qutputs:

They can also be interfaced using SET/RESET
instructions

There are other ways to connect the digital outputs.
Example: SET _BIT and RESET_BIT

IIDUTII IIDUTH
—{R}— —{S)—
Output RESET Output SET

“OUT"” is boolean address of the output e.g. %Q0.3

NOTE: In digital logic SET means to turn output HIGH
and RESET means to turn output LOW

PWM (Pulse Width Modulated) Output:

A digital output of the form of a square wave
with a certain frequency. The on-time and off-
time may be controlled. Ratio of on-time over
total cycle time is called PWM duty. This is
used to control speed of DC motors and
change angular position of servo motors. It is
not available on all digital outputs. And only
dedicated outputs can perform this feature.

They are used with regular Output instructions but need to be
configured on specified Output connections in advance of writing
a Ladder program.

ON-OFF Memory Output:

This special instruction is not exactly an
output but simple a 1 bit memory location used
to store an ON-OFF output variable.

We can use bit memories for the pulse-operated switch.
A simple example will serve here to show you how to
work with them

Network 1

— — <)

Network -2

—<C D

10.0

MO.O

_I

Exercise 1: Implementing basic Logic Gates in Ladder Language

Ladder programming is a graphical programming language used for creating logic circuits. It is commonly used in
industrial automation and control systems. Here is a brief tutorial on ladder programming:

1) Understand ladder logic elements:

The basic elements of ladder programming are contacts, coils, timers, and counters. Contacts represent input
signals, coils represent output signals, timers are used to create time delays, and counters are used to count the

number of times an input signal occurs.
2) Create a ladder diagram:

Ladder programming is based on creating a ladder diagram. The diagram consists of two vertical rails
representing the power supply, and horizontal rungs representing the logic circuit. You can add contacts, coils,
timers, and counters to the rungs by dragging and dropping them from a library.

3) Connect elements:

Contacts and coils are connected using vertical lines called rails. Contacts are connected to the left rail and
coils are connected to the right rail. When a contact is closed, it allows current to flow to the coil, which then

activates the output signal.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Now create the following logic gates in Ladder language and verify that the given truth-table verifies your

observations.

Ll LZ

A B
|1 1 2 v
[[P

A | B | Output A

olo 0 }

o1 0 B —

1|0 0

11 1

Fig.17 AND Logic Gate in Ladder Language. Take
%10.0 and %I10.2 as inputs and %Q0.0 as output

A| Output
o 1 A —[>°_
1 0

Fig.19 NOT Logic Gate in Ladder Language. Take
%I10.5 as input and %Q0.2 as output

L, L,

o]

-|a|0|o>
<l0|alo|m
=]

1
1
1

Fig.18 OR Logic Gate in Ladder Language. Take %I10.3
and %10.4 as inputs and %Q0.1 as output

In order to make these logic gates, the following steps
need to be taken:

1) Create a new project in TIA Portal and name it.

2) Go to “Project View” and select “Add New
Device” from the Project Management pane

3) Add your PLC CPU (1214C DC/DC/DC) and
add the correct signal board (AI/AQ)

4) Now a CPU_1 has been added to the Project
Management pane, go into it and then go into
Program Blocks

5) Inside Program Blocks, go to Main_OB1

In order to complete this exercise, detailed steps are shown in Lab 05 with pictorial representation. Please follow it

and complete the following tables.

Table for recording output of AND Gate

Table for recording output of NOT Gate

%I10.0 %I10.2 %Q0.0

%I10.5 %Q0.2

Table for recording output of OR Gate

%I10.3 %I10.4 %Q0.1

Exercise 2: XOR Gate Application as a two-way switch

Lab06 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Switch A

State .
I ||@
"O" State =

Light

Switch B
State

)

=

Stairway

"O" State

Fig. 20 Wiring problem for a staircase light with two switches. The light needs to turn ON or OFF from both the
switches

Fig.20 demonstrates a common wiring challenge that allows a person going up stairs to switch the light ON and when
he has reached the top stair, he can turn it OFF. The switch works in the same way for the downwards journey also.
Conventionally, this problem is solved through a two-way switch, however, it can be easily solved with a XOR Gate
also. Complete the following table by making a Ladder language XOR gate.

L, L, %I10.6 %I0.7 %Q0.3

A B

A

B | Output
0 0
1
0
1

alalolol>

1
1
0

Fig.21 XOR gate implementation in Ladder language.
Use %10.6 and %10.7 as inputs and %Q0.3 as output.

Exercise 3: Operating a carwash “Enter” indicator using two proximity sensors

Modern carwash is an automated systems with many sensors and actuators. One basic sensor system in a carwash is an
“Enter/Stop” indicator. It works using two proximity sensors interfaced to digital inputs as shown in Fig. 22.

t“

Digital op: 1=Enter, sensor B (digital ip)

0=Stop sensor A (digital ip)
Fig. 22 “Enter/Stop” indicator outside a carwash. Note the two proximity sensors as the entrance and exit

How can we create a logic such that an entering car triggers and holds the indicator in ON state and when the car exits,
the indicator turns OFF? Look at the following description and complete the truth-table.

Lab06
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Network 2

10.3 T1
| R
Network 3
10.4 C1
| RO

Fig.23 Solving the carwash indicator problem with
SET/RESET output instructions. Complete this Ladder
on your PLC and record observations in the
accompanying table

%10.3 %I10.4 %Q0.6
proximity | proximity | indicator
sensor at sensor at
entrance exit

No car is

inside

Car enters,

still inside

Car exits

No car is

inside

Exercise 4: Fluid Tank Filling

A fluid tank needs to be filled with some process fluid. It has two float switches sensing level at the bottom and top of
the tank as shown in Fig. 24. The PLC needs to turn the motor ON to keep the fluid level maintained to the top level.
However, another input is also provided to the on-site operator in the form of a manual over-ride switch which stops

the motor at any point. A truth table for all three inputs and their impact on output is shown.

High level

Sensor

11.0 Pump
input
Ql.0

Manual over-ride
input 11.1

Low level
Sensor
10.0

Fig.24 Fluid Tank Filing problem with three inputs and
one output

Over-ride | Low level High level Output
1.1 10.0 11.0 Q0.0
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Write down the Boolean Logic expression for output Q0.0 in terms of the three inputs 11.1, 10.0 and 1 1.0

Q0.0 =

Now draw your Ladder logic solution to this problem in the space below:

Task 1: Using Flip-Flop to solve the Fluid Tank Filling problem

Using the same inputs and outputs, now solve the Fluid Tank Filling problem with SR or RS flipflop. Make sure to
attach your Ladder program and also shoe its output on a truth table. Comment on any undesired or unexpected

outcome. SR and RS instructions are part of the SIEMENS PLC instruction set. A quick recap of how SR and RS flip-

flops work is presented here.

Lab06

NED University of Engineering and Technology

Feedback Control Systems (EE-374)

Department of Electrical Engineering

"IHoUT" S R1
SR 0
5 k-
A1 0 1
1 0
1 1

“INOUT” is a bit memory

Previous state "I oUT"
RS

0 F

1 51

0

S1 R
0 0
0 1
1 0
1 1

“INOUT” is a bit memory

"INOUT" bit
Previous state
0

1

1

Task 2: Creating a two-way switch system for corridor-lighting

Similar to staircase lighting, corridor lighting is also done conventionally through two-way switches. However, in
industrial settings, PLC can be used to solve it with more control. Consider the following case where a long corridor
with one entrance and one exit has three lights. For a person who could be walking into the corridor from either side,
we need to give him control of the light just in from of him. The logic should work in such a way that when he turns
on the first switch, the first light in front of him turns ON. When he approaches the second switch and flicks it, the
next light turns ON while the previous one turns OFF. When he reaches the third switch and flicks it, the third and
final light turns ON and the second light is turned. Finally, he leaves while flicking the last switch which turns the
third light OFF. Make a Ladder program and truth table for this.

£

Light 1 %Q0.0

[©]

Switch 1 %11.0

P

Light 2 %00.1

Switch 2 %I11.1

Switch 3 %I11.2

o

Light 3 %Q0.2

[©]

Switch 4 %I11.3

Fig.25 Lighting for corridor using PLC. Inputs and outputs are defined with switches and lights

Attach Ladder program along with truth-table with your answer.

Course Code: EE-374
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Feedback Control Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to | Able to recognise | Able to | Able to
and Configuration: unable to | recognise initialisation but | recognise recognise
Set up and recognise | recognise initialisation but | configuration s | initialisation and | initialisation and
software initialisation | initialisation could not | erroneous configuration configuration
and configuration steps | and configure with minimal | with complete

configuration errors success
[10% o
Equipment Completely Ability to identify Ability to
Identification and | unable to equipment but identify
Handling: identify makes mistakes in equipment and
Sensory skill to identify | equipment recognising recognises all
equipment and its | and components, components,
components along with | components — demonstrates - practices careful
adherence to safe | and no regard decent and safe
handling to safe equipment handling
handling handling capacity

15% g
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to successfully
between computer and | connection _ establish _ establishes
hardware kit and | verification software software
establish connectivity connection connection
with software verification verification
[15% o
Following step-by-step | Inability to | Able to | Able to recognise | Able to | Able to

procedure to complete
lab work:

Observe, imitate and
operate hardware in

conjunction with
software to complete
the provided sequence
of steps

[15%4

recognise and
perform given
lab
procedures

recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

recognise given
lab procedures

and perform
them by
following
prescribed

order of steps,
with occasional
mistakes

recognise given
lab procedures

and perform
them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct Correct selection | Correct Correct
Controller for given | selection and | selection of | and use of | selection and | selection and
Control System | use of | programming programming use of | use of
Problem: programming | constructs and | constructs and | programming programming
Imitate and practice | constructs instructions but | instructions with | constructs and | constructs and
given Ladder | and their use is | many instructions instructions with
instructions for | instructions incorrect syntax/logical with little to no | no syntax/logical
implementing specific errors syntax/logical errors

control strategy and
store required variables
15%

o

errors

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and | understand understanding and understanding command over
Usage: and use | of software | understanding of | of software | software menu
Ability to operate | software menu software menu | menu usage with
software environment | menu operation, operation, makes | operation, occasional use
under supervision, makes many | lesser mistakes makes no major | of advance
using menus, shortcuts, mistake mistakes menu options
instructions etc.

10% o

Detecting and | Unable to | Able to find | Able to find error | Able to find | Able to find
Removing check and | error messages | messages in | error messages | error messages
Errors/Exceptions in | detect error | in software but | software and | in software and | in software and
Hardware and | messages in | no sense of | recognise them | recognise them | recognise them
Software: software and | hardware error | on hardware. Still | on hardware. | on hardware.
Detect hardware identification unable to | Moderately able | Reasonably able
Errors/Exceptions and understand the | in in

manipulate, under error type and | understanding understanding

supervision, to rectify
the Ladder program

[10%

o

possible causes

error type and
possible causes

error type and
possible causes

Visualisation,
Comparison
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

[10%

and

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

o

Ability to
understand and
utilise
visualisation

and plotting
instructions
with errors.
Unable to
compute

standard indices

Ability to
understand and
utilise
visualisation and
plotting

instructions with
occasional errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Lab07 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 07

Objective:
Digital 1/0 manipulation in PLCs with timers, counters, and PWM (Pulse Width

Modulation) generators for designing On-Off type feedback control systems
using Ladder language.

Operating Modes of PLC CPU

The CPU has three modes of operation: STOP mode, STARTUP mode, and RUN mode. Status LEDs on the front of
the CPU indicate the current mode of operation.

e In STOP mode, the CPU is not executing the program, and you can download a project. The RUN/STOP LED is
solid yellow.

e In STARTUP mode, the CPU executes any startup logic (if present). The CPU does not process interrupt events
during the startup mode. The RUN/STOP LED alternates flashing between green and yellow.

e In RUN mode, the scan cycle executes repeatedly. Interrupt events can occur and the CPU can process them at any
point within the program cycle phase. You can download some parts of a project in RUN mode. The RUN/STOP LED
is solid green.

The CPU supports the warm restart method for entering the RUN mode. Warm restart does not include a memory
reset, but you can command a memory reset from TIA Portal. A memory reset clears all work memory, clears
retentive and non-retentive memory areas, copies load memory to work memory, and sets outputs to the configured
"Reaction to CPU STOP". A memory reset does not clear the diagnostics buffer or the permanently saved IP address.
A warm restart initializes all non-retentive system and user data. We can change the CPU mode by connecting to the
PLC and going online as depicted and described in Fig. 3

Brief overview of the Scan Cycle of SIEMENS S71200 CPU

Just like microcontrollers, PLCs also process instructions in two steps: 1) initialization of variables and inputs/outputs
and 2) continuous loop that keeps running the user program in an infinite fashion — this infinite loop is called Scan
Cycle or, simply, Cycle in SIEMENS PLCs. Each scan cycle includes writing the outputs, reading the inputs,
executing the user program instructions, and performing system maintenance or background processing. The cycle is
referred to as a scan cycle or scan. Under default conditions, all digital and analog 1/0 points are updated
synchronously with the scan cycle using an internal memory area called the Process Image (See Fig.1). The process
image contains a snapshot of the physical inputs and outputs on the CPU, signal board, and signal modules.

00 01 02 03 04 05 06 07 10 1.1 1.2 13 14 15

Digital Inputs

Analog Inputs

00 01 02 03 04 05 06 07 10 1.1

Digital Output
Analog Outputs gital Lutputs

Fig.1 Process Image of CPU1214C. It stores the most recent 1/O status in Memory and is used by the user program

The CPU reads the physical inputs just prior to the execution of the user program and stores the input values in the
process image input area. This ensures that these values remain consistent throughout the execution of the user
instructions.

Lab07 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

The CPU executes the logic of the user instructions and updates the output values in the process image output area
instead of writing to the actual physical outputs.

After executing the user program, the CPU writes the resulting outputs from the process image output area to the
physical outputs. d outputs on the CPU, signal board, and signal modules This process provides consistent logic
through the execution of the user instructions for a given cycle and prevents the flickering of physical output points
that might change state multiple times in the process image output area.

STARTUP RUN
A Clears the | (image) memory area @ Writes Q memory to the physical outputs
B Initializes the Q output (image) memory @) Copies the state of the physical inputs to |
area with either zero, the last value, or memory
the substitute value, as configured, and
zeroes PB, PN, and AS-i outputs
C Initializes non-retentive M memory and @ Executes the program cycle OBs
data blocks to their initial value and
enables configured cyclic interrupt and
time of day events.
Executes the startup OBs.
D Copies the state of the physical inputs to @ Performs self-test diagnostics

| memory

E Stores any interrupt events into the (® Processes interrupts and communications
queue to be processed after entering during any part of the scan cycle
RUN mode

F Enables the writing of Q memory to the
physical outputs

Fig.2 Scan Cycle or simply Scan of a SIEMENS S71200 CPU. STARTUP processes take place when the CPU is in
the STOP mode. Once it starts and enter START mode, processes 1 through 5 are performed in a continuous loop.

While connected to the PLC, we can go to Online and Diagnostics and see the Scan Cycle duration, memory
consumption and other useful characteristics of the current settings.

Siemens - getting_started X

Project Edit View Insert oOnl B
Totally Integrated Automation
Gf 3 Bl soveproject & M B B X ooffine B2 [N I® ¢ 1) PORTAL

< ey \—/; e i On.ne tools 3 Y

Devices % CPU operator panel

Mermory ~& PLc.1 [cPU 1 214C DEDEDC]
RUN / STOP RUN
+ [getting_startzd - e stop
I ~dd new device
ghy Devices & Networks
~ [PLC_1 [CPU1214C DC/D. .
B

MAINT MRES =g

T Cycle time

in
£ O S S
4 1l >] o 5 150

+ Info | ¢| Diagnostics | 4> ¥

Device information v Memory

No devices with problems

B Online . Ty Opera . Devicelmodule Message D
m Op: a

] Free:99%

Free:99%

Free:100%

< |
| = wain | < Picags |]] & online & di.

Fig. 3 While running a program, we can click on “Go Online” (highlight 1), select “Online and Diagnostics” inside
CPU_1 (highlight 2) in order to see details related to Scan Cycle (highlight 3). Note that CPU Modes can also be
controlled from this pane

For each scan cycle, the CPU writes the outputs, reads the inputs, executes the user program, updates communication
modules, and responds to user interrupt events and communication requests. Communication requests are handled
periodically throughout the scan.

Lab07 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

These actions (except for user interrupt events) are serviced regularly and in sequential order. User interrupt events
that are enabled are serviced according to priority in the order in which they occur. For interrupt events, the CPU reads
the inputs, executes the OB, and then writes the outputs, using the associated process image partition (PIP), if
applicable. The system guarantees that the scan cycle will be completed in a time period called the maximum cycle
time; otherwise, a time error event is generated. Please note that Interrupt and its handling are out of the scope of this
lab session.

SIEMENS S71200 Memory Area, Addressing and Data Types
The CPU provides the following memory areas to store the user program, data, and configuration:

e Load memory is non-volatile storage for the user program, data and configuration. When a project is downloaded to
the CPU, it is first stored in the Load memory area. This area is located either in a memory card (if present) or in the
CPU. This non-volatile memory area is maintained through a power loss. You can increase the amount of load
memory available for data logs by installing a memory card.

e Work memory is volatile storage for some elements of the user project while executing the user program. The CPU
copies some elements of the project from load memory into work memory. This volatile area is lost when power is
removed, and is restored by the CPU when power is restored.

e Retentive memory is non-volatile storage for a limited quantity of work memory values. The retentive memory area
is used to store the values of selected user memory locations during power loss. When a power down or power loss
occurs, the CPU restores these retentive values upon power up.

The Work Memory acts as the location for storing variables. In CPU1214C, this memory is 4kB (4096 Bytes). The
interesting aspect of this memory is that it is bit-addressable. Fig. 4 shows the layout of work memory and gives
examples for assigning bit, word and double word in this location.

Bit No: O 1 2 3 4 5 6 7 Byte No.
0

3.3 3

o

Fig.4 Work Memory in S71200 CPU1214C. It consists of 4096 Bytes with bit-addressable access. In this figure, M3.3
is a bit declared in the 3" bit of the 3™ Byte. Whereas, MW4 is a Word (2 Bytes) starting at Byte 4 and also consists
Byte 5 of the Work Memory

<llll-‘>

Data types are used to specify both the size of a data element as well as how the data are to be interpreted. Each
instruction parameter supports at least one data type, and some parameters support multiple data types. Hold the cursor
over the parameter field of an instruction to see which data types are supported for a given parameter.

Data Bit Size | Number Range Address Examples
Type
Bool 1 TRUE, FALSE %I10.1 (Input bit)

9%Q0.3 (Output bit)
%M3.2 (Memory bit)

Lab07

NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Byte 8 0to 255 %IB1 (Input byte)
%MB3 (Memory byte)
Word | 16 0 to 65535 %MW4 (Memory Word)
Consists of Byte 4, 5, 6
and 7
Double | 32 0t0 4294967295 | %MD7 (Memory Double
Word Word)
Consists of Bytes 7, 8, 9,
10,11,12,13 and 14
Char 8 0 to 255 ALY @

Table 1: Basic Data Types and their ranges and example syntax

In the following tables, more advanced data types are given along with their ranges and example values.

Sint 8 bits 12810 127 123,123
(short integer) (1byte)
USint 8 bits (0to255 123
(unsigned short integer) (1byte)
Int 16 bits -32,768 to 32,767 123,123
(integer) (2 bytes)
Ulnt 16 bits 010 65,535 123
(unsigned integer) (2 bytes)
Dint 32 bits -2,147,483,648 to 2,147 483,647 123,123
(double integer) (4 bytes)
Table 2: Advance data-types
UDInt 32 bits 010 4,294,967,295 123
(unsigned double integer) (4 bytes)
Real 32 bits +-1.18 x 10 % t0 +/-3.40 x 10 123.456, -3.4, -1.2E+12,
(real or floating point) (4 bytes) 34E-3
LReal 64 bits +/-2.23 x 10208 to +/-1.79 x 10308 12345.123456789
(long real) (8 bytes) -1.2E+40
Time 32 bits T#-24d_20h_31m_23s_648ms to T#5m_30s
(time) (4 bytes) | T#24d_20h_31m_23s_647ms 54-2d
Stored as: -2,147,483,648 ms T#1d_2h_15m_30x_45m:
to +2,147,483,647 ms
String Variable 0 to 254 byte-size characters 'ABC'
(character string)
DTL! 12 bytes Minimum: DTL#2008-12-16-
(date and time long) DTL#1970-01-01-00:00:00.0 20:30:20.250
Maximum:
DTL#2554-12-31-23:59:59.999 999 999

Table 3: More advance data-types

CPU Praocess Control and Online Monitoring of 1/0

Once a PLC program is downloaded to the CPU we can connect to it in real-time and perform diagnostics and
debugging. This is done by connecting to the PLC via “Go Online” option. Please make sure that you have the same
project filed opened as that of the program downloaded to the PLC. In this way, we can monitor all the inputs and
outputs in real-time and thus can debug the program in an effective manner. Note that in Online mode, the input and
output states are being transmitted by the CPU and thus are accurate. If any physical input or output is not responding
in accordance with the activity reported by “Go Online” option then the physical connections to inputs/outputs must

Lab07
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

be inspected. Moreover, remaining online also allows you to inspect the PLC Tags — a collection of all PLC variables

with values shown in real-time.

———Monitoring onloff

als Window Help

Totally Integrated Automation
PORTAL

I ¥ Go offine. a B

q -

2 | BsEa:EE 62

Ak A - [-

Souen] ey

= Details view o5 Tag 8" Tog_7

Fig.5 Online Monitoring can be turned on by connecting
to the PLC with the same project open in TIA Portal as
that downloaded to the PLC and clicking on Monitoring

SELQ] Bumale| SUOBRUIGE .

w
T

" Properties %) Info_) Diagnostics | &

Fig.6 Once Online, the connected circuits/outputs turn
green and the disconnected ones are shown with a
dotted blue line. To turn off monitoring, click on “Go
Offline”

Siemens - getting_started —_a@ X
Project Edit View Insert Online s Tools Window Help Totally Integrated Autornation
G 3 Hlseveproject @ X 5 B X @ T M 2 Goonline &F Goofiine F7 M B & 1] PORTAL
Project tree 4 4
Devices PLC tags Constants Er
= s
2 iix E
PLC tags
~ [getting_started Hame Data typ Retain Comment w
B Add new device - Taa_l Bool =]
oy Devices & Hetworks 2 qD Tag2 Boal 2
PU 1214C DCDCOC] 3 0 Tag 3 Bool E'
4 - Tag 4 Bool
@ Tag s Bosl
@ Tag6 Boal
@ Tag_ Bosl
a
» [SIMATIC Card Reader
w Details view
| lame
@ Teo A
@ Tag2 B
@ Tags
- Tag_4
@ Taas = 'q| Properties %] Info |y Diagnostics | &
[T T ET

Fig.7: PLC Tags, present in the PLC_1 Device in the Project Tree can be used to monitor all the variable live.

Exercise 1: Complete Task 01 of Lab 06 and observe its output using Online Monitoring and Watch-table.

High level

Sensor

11.0 Pump
input
Ql.0

Manual over-ride
input 11.1

Low level
Sensor
10.0

Fig.8 Fluid Tank Filing problem — use online monitoring
and watch table to complete the accompanying table

Over-ride | Low level High level Output
11.1 10.0 11.0 Q0.0
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Lab07 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

PLC Timers and their usage

PLC Timer is a block used to create delays for turning on inputs, turning off inputs, or simply run an appliance for a
prescribed amount of time. In SIEMENS PLCs, three types of timer instructions are present:

1) On delay timer
2) Off delay timer
3) Pulse on timer

Before explaining these timer types, we discuss two timer connections that are present on each type of timer. These
connections are PT (Preset Time) and ET (Elapsed Time). Both connections require a variable and value to be
assigned before the timer could be used. These two connections are described in detail here.

a) PT (Preset Time): Pre- programmed time of operation. It is given as a constant of data type ‘Time’ in hours,
minutes and seconds. It’s value gives the timer a reference/threshold value of time.

b) ET(Elapsed Time): Elapsed Time is a variable that is initially zero but starts to increase in a linear fashion
once the timer input is activated. Once the ET value equals PT, the timer stops its working and the output is
changed.

Syntax for writing PT is elaborated through these examples:

PT value of 5000 milli-seconds: T#5000ms

PT value of 1 minute: T#1m

PT value of 2 seconds: T#2s

PT value of 1 hour: T#1h

Now, we shall quickly understand the operation of the three types of timers.
On Delay Timer

An On Delay Timer (ODT) in a PLC works by introducing a time delay between the occurrence of an input condition
and the activation of an output device or action. When the input condition is met, the ODT starts counting down from
its preset time, which is typically specified in milliseconds, seconds, or minutes. During the delay period, the ODT's
output remains off or inactive, regardless of the input condition. Once the preset time has elapsed, the ODT's output is
activated, allowing the connected output device or action to be triggered.

It is important to note that the ODT's output will stay active as long as the input condition is present. Once the input
condition is no longer met, the ODT's output will deactivate, and the timer will reset to its initial state, ready to start a
new delay cycle when the input condition occurs again.

IEC_Timer_1 IN
TOM ET, —l |—| —
Time T
— 1N () = /

Fig. 9 On Delay Timer instruction in TIA Portal
Fig.10 Timing diagram relating IN, ET and Q. Note that PT
is a fixed value

Off Delay Timer

Lab07 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

An Off Delay Timer (ODT) in a PLC functions by introducing a time delay between the deactivation of an input
condition and the deactivation of an output device or action. When the input condition is deactivated, the ODT starts
counting down from its preset time, which is typically specified in milliseconds, seconds, or minutes. During the delay
period, the ODT's output remains active, even if the input condition is no longer present. This ensures that the output
device or action continues to operate for the specified duration. Once the preset time has elapsed, the ODT's output
deactivates, ceasing the operation of the connected output device or action.

It is important to note that if the input condition is reactivated during the delay period, the ODT's countdown will
reset, effectively extending the operation of the output device until the input condition remains inactive for the entire
preset time.

[EC_Timer_2 N4

S
TI:IF ET 4

_Is e oL JJJ
BT ET A= L

Fig.12 Timing diagram relating IN, ET and Q. Note that
Fig. 11 Off Delay Timer instruction in TIA Portal PT is a fixed value

Pulse Timer

A Pulse Timer in a PLC operates by generating a fixed-duration pulse or signal upon the occurrence of an input
condition. When the input condition is met, the Pulse Timer immediately starts its countdown from the preset time,
which is typically specified in milliseconds or seconds. During the countdown, the Pulse Timer activates its output,
producing a pulse signal with a fixed duration. Once the preset time elapses, the Pulse Timer deactivates its output,
ending the pulse signal.

It's important to note that the Pulse Timer does not reset automatically. To generate subsequent pulses, the input
condition needs to be deactivated and reactivated, triggering the Pulse Timer to start a new countdown and generate
another pulse upon completion.

IEC_Timer_0 N
== I N | N R

Time / / ‘ / ‘

—Ir"-l I:I— Q4
FT ET PT_|

Fig.14 Timing diagram relating IN, ET and Q. Note that
Fig. 13 Off Delay Timer instruction in TIA Portal PT is a fixed value

PLC Counters and their usage

Counters are sequential logic elements which can increase/decrease a variable value w.r.t. the change in input. A PLC
counter is a component that tracks the occurrence of a specific input condition or event. It operates by configuring its
parameters, including the counting mode (up or down), initial value, and storage address for the current count value.

The counter incrementally or decrementally changes its value based on the configured counting mode when the input

Lab07 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

condition is met. The current count value is stored for further processing or display, and the counter's output can be
used to trigger actions or events at specific count values. Additionally, counters often have a reset functionality to
return the count value to its initial state. By utilizing counters, PLCs can accurately monitor and control events, cycles,
or processes in industrial applications, enabling precise automation.

In SIEMENS TIA Portal, we have three types of counters:

1) Up Counter
2) Down Counter
3) Up-Down Counter

Up Counter

An up counter in a PLC operates by incrementing its count value each time a specified input condition or event occurs.
Upon meeting the input condition, the up counter increases its count value by one, progressing towards the desired
count target. The up counter's count value is typically stored in a designated memory address for further processing or
display purposes. The counting operation of an up counter is continuous, and it keeps increasing the count value as
long as the input condition is met.

Up counters are commonly used to track the number of cycles, events, or objects in industrial processes, enabling
accurate monitoring and control of operations.

"Counter name" cu 11 1 1 1
. S S S S
Int : —

— U o ov o]

- F W Q

PV

Fig.16 Timing diagram relating CU(Count Up),R(Reset)
CV(Count Value) and Q(Output). Note that PV (Preset

Fig. 15 Up Counter instruction in TIA Portal Value) is 3 here.

Down Counter

A down counter in a PLC operates by decrementing its count value each time a specified input condition or event
occurs. When the input condition is met, the down counter reduces its count value by one, moving towards the desired
count target. The count value of the down counter is typically stored in a desighated memory address for further
processing or display. The counting operation of a down counter continues until the count value reaches zero or a
specified stopping point.

Down counters are commonly used in applications such as countdown timers, where they track the remaining time or
number of cycles until a specific event or action occurs, enabling precise timing and control in industrial processes.

"Counter name"
. | co — LM _T1__T1T1
CTD w LI 1 | L
int L,
2} —1 2
— D 0 oy 0| =t .
= LL o . H ‘
Py R e |

Fig. 17 Down Counter instruction in TIA Portal

Lab07 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Fig.18 Timing diagram relating CD(Count
Down),L(Load) CV(Count Value) and Q(Output). Note
that CV (Count Value) is 3 here.

Up-Down Counter

An up-down counter in a PLC combines the functionality of both an up counter and a down counter, allowing it to
increment or decrement its count value based on specified input conditions or events. The up-down counter can be
configured to increase its count value when one input condition is met and decrease the count value when another input
condition is met. The count value of the up-down counter is typically stored in a designated memory address and can be
used for further processing or display purposes. The up-down counter's counting operation is bidirectional, allowing it
to track both positive and negative changes in the count value.

Up-down counters are commonly used in applications where the count value needs to be adjusted in both directions,
such as keeping track of the net flow of items in a manufacturing process or controlling position movements in automated
systems.

"Counter name" oo LT TLJ1L 1 [
CTUD . iy :
[ol . R S N N n
— L QL — A q i
— D QD — Lono s -
AL e BE 4]
—FR T L o]
— LD ov Ll1_'_l_‘ —
P U I LI I
Fig. 19 Up-Down Counter instruction in TIA Portal aw | [

Fig.20 Timing diagram relating CU(Cunt Up),
CD(Count Down), R(Reset), L(Load), CV(Count
Value), QU(Up Output) and QD (Dow Output).

Exercise 2: In TIA Portal open a new project and connect all three timers and all three counters in separate
networks.

Connect all timers with separate input switches and also attach separate outputs to them. Don’t forget to add Preset
Time to each of them and then observe their operation.

Connect all counters with input switches on their CU, CD, L, and R inputs. Timer outputs Q, QU and QD should be
connected with outputs. Don’t forget to assign PV(Preset Value) and attach a Memory Word (%MW) variable to their
respective CV outputs.

NOTE: All MW variables must be separate and must not overlap in the Work Memory
Exercise 3: Conveyor-Belt Tablet Filling example part-1: Detecting Bottles and Counting Tablets, separately

Consider the following conveyor system with a bottle proximity sensor and a motor that runs the conveyor. Design a
Ladder program such that motor runs until a bottle comes in front of bottle detector. As soon as the bottle is detected,
conveyor stops and after a delay of 2 seconds it starts running again.

Lab07 o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Bottle Detector 10.0

Motor Q0.0

Fig.21 Set-up and 1/0 connections for Conveyor-Belt Tablet Filling example part-1

Daw your Ladder network here:

Now, separately consider a tablet dispenser filled with tablets. The dispenser is placed just over the bottle that has
been stopped by the bottle detector. Create a Ladder network that opens the tablet dispenser valve, tablet sensor counts
10 tablets before closing the valve again.

Tablet Se%rll-o Tablet Dispenser Q1.0

Fig.22 Tablet counting for Conveyor-Belt Tablet Filling example part-1

Draw your Ladder network here, for the tablet counting part.

Task 1: Conveyor-Belt Tablet Filling example part-2: Detecting Bottles and Counting Tablets

In this task we need to combine both tablet filling and bottle detection operations. The sequence goes like this: The
conveyor runs until the bottle detector detects a bottle in front of it. At this point conveyor stops. After a delay of 1
second, the tablet dispenser valve opens to fill the bottle. The valve is closed only after counting 10 tablets. At this point
a delay of 1 s takes place and the conveyor starts running again. The cycle repeats afterwards.

Lab07

o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering
Tablet Seqnsor 11.0
\ ablet Dispenser Q1.0
— ®

Bottle Detector 10.0

Motor Q0.0
Fig.23 Complete layout for Conveyor-Belt Tablet Filling example part-2

Task 2: To start asynchronous wound motors, resistors are connected in the rotor circuit to avoid a high inrush current.
After pushing the start button S1 (connected to %10.3), the main relay (K1) is closed. Then relays K2 (connected to
%0Q0.0), K3 (%Q0.1) and K4 (%Q0.2) are closed, each after a time delay of 5 seconds. Write the program to start the
motor M3 in this sequence. Note that M3 would not e connected directly to the PLC.

L
2

i mp)) .
-\ \\ BFEWC}W
K1 :, ://_'_’_xy y — —
M R Re R1

S-

Fig.24 Asynchronous wound motor startup using time delayed relays

Course Code: EE-374
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Feedback Control Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to | Able to recognise | Able to | Able to
and Configuration: unable to | recognise initialisation but | recognise recognise
Set up and recognise | recognise initialisation but | configuration s | initialisation and | initialisation and
software initialisation | initialisation could not | erroneous configuration configuration
and configuration steps | and configure with minimal | with complete

configuration errors success
[10% o
Equipment Completely Ability to identify Ability to
Identification and | unable to equipment but identify
Handling: identify makes mistakes in equipment and
Sensory skill to identify | equipment recognising recognises all
equipment and its | and components, components,
components along with | components — demonstrates - practices careful
adherence to safe | and no regard decent and safe
handling to safe equipment handling
handling handling capacity

15% g
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to successfully
between computer and | connection _ establish _ establishes
hardware kit and | verification software software
establish connectivity connection connection
with software verification verification
[15% o
Following step-by-step | Inability to | Able to | Able to recognise | Able to | Able to

procedure to complete
lab work:

Observe, imitate and
operate hardware in

conjunction with
software to complete
the provided sequence
of steps

[15%4

recognise and
perform given
lab
procedures

recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

recognise given
lab procedures

and perform
them by
following
prescribed

order of steps,
with occasional
mistakes

recognise given
lab procedures

and perform
them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct Correct selection | Correct Correct
Controller for given | selection and | selection of | and use of | selection and | selection and
Control System | use of | programming programming use of | use of
Problem: programming | constructs and | constructs and | programming programming
Imitate and practice | constructs instructions but | instructions with | constructs and | constructs and
given Ladder | and their use is | many instructions instructions with
instructions for | instructions incorrect syntax/logical with little to no | no syntax/logical
implementing specific errors syntax/logical errors

control strategy and
store required variables
15%

o

errors

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and | understand understanding and understanding command over
Usage: and use | of software | understanding of | of software | software menu
Ability to operate | software menu software menu | menu usage with
software environment | menu operation, operation, makes | operation, occasional use
under supervision, makes many | lesser mistakes makes no major | of advance
using menus, shortcuts, mistake mistakes menu options
instructions etc.

10% o

Detecting and | Unable to | Able to find | Able to find error | Able to find | Able to find
Removing check and | error messages | messages in | error messages | error messages
Errors/Exceptions in | detect error | in software but | software and | in software and | in software and
Hardware and | messages in | no sense of | recognise them | recognise them | recognise them
Software: software and | hardware error | on hardware. Still | on hardware. | on hardware.
Detect hardware identification unable to | Moderately able | Reasonably able
Errors/Exceptions and understand the | in in

manipulate, under error type and | understanding understanding

supervision, to rectify
the Ladder program

[10%

o

possible causes

error type and
possible causes

error type and
possible causes

Visualisation,
Comparison
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

[10%

and

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

o

Ability to
understand and
utilise
visualisation

and plotting
instructions
with errors.
Unable to
compute

standard indices

Ability to
understand and
utilise
visualisation and
plotting

instructions with
occasional errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Lab08 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 08

Objective:
Analog 1/0O interfacing and manipulation in PLCs, their application in sensing

transducer outputs and transmitting signals to actuators.

Analog 1/0O present on the S71200 PLC Trainer

The Siemens S7-1200 PLC Trainer is a compact programmable logic controller (PLC) commonly used for industrial
automation and control applications. The S7-1200 series offers various models, and the availability of analog
input/output (1/0) modules may vary depending on the specific model and configuration.

Typically, the S7-1200 series PLC trainers have analog 1/O capabilities through dedicated analog input and output
modules. These modules can be added to the PLC to expand its functionality and support analog signals.

Here are some common analog 1/0 modules that can be used with the S7-1200 series:

e SM 1231 Al: This module provides analog input channels for measuring voltage and current signals. It
supports a range of voltage and current inputs, such as 0-10V and 4-20mA.

e SM 1232 AO: This module offers analog output channels for generating analog signals. It can provide voltage
or current outputs, depending on the configuration.

e SM 1234 AI/AQ: This module combines both analog input and output channels. It allows you to measure
analog signals and generate analog signals simultaneously.

These modules can be connected to the S7-1200 PLC using the onboard expansion port. In our trainer, we have the
SM 1234 Al/AO module that comprises of 4 analog inputs (13-bit ADC, each) and 2 analog outputs (14-bit DAC,
each).

General information

Product type designation SM 1234, Al 4x13 bit/AQ 2x14 bit
Supply voltage
Rated value (DC) 24V
Input current
Current consumption, typ. 60 mA
from backplane bus 5 V DC, typ. 80 mA.
Power loss
Power loss, fyp. 2W
Analog inputs
MNumber of analog inputs 4. Current or voliage differential inputs
permissible input voltage for voltage input {destruction limit), max. 3BV
permissible input current for current input (destruction limit), max. 40 mA.
Cycle time {all channels) max. 625 ps
Input ranges
» Voltage Yes; 10V, £5V, 22 5V
s Current Yes; 4 to 20 mA, 0 to 20 mA
» Thermocouple Mo
» Resistance thermometer No
 Resistance No

Input ranges (rated values), voltages

e-10Vio 10V Yes
— Input resistance (-10 V to =10 V) =4 MOhm
«-25Vio+25V Yes
— Input resistance (-2.5 V1o +2.5 V) =4 MOhm
s-5Vio+5V Yes
— Input resistance (-5 Vto +5 V) =4 MOhm
Input ranges (rated values), currents
e 010 20 mA Yes
— Input resistance (0 to 20 mA) 2800
e 4mAto 20 mA Yes
Analog outputs
Mumber of analog outputs 2: Current or voltage
Qutput ranges, voltage
o -10Vio 10V Yes

QOutput ranges, current
e Dio 20 mA Yes

Fig.1 Specifications of SM 1234 Al/AO. Note that inputs and outputs can be configured for current or voltage

Lab08 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

In this lab we shall use the potentiometer available on the trainer, which is connected to analog channel 0 (AlO) of SM
1234 to read analog voltage. Later, we shall use the digital voltmeter available on the trainer, which is connected to
analog output channel 0 (AQO) of SM 1234 to observe voltages generated by the analog output.

Fig.2 Analog input from potentiometer connected to Al0 of SM1234, whereas, the output AQO goes to voltmeter
Types and Ranges of Analogue Inputs available on PLCs

PLCs (Programmable Logic Controllers) support various types and ranges of analog inputs, depending on the specific
model and manufacturer. Here are some common types of analog inputs found in PLCs:

1. Voltage Inputs (analog voltage): PLCs often include analog input channels that can measure voltage signals.
The voltage ranges supported can vary, but common ranges include 0-10V, -10V to +10V, and 0-5V.

2. Current Inputs (analog current): Some PLCs provide analog input channels capable of measuring current
signals. The current ranges supported may include 4-20mA, 0-20mA, or other ranges depending on the PLC
model.

3. Resistance Inputs: PLCs can have analog inputs designed to measure resistance. These inputs are often used
for applications such as temperature measurement using resistance temperature detectors (RTDs) or
thermistors. The input range for resistance inputs can vary depending on the specific PLC and the type of
resistance sensor being used.

4. Frequency Inputs: Certain PLCs have analog inputs capable of measuring frequency signals. These inputs can
be used for applications such as reading pulses from flow meters or other devices that provide frequency
output. The supported frequency range is typically specified by the manufacturer.

5. Thermocouple Inputs: Some PLCs offer analog inputs specifically designed for thermocouples.
Thermocouples are temperature sensors that generate small voltage signals proportional to the temperature
being measured. PLCs with thermocouple inputs typically support common thermocouple types such as J, K,
T, etc.

It's important to note that the supported ranges and types of analog inputs can vary significantly depending on the
specific PLC model and manufacturer. For example, in SIEMENS S71200 CPU 1214C DC/DC/DC, analogue inputs
can be configured as either voltage or current. On voltage setting, its range can be programmed for 10 volt to -10 volt
operation, 0 to 10 volt operation or 0 to 5 volt operation. On the other hand, if current setting is used, the analog input
can be configured to 0 to 20 mA or 4 to 20 mA setting.

In this lab we shall not discuss frequency inputs but the CPU 1214C does have high speed counter inputs which are
used for frequency measurement.

Types and Ranges of Analogue Outputs available on PLCs

PLCs (Programmable Logic Controllers) support various types and ranges of analog outputs, depending on the specific
model and manufacturer. Here are some common types of analog outputs found in PLCs:

Lab08 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

1. Voltage Outputs (analog voltage): PLCs often include analog output channels that can generate voltage
signals. The voltage ranges supported can vary, but common ranges include 0-10V, -10V to +10V, and 0-5V.

2. Current Outputs (analog current): Some PLCs provide analog output channels capable of generating current
signals. The current ranges supported may include 4-20mA, 0-20mA, or other ranges depending on the PLC
model.

3. Pulse Width Modulation (PWM) Outputs: Though they are not categorized strictly as analogue, certain PLCs
offer analog outputs that utilize pulse width modulation. PWM outputs generate square wave signals with
varying duty cycles, allowing control over the average voltage or current. PWM outputs are commonly used
for controlling motors, valves, or other devices.

4. Resistance Outputs: PLCs can have analog outputs designed to control resistance. These outputs are often
used for applications such as controlling variable resistors, heaters, or other devices that require resistance
control.

5. Frequency Outputs: Some PLCs provide analog outputs capable of generating frequency signals. These
outputs can be used for applications such as controlling variable frequency drives (VFDs) or generating pulse
signals for specific devices.

In SIEMENS S71200 CPU 1214C DC/DC/DC, analogue outputs can be configured as either voltage or current. On
voltage setting, its range can be programmed for 10 to -10 volt operation, 0 to 10 volt operation or 0 to 5 volt operation.
On the other hand, if current setting is used, the analog input can be configured to 0 to 20 mA or 4 to 20 mA setting.
PWM output is also present in CPU1214C which won’t be covered in this lab, however, it must be clarified that it is not
strictly a digital output.

Exercise 1: Interfacing Potentiometer on the PLC Trainer with Analogue Input present on the AI/AO module

As already described in Fig. 2, the potentiometer on the trainer is connected to SM 1234 module. Let’s configure it in
TIA Portal and read the analog voltage value through the PLC.

Fig.3 Create a new project

Fig.4 Add New Device from the Project Tree and
select SIEMENS PLC and then the CPU1214C

Lab08

ems - ADCFCS

NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Totally Integrated Automation
PORTAL

4k M P = nEE X
‘
..... & Hovo
* [ér o = E R
-
: 5
- v
DM o Popeities A Ints | g O ~

& etk vier

Fig.5 From the Catalog pane on the right, select
signal board (AQO) and analogue module (SM1234)
and drag them to the PLC rack

oG] W e g |

SaET] RIS

Fig.6 Double click on the CPU. In the Device
Overview section (bottom) go to Analog Inputs and
select Channel 0. This is where the potentiometer is
connected. Don’t change any settings but do explore
all the features. Note that the address for Channel 0
is %1W96

Totally bateqsated Awtomation
PORTAL

»
- Favoritss

A ar o @ — R

N [P

v Black title:

_|» Mot
b Network 2

H
3
H
-

Vew Inist Osive Options Took Windew Help

Fig.7 Now, go to Main_OB1 inside CPU_1 (from
Project Tree). Here start your Ladder network

Tatally Integrated Automation
PORTAL

= Favites

A e e w2

L |

Fig. 8 For reading ADC, we shall use the NORMXx
and SCALEX instructions in this order.

w Network 1:

Comment

]It
B
&
a

NORM_X SCALE_X
Int + Real Real to Real
EN 777 ENO EN EMO ——e
| s MO0 10,0 — MIN MO
5int OUT|- "Tag_2" %MDO ouT - "Tag_3"
¢ USint “Tag_2" — VALUE
it 10.0 - MAX

Fig.9 NORMx needs to be configured in the way
shown here. Note that you need to set the input as Int
first then provide all the necessary arguments.
Notice W96, the place where analogue channel 0
placed ADC data.

Lab08

NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

w Netwo

rk1:

Comment

NORM_X

Int to Real

EM
MIN

WALUE
MAX

END

out

MO0
"Tag_2"

%MDO
"Tag_2"

EM
MIN Int

SCALE X |

Real to Reaw
77

Totally Integrated Astomation

Fig. 10 SCALEX needs to be configured in the way
shown here. Note that you need to set the input as
Real first then provide all the necessary arguments.
Notice %MD4, the place where we are placing the
floating point value of voltage.

X &0 i x FORTAL
[l v
Deui -~ Favarites El
v T - 2[R

2 |
Y I

 Block itle:

EFEEL G s_
wEa

Totally Integrated Automation

PORTAL

»
= Favorites.

A Ao @ e

ocls Wndew balp

W aWa

o Gooiine fy 1 [F

Fig. 11 Now download the program to the PLC

Fig.12 Click on the Spectacle like icon to monitor
the values online.

EAICE]
o - @ - 2

- Black title:

z|w Heowarkr:

SEEa:HE .2 [

Totlly ntageated Automatian
L PORTAL
[T} O
¥
DIT——

<[+ Cat sarchy
o 5
=

g e T4 Drearesies T

' Froperies

Fig. 13 Vary the potentiometer and observe the value
of %MD4

Observations:

Exercise 2: Interfacing the LCD Voltmeter on PLC trainer with the Analogue Output present on AlI/AO

module

Lab08

NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

= Detais virw

Fig.14 Keeping the same project intact, we shall now use
the DAC on AQO (%Q0.0 of SM1234) and generate an
analog voltage that is read by the LCD voltmeter on the
trainer. To see the analog output channel 0, double click
on SM1234 in the Devices menu. The details are
available at the bottom in the General info section, under
Analog Channel>Channel 0. The address of this channel
is %6QW96

Fig.15 Now, add a new network in the Ladder program,
inside Main_OB1. We shall use the NORMXx and
SCALEX instructions, in this order, again for this
exercise.

w Network 2:

Comment

SCALE_X
Real to Int

%MD 24

"Tag_5"

27648
%“MD24
“Tag_5"

27648

EN END —t
MIN ®OWIE
OUT - "Tag_8"

WALUE
MAX

Fig. 16 NORMXx needs to be configured in the way shown
here. Note that you need to set the input as Real first then
provide all the necessary arguments.

w Network 2:

Comment

MORM_X
Real to Real

SCALE X
Real to In1

EN ENOD
10,0 = MIN WMD24
MDA OUT - "Tag 5"
"Tag_3" ~ VALUE
10.0 — MAX

-27648
“%MD24
"Tag_5"

27648

EN 777
MIN .
Dint .
Slnt
WALUE USInt
Uint

IMAX__ upint
Real

Fig.17 SCALEX needs to be configured in the way shown
here. Note that you need to set the output as Int first then
provide all the necessary arguments. Notice %QW96, the
place where we are placing the integer value of voltage.

Fig.18 Download the program to the PLC

Lab08 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Fig.19 Turn on Real-time Monitoring and see the
variables (%IW96 — input from ADC- and %QW96 —
output to DAC). Also observe he trainer for the changes.

Observations

Task: LED bar-graph for representing analogue input value as a percentage

Keeping the above PLC program intact, add more networks/rungs to achieve the following objective. Create an 8 LED
bar-graph using the digital outputs DQO to DQ7 (%Q0.0 to %Q0.7) such that when the analogue input from
potentiometer varies, the LEDs on the trainer start lighting up linearly from output 0.0 to 0.7. The exact voltage ranges
and the LEDs that need to turn on are presented in the table below.

Analogue Voltage Value (as read on LCD voltmeter) DQO to DQ7 Status

Less than or equal to 0 VV ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF

00 (01 |02 |03 |04 |05 |06 |07

OVtolsVv ON | ON | OFF | OFF | OFF | OFF | OFF | OFF

00 (01 (02 |03 |04 |05 |06 |07

15Vto3V ON [ON |ON | OFF | OFF | OFF | OFF | OFF

00 (01 (02 (03 |04 |05 |06 |07

3Vtod5V ON [ON [ON | ON | OFF | OFF | OFF | OFF

00 (01 [02 [03 |04 |05 |06 |07

45Vto6V ON [ON [ON [ON | ON | OFF | OFF | OFF

00 (01 (02 [03 |04 |05 |06 |07

6Vto75V ON [ON |[ON |[ON |ON | ON | OFF | OFF

00 |01 |02 |03 |04 |05 |06 |07

75Vto9V ON [ON |[ON |ON |ON |ON |ON | OFF

00 |01 |02 |03 |04 |05 |06 |07

9V to 10 V or greater ON [ON |[ON |ON |[ON |[ON |ON |ON

00 |01 |02 |03 |04 |05 |06 |07

Attach your Ladder program along with a picture of the output on trainer showing voltage on LCD and LEDs.

Course Code: EE-374
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Feedback Control Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to | Able to recognise | Able to | Able to
and Configuration: unable to | recognise initialisation but | recognise recognise
Set up and recognise | recognise initialisation but | configuration s | initialisation and | initialisation and
software initialisation | initialisation could not | erroneous configuration configuration
and configuration steps | and configure with minimal | with complete

configuration errors success
[10% o
Equipment Completely Ability to identify Ability to
Identification and | unable to equipment but identify
Handling: identify makes mistakes in equipment and
Sensory skill to identify | equipment recognising recognises all
equipment and its | and components, components,
components along with | components — demonstrates - practices careful
adherence to safe | and no regard decent and safe
handling to safe equipment handling
handling handling capacity

15% g
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to successfully
between computer and | connection _ establish _ establishes
hardware kit and | verification software software
establish connectivity connection connection
with software verification verification
[15% o
Following step-by-step | Inability to | Able to | Able to recognise | Able to | Able to

procedure to complete
lab work:

Observe, imitate and
operate hardware in

conjunction with
software to complete
the provided sequence
of steps

[15%4

recognise and
perform given
lab
procedures

recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

recognise given
lab procedures

and perform
them by
following
prescribed

order of steps,
with occasional
mistakes

recognise given
lab procedures

and perform
them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct Correct selection | Correct Correct
Controller for given | selection and | selection of | and use of | selection and | selection and
Control System | use of | programming programming use of | use of
Problem: programming | constructs and | constructs and | programming programming
Imitate and practice | constructs instructions but | instructions with | constructs and | constructs and
given Ladder | and their use is | many instructions instructions with
instructions for | instructions incorrect syntax/logical with little to no | no syntax/logical
implementing specific errors syntax/logical errors

control strategy and
store required variables
15%

o

errors

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and | understand understanding and understanding command over
Usage: and use | of software | understanding of | of software | software menu
Ability to operate | software menu software menu | menu usage with
software environment | menu operation, operation, makes | operation, occasional use
under supervision, makes many | lesser mistakes makes no major | of advance
using menus, shortcuts, mistake mistakes menu options
instructions etc.

10% o

Detecting and | Unable to | Able to find | Able to find error | Able to find | Able to find
Removing check and | error messages | messages in | error messages | error messages
Errors/Exceptions in | detect error | in software but | software and | in software and | in software and
Hardware and | messages in | no sense of | recognise them | recognise them | recognise them
Software: software and | hardware error | on hardware. Still | on hardware. | on hardware.
Detect hardware identification unable to | Moderately able | Reasonably able
Errors/Exceptions and understand the | in in

manipulate, under error type and | understanding understanding

supervision, to rectify
the Ladder program

[10%

o

possible causes

error type and
possible causes

error type and
possible causes

Visualisation,
Comparison
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

[10%

and

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

o

Ability to
understand and
utilise
visualisation

and plotting
instructions
with errors.
Unable to
compute

standard indices

Ability to
understand and
utilise
visualisation and
plotting

instructions with
occasional errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Lab09 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 09

Objective:

Introduction to HMI (Human Machine Interface), its programming via PLC and communication set-up between PLC
and HMI for measurement viasualisation

Concept and use of Human Machine Interface (HMI) in Industrial Automation

HMI, or Human-Machine Interface, is a critical component of industrial automation systems. It serves as a graphical
user interface that allows operators to interact with and monitor industrial processes and machinery. HMIs provide
visualization and monitoring capabilities, allowing operators to view real-time data, track trends, and monitor alarms.
They also enable control and operation of industrial processes, allowing operators to adjust setpoints, start/stop
processes, and activate alarms. HMIs incorporate features for alarm management, data logging, and analysis, allowing
operators to respond promptly to critical situations and perform troubleshooting and optimization tasks.

Fig.1 HMI installed in an industrial setup. It allows for real-time monitoring and configuration of industrial process

HMIs are configured and programmed using software tools, enabling customization and integration with various
devices within the automation system. They support connectivity with PLCs, DCS, motor drives, sensors, and other
devices through industrial protocols. Some HMIs also offer remote access and monitoring capabilities, allowing
authorized personnel to access and control the interface from remote locations using computers or mobile devices.
HMIs simplify complex systems, enhance operator efficiency, and improve overall productivity and safety in
industrial automation.

SIEMENS HMI Introduction — the KTP600

The Siemens KTP600 HMI (Human-Machine Interface) is a compact operator panel designed for use in industrial
automation applications. It serves as a user interface for interacting with a Siemens SIMATIC S7-1200 or S7-1500
PLC or other compatible Siemens devices. Here is a brief description of the Siemens KTP600 HMI:

1. Display: The KTP60O0 features a TFT (Thin-Film Transistor) color display with a size of 5.7 inches. It
provides clear and vibrant visualization of process data, alarms, and control elements.

2. Touchscreen: The HMI utilizes a resistive touchscreen that allows operators to interact with the displayed
information. The touchscreen supports single-touch inputs and offers reliable and precise touch response.

3. Function Keys: The KTP600 includes six tactile function keys positioned below the display. These keys can
be programmed to perform specific functions or to navigate through the HMI screens, enabling quick and easy
access to commonly used features.

4. Communication Interfaces: The HMI is equipped with various communication interfaces to establish
connections with the PLC or other devices. It supports industrial protocols such as Ethernet, MPI/Profibus DP,
and USB for seamless integration into the automation system.

Lab09 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

5. HMI Software: The KTP600 uses the Siemens WinCC Basic software for configuration and runtime
functionality. This software allows users to create intuitive and visually appealing HMI screens, define alarms,
and set up data logging capabilities.

6. IP Rating: The KTP60O is designed to withstand industrial environments and has an IP65 rating, which means
it is dust-tight and protected against water jets, making it suitable for installation in harsh conditions.

7. Mounting Options: The KTP600 can be panel-mounted or mounted on a support arm, providing flexibility for
installation in different control cabinet designs.

Fig.2 SIEMENS KTP600 HMI

The Siemens KTP600 HMI offers a user-friendly interface that enables operators to monitor and control industrial
processes efficiently. It provides essential features and connectivity options for seamless integration into the Siemens
automation ecosystem.

HMI Connectivity and Interfacing

HMI KTP600 has ethernet connectivity and can be interfaced with the PLC either directly with the CPU or through an
internet switch (communication module CSM 1277). The actual connection is in our trainer system is depicted in Fig.
3, where a star network is formed.

SIMATIC S7-1200
with CSM 1277

Industrial Ethernet l

Field PG

Fig.3: Star topology connecting the FIELD PG laptop to the ethernet switch (CSM 1277) that extends connection to
CPU and SIMATIC HMI (LCD) panel

This connection requires both the PLC and the HMI to be under the same subnet address. This address can either be
set automatically using the DHCP protocol or manually through the HMI configuration interface. In the following
steps, we describe how to set the IP address and subnet manually on the HMI.

Lab09
NED University of Engineering and Technology

1 Panel

evi contains Free Softuare.
gperties in the Contro

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.4 Turn the PLC trainer OFF by switching the power
switch and turn it back on again. The shown screen shall
greet you when it starts.

Loacler V01,06.00,01_01.03

Fig. 5: A menu shall appear with three options: Transfer,
Start and Control Panel. This is going to disappear after 5
seconds so quickly press the Control Panel option.

Fig. 6 In the Control Panel, select Profinet. This is the
name for industrial ethernet connection that is used across
PLC models and manufacturers.

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Fig.7 Now a screen with IP address and subnet mask shall
appear. You can change these by touching the respective
field and an on-screen keypad shall allow you o make the
changes.

Fig. 8 Finally set the IP as 192.168.0.3 and subnet mask
as 255.255.255.0. Later, when we create the PLC project
in TIA portal we will make sure that the PLC’s subnet
mask is the same.

Exercise: Taking analogue input from potentiometer and displaying it on the HMI panel

In this task, we shall measure analogue voltage from the potentiometer present on the trainer, and then display it on
the HMI via a readout and a bar-graph. The steps needed to be taken to complete the project are presented here.

Fig.9 Create a new project and enter into Project View

Fig.10 Add New Device from the Project Tree and
select SIEMENS PLC > S71200 > CPU1214C
(DC/DC/DC)

Lab09

NED University of Engineering and Technology

Pojes Ede vew nsen
! % Hsenpons 2 X

= Detais view

yame.

4 Purtal view

e

Tk T

Tistat, @ © © [Sa

Feedback Control Systems (EE-374)
Department of Electrical Engineering

S] L] e

Fig.11 From the Catalog menu on the right, select the
appropriate Signal Board (AQO) and Signal Module
(SM1234) and drag them to the PLC rail

PORTAL

e

SO eI seApE

eig) ST

S

Fig.12 Now, again go to Add New Device, this time
selecting SIMATIC HMI and subsequently select
KTP600 PN

PORTAL

4 Portal i

sasign P ateress

Tistart. € o 6 [

& Hervork view

w2

»

L] S0 o0

S

Fig.13 Now set the IP address and subnet mask of the
HMI by selecting HMI_1 from the Project Tree and
then select Online and Diagnostics. Here, set the IP as
192.168.0.3 and subnet mask as 255.255.255.0

PORTAL

v

i | Serewe wee

S O L S

Fig.14 The PLCs IP address needs to be checked now.
Select CPU 1

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Totalty integrated Amemation
S PORTAL

& Heoorkvier O Device view

v

4 Properties |7 Info | g) Diagnostics | %)

Fig.15 Inside CPU_1, select Network and
Diagnostics. Here the subnet mask f the CPU needs to
be same as that of the HMI

Totally lategrated Automation

EME X FORTAL
B
e =
Ee9T R ar e - @ a o [E
£
4
=0
i £

o Popemes g Infs | g Disgnasties

ceneesl =] Generl

Fig.16 Now create a Ladder program that measures
voltage from on-board potentiometer. Here, you can
follow Exercise 1 of Lab 8

Fig.17 For reference, the Ladder program for this lab
is available here

w Network 1:
Comiment
HNORM_X SCALE %
Int to Real [Real to Real
END EW EMD —i
648 — MIN w020 10.0 - MIN wMO24
QuT = “Tag_2" TR L] OUT = “Tag_3"
VALLE Tag_2" - WALUE
7 — MAK 10.0 — MAX
|
S e L [——
- X x @ AP s Fooomne AR N] PORTAL
it | »
O Wl Wl slams | v Find and Replace 5
il taas & =
o new W
——— 5
e
vt
il
o
'3 Propetes [e [5) Disprertics 1
Gener e

= Orew

RN

Fig.18 As the output of analogue input is stored in
%MD24, we need to transfer it to PLC Tags. PLC
Tags is present under HMI_1>PLC_Tags.

P p——
EE X PORTAL
0
Deviees @ ltags 2 Hil o[P o Papocn v
= H
M tags u
,,,,, = @i
- — | 5
JJJJ £

7GR e c s (W

Fig.19 In PLC Tags, click on Add New. A menu will
appear beneath the PLC Tag column. From this
column, select the tag for %MD?24

Lab09
NED University of Engineering and Technology

Eic vee men ues Opies T wedew fob
3 Llseesjes 5 ¥ 10

4

- Totalty ntagrated Astsmation
X 3 2Ba s

Feedback Control Systems (EE-374)
Department of Electrical Engineering

PORTAL

@ Mg L HM s

e el a

Papce Bt Vew lmaen Gnine Optons N Tatally Integrated Automation

Fig.20 A few columns over to the right, click on the
Acquisitions column and select 500ms as the variable
acquisition time. Note that this is not the sampling
frequency. It is the update time of variable on the HMI
screen.

PORTAL

v Favurites
SR Py s -

=] @ crecsrsenss e tming s deves
NS
L@ wne

Tatally Integsated Automation

Gy Elmsmes B X 0w L x W RO@R S « WP A

T

S

T T

e e

Fig.21 The PLC program is ready and now can be
downloaded to the PLC. For this first go to CPU_1 in
Project Tree and then select Program
Blocks>Main_OBL1 and then click on the Download
button from the top menu.

PORTAL

- B Ardids St FairBallacs Qs um s L Fi [

g
d
£

Fig.22 This brings us to write program for the HMI,
which is written on the Root Screen. Select HMI_1 in
Project Tree and then choose HMI Screens>Root
Screen. A graphic window shall appear in the
programming pane.

|+ Basic stiects

S/ o@HA

' Popeities % lnfa | g Diagnastics | =)

7 VST I P LT

Fig.23 Basic graphical programming can be done by
dragging any one of the Objects from the right
instructions pane and dropping them on the screen.

Lab09
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Pojen Ein Vew iman Gnine Opuom ek wndmw Totally Integrated Autamation
3 3 Eseepies 5 %

v B2 Atdads Sp—: Bealelirae 82 o o hr P2

] S R e |

L overvee AT T LT TR (ST

Tetan. € © 6 [- s o pc]

Fig.24 We shall use 1/O Field to show our voltage on
screen. Once 1/O Field is placed on the HMI Screen,
its tag can be associated in the 1/0 Field General menu
below.

« &[54 A2 [
=] b abjacts

3
T SR W ey

Fig.25 This figure shows the tag being selected for the
1/0 Field

Tk Tewou

S L)

" Propenies g nfo | g Dlagnotic

Fig.26 In the same way as the 1/0 Field, select bar-
graph from the Toolbox and drag it to the HMI Screen.

R Y |

Fig.27 Select the same tag for the bar-graph and set its
range from -10 to 10

Lab09 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Fig.28 Now, download the HMI program to the HMI
by clicking on the Download button on the top menu.

| overvien

Tstart, € £ 6 [Sao

Fig. 29 HMI Program being downloaded to the PLC

Observation

Rotate the potentiometer and see the change it brings to
the HMI display. Report your observation:

Now, report what happens when the potentiometer
exceeds the +/-10 V range:

Feedback Control Systems (EE-374)

Lab09
Department of Electrical Engineering

NED University of Engineering and Technology
Task: Program the PLC to accept two digital inputs from %10.2 and %10.4 and one analogue input from %IW96
(%10.0 input of analogue module SM1234) and display them on the HMI via the following method.

When ON

Input Name Display Object When OFF
Circle filled with green colour | Circle filled with red colour

Digital Input %10.2 Circle

Digital Input %10.4 Circle Circle filled with green colour | Circle filled with red colour

Time-series graph

Analogue Input %10.0 | Circle

Submit screen capture of your Ladder program, PLC Root Screen design and picture of the actual output as observed
on the HMI Screen.

Course Code: EE-374
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Feedback Control Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to | Able to recognise | Able to | Able to
and Configuration: unable to | recognise initialisation but | recognise recognise
Set up and recognise | recognise initialisation but | configuration s | initialisation and | initialisation and
software initialisation | initialisation could not | erroneous configuration configuration
and configuration steps | and configure with minimal | with complete

configuration errors success
[10% o
Equipment Completely Ability to identify Ability to
Identification and | unable to equipment but identify
Handling: identify makes mistakes in equipment and
Sensory skill to identify | equipment recognising recognises all
equipment and its | and components, components,
components along with | components — demonstrates - practices careful
adherence to safe | and no regard decent and safe
handling to safe equipment handling
handling handling capacity

15% g
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to successfully
between computer and | connection _ establish _ establishes
hardware kit and | verification software software
establish connectivity connection connection
with software verification verification
[15% o
Following step-by-step | Inability to | Able to | Able to recognise | Able to | Able to

procedure to complete
lab work:

Observe, imitate and
operate hardware in

conjunction with
software to complete
the provided sequence
of steps

[15%4

recognise and
perform given
lab
procedures

recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

recognise given
lab procedures

and perform
them by
following
prescribed

order of steps,
with occasional
mistakes

recognise given
lab procedures

and perform
them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct Correct selection | Correct Correct
Controller for given | selection and | selection of | and use of | selection and | selection and
Control System | use of | programming programming use of | use of
Problem: programming | constructs and | constructs and | programming programming
Imitate and practice | constructs instructions but | instructions with | constructs and | constructs and
given Ladder | and their use is | many instructions instructions with
instructions for | instructions incorrect syntax/logical with little to no | no syntax/logical
implementing specific errors syntax/logical errors

control strategy and
store required variables
15%

o

errors

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and | understand understanding and understanding command over
Usage: and use | of software | understanding of | of software | software menu
Ability to operate | software menu software menu | menu usage with
software environment | menu operation, operation, makes | operation, occasional use
under supervision, makes many | lesser mistakes makes no major | of advance
using menus, shortcuts, mistake mistakes menu options
instructions etc.

10% o

Detecting and | Unable to | Able to find | Able to find error | Able to find | Able to find
Removing check and | error messages | messages in | error messages | error messages
Errors/Exceptions in | detect error | in software but | software and | in software and | in software and
Hardware and | messages in | no sense of | recognise them | recognise them | recognise them
Software: software and | hardware error | on hardware. Still | on hardware. | on hardware.
Detect hardware identification unable to | Moderately able | Reasonably able
Errors/Exceptions and understand the | in in

manipulate, under error type and | understanding understanding

supervision, to rectify
the Ladder program

[10%

o

possible causes

error type and
possible causes

error type and
possible causes

Visualisation,
Comparison
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

[10%

and

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

o

Ability to
understand and
utilise
visualisation

and plotting
instructions
with errors.
Unable to
compute

standard indices

Ability to
understand and
utilise
visualisation and
plotting

instructions with
occasional errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Lab10 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

LAB SESSION 10

Objective:
DC motor speed measurement and control via PLC utilising analogue 1/0, digital

1/0, PWM generator HMI and other PLC peripherals

Connecting DC Motor to PLC Digital Output

DC Motors are not connected directly with the digital outputs of a PLC in real-world settings. Power converter modules
are usually connected to the PLC output, which in turn drives DC Motor. However, for simple application where the
DC Motor does not require high drive current and inductive voltages are also constrained, we can connect DC Motor
with PLC digital output directly.

Two things must be verified before connecting DC Motor to a PLC digital output:

a) Current supplying limit of the PLC digital output
b) If speed of the Motor needs to be controlled, the digital output must have PWM(Pulse Width Modulation)
capability.

In our case, S71200 CPU 1214C has a current drive capacity of 0.5A on all its digital outputs. Moreover, two of the
CPU digital outputs - %Q0.0 and %Q0.1 — are also configurable as PWM Pulse Outputs.

Connecting Speed Transducer to PLC Digital Input

DC Motor in industries are coupled with shaft encoders to measure its speed and direction. This requires reading square
wave pulses by the PLC, counting them and then using formula to find the speed in RPM (Revolutions Per Minute). In
PLCs digital inputs generally don’t have high speed pulse counting capability. Some inputs can be configured as High
Speed Counters (HSCs). In S71200 CPU1214C, eight digital inputs - %10.0 to %I10.7 — can be configured as HSC.

Requirements for this lab

Students need to bring geared DC motor with 24V input voltage and drive current less than 0.5A. Along with it, a single
phase Pulse sensor is also needed with its encoder disc. Note that this type pf pulse sensor — single phase — can only
measure speed and can’t discern the direction of the motor.

The detailed list of components needed for this lab are:

1) Henkwell 12-24 V DC geared motor (max. 142 RPM)
2) Optical slot speed sensor based on LM393

3) DC motor speed encoder disc (20 slots)

4) 1N4002 diode

5) Connection wires

Connections

The DC motor can be connected to the CPU DQO (%Q0.0) which can be accessed by lifting the bottom flap. The two
motor wires must be connected between %Q0.0 and M terminals. Diode 1N4002 must be connected such that its anode
goes to %Q0.0 terminal and its cathode to M terminal.

The pulse sensor output wire (Pulse Out) should be connected to CPU digital input DI0 (%10.0). The other wire from
the sensor is connected to the M terminal. Note that DIO and M can be accessed by lowering down the top flap of the
CPU.

Exercise 1: Ladder program for measuring DC Motor speed via Pulse Transducer

After creating a new project, Add New Hardware and select CPU1214C. Now add the signal board to the CPU.

Lab10 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

me Opsans Taok indow Help S
3] [save proje & 5y X || T B @ | coonine o Goomine |y [IR 0] (L PORTAL
‘
Devices & Hetworkview [} Device view | w Catalog 5
= | mc > oo e = arch Hy ot |
=] i H
L7 P = 3
-
i De —

1214c DCDEDC]
ata

w Details view

SR] SHeLgl| S001 w0 Boee

Harme

' Proparties %3] Info | u| Diagnostics |

= | High speed counters (HSC)

High sp=ed countsrs (HSC)1 (HSC_1)

Ganeral

Enable

+# Enable this high speed counter for use |7 mformation

o &E A% o

Fig.1 Select CPU1214C from Add New Device menu and add the Signal Board AOO

Here, we must configure the HSC on digital input DI0. Double click on the CPU and in the Device Overview section
choose High Speed Counter (HSC)> High Speed Counter (HSC) 1. Enable HSC 1 by checking the Enable box. Note
the address of the counter variable for HSC 1 (It is %1D1000).

Project Edit View lnsert Onlne Options Taols Window Help e
4 3 Elswepojexs @ X 3= 02 X (G5 MR S eoonine Ho AR X PORTAL

Devices 2 Netvorkview [} Device view

" Properties %y Info] Diagnostics

I R L T

General
b General * | High speed counters (HSQ) =
= Detals view it e High spaed countars (HSC)1 (HSC_1)
— . General

Enable

 Enable this high speed counter for use

' Project information
Name: H5C_1

Comment

_| = intormation

4 Portal view

+d start L=t % ks and Se. cr0saft PomerP :uﬂl‘i. N =z

Fig.2 High Speed Counter 1, enabling and configuring it

Another configuration you need to do is set the HSC 1 function as Frequency.

Siemens - PVIM_FCS

Poject Edt Vew Inset Onine Optons Tools Window el
” o [Totally Integrated Automation

3 Hlseveprojer & X 2l 5 X G B M@ S coonine Foooine fp NP X H I PORTAL

4 »
Devices & Metworkview [Device view | Catalog 5
2 |dr nco - Search A
a1, rier §
Z] » _m communication madule -
571200 rack » o 5
» 7 Signalbaard H

»mo
» oo g
» @oioo o
»as :
» @ =
Lé » @A 5_
=
Tq Propeities %) Info 4 Diagnastics =
i =
ol directic v
= e _ | mfermation

@R D tem

Fig.3 Setting HSC 1 to measure Frequency

Labl0

NED University of Engineering and Technology

Now create the following Ladder network

in Main_OB1

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Project Edit View insen Onlne Options T
(4 3 Elsaveproject @ ¥ = = X | H ine o Go ofiine | iy [IR ¢ H (1]
LN P _| PLC_1 » Program blocks » Main
Devices
= | X BEaRP8:EE .3
N TSI T RS
wBlock title: 11w g
v Metwork 1
\ -
| | . .
TN BMeTRT

Totally Integrated Automation
PORTAL

- W WX 13
 Favorites 5]

I e = S T

Funeal

"
S | LG

General

o Properties %)

Info | | Diagnostics

Nome: Main

Canstant name; OB_lain
Type: OB
Number |

Eventclags; Frogram cycle

o &L M &

Fig.4 Using MOVE instruction to read HSC1 ID1000 and storing it in MD10

Exercise 2: Ladder program for changing DC Motor speed via analogue input

In the same project as above, first interface the analogue input and read its value using the following network. This will

be the second network of this project.

w Network 1:
Comment
NORM_X SCALE_X
In = Real Real to Real
EM 777 ENO EN ENO —1
97 Int 10.0
27648 MI wMD0 0.0 - MIN -
%IWI6 sint OUT§ "Tag_2" %wMDO ouT - "Tag_3"
“Tag_1" -{¥# USInt "Tag_2" - VALUE
_— Uint P
27648 -{M! pint 10.0 = MAX
Real
w Network 1:
Cornment
NORM_X SCALEX |
Int to Real Real to Rea -
EN ENO EN LT —
a7 100 Int
27648 — MIN wMO0 A00MIN M gmpg
WG OuT - "Tag 2" wMD0 sint - "Tag_3"
"Tag_1" — WALUE "Tag_2" {VALUE USInt
a7 - Ulnt
27648 - MAX 10.0 {MAX |inint

Fig.5 Using NORM and SCALE to measure and store values from analogue channel O

Now, configure the PWM output on digital output DQO by double clicking on the PLC in the Devices and Networks

menu.

Lab10 o o Feedback Control Systems (EE-374)
NED University of Engineering and Technology Department of Electrical Engineering

Siemens - PWM_FCS

Project Edit View Insertt Online Options Teols Windew el

ol o vew lneeR - GnineGptens fesls Windew Sl Totally Integrated Automation
PORTA

B X E G ME | Feoonine oF coofine | fz I XL 1]

Cf 3 Esaveproject 3 ¥ =l
Qemreoner ____________________&ux st
Devices & Networkview [Device view |w Catalog Elzﬁl
% 2 |de e B = @2 100 El <search Hy Wt (g
1 2l rier H
~ [P - 57-1200 rack , ®
Lipun_rcs B — » o :
;u\d.new device : » @R e
Devices & lletws s
o e » @ signal baard &
= [PLC_1 [cPU 1214¢ DODCIDC] » @
Device canfi ti 7
[e R » moo =
) Gnline & diagnestics = » ‘@ oioo)
~ [l Program blocks » @A ES
I Add new block < vl » @ a8
& Main [081] —— —1) Faro g
3r Objects = q 3 -
Properties |%) Info || Diagnostics
» I8 PLctags < Por LRI —
» [watch tables General 5
2 Tetlists » General -] 2
= General z
» [Local modules b PROFINET interface 5
—_ » onapots Enable &
= Details view
 Enable this pulse generatorfor use =
4
Narne Project information &
= Name: Fulse_1
Cornment: -
Parameter assignment B
Hardwar s
10 addre: identifier
» FTO2IPIMZ |
Startup
Time of day ‘w Information
Pratection =

4 Portal view Overview i PLC_1

P —
*J start

Fig.6 Enabling PTO/PWM 1 from Pulse Generator in Device Overview

Here, you can find, Pulse Generators (PTO/PWM), where two modules are shown. Enable PTO/PWM 1 and note down
its address.

Siemens - PWM_FCS —ax
Project Edit Vi Insert Onl opti Tool; Wind Hely
Tole e W=y W GOl GREGME REL CHEES G Totally Integrated Automation
5 3 Bl saveproject & | M %2 B X |15 MR | 5 coonine ¥ coofiine | fp [N B 3¢ (1) PORTAL
4 13
Devices & Networkview [If Device view | w Catalog H:ﬂ
| 2 | dt rca - ~search by Wt |2
=] v rilter H
ML [=] 57-1200rack —| b “@ communication maduls =
W Add newdevice il cu u
D & letwark: msi g
,L'E“ evices & Netwarks » ‘@ signal board 3
~ [l PLC_1 [<PU 1214¢ DO/DCDC] » @o
JY Device configuration » oo g
9 online & diagnestics = » ‘moioo)
~ [Fragram blocks » mA £
B S e black . >é » @0 "
& wain [o1] —— ——1]) @aro g
= z s
» Technological Objects - " " “
fec o ogicn oy = g, Properties %) Info | g| Diagnostics
» [PLCtags =
= ables General =
xtlists » G | - H
L cors =l W identifier %
[i@ Local modules » PROFINETinterface @
— - » Diaoin
v Details view) Az e
Output addresses =
£01 signal beard g
Mame Start address: 1000 H)
= End address H
Process image: CyclicPl v
Parameter assignment I | Hardware identifier
Hardware outputs HW ID:
Startup
Time of day v Information
Protection =

4 Portal view g PLC1

P
15 Start

Fig.7 Hardware address of PTO/PWM 1. This is the address where the PWM duty cycle needs to be written

Finally create the following Ladders in Main_OB1. With this you can download the program in the PLC and observe
the inputs and outputs via Online Monitoring.

Labl10
NED University of Engineering and Technology

Feedback Control Systems (EE-374)
Department of Electrical Engineering

Siemens - PWM_FCS
Project Edit View Inset Online Options Tools Window Help

Totally Integrated Automation
POR

(4 3 El saveproject &1 X 18 T2 5 | |G M R | & coonine ¥ Goofiine | fp I8 B3¢ | (1] TAL
Pl Pav_FCS » PLC1 b Program blocks b Main I EX »
Devices ~ Favorites
j EAIE L 1=k =] Y T vy P = g
o Ao m o 2

v Network 2:
mmment

%081
= CTRL_PWM_DB

CTRL_PWM
EN ENO
N CTRL_PWM_DB"
Pulse_1[PT0/ BUSY 4 BUSY
PN = PN CTRL_PWM_DE"
wos STATUS - STATUS
Tag_3

w Details view

¥ Network 3:

x Networkd:

Harme Comment
cohy
Real toWord MOVE
EN ENO N ENO—t
MDA AMW3s AMW35 HWI000
“Tag_4" - IN oUT - "Tag_5 Tag 5" - IN 0UT1 & “Tag_6

o
s
2
 Instructions Ey
H
» [Counters -
=
=
2
&
i (RR]
=
E
=g
5

v Extended instructions
» [] Clack + Calendar

4 Portal view

‘g Properties %) Info | g) Diagnostics &

5 start EzZ6 I

Fig.8 Using CTR_PWM instruction from Extended Instructions and then CONV and MOVE to use PWM output

Task: Draw the connection diagram of DC Motor and Pulse Sensor with the PLC CPU. Also, note down your
observations how DC motor speed varies with the rotation of potentiometer.

Cover Page for Each PBL/OEL

Course Code: EE-374

Course Name: Feedback Control Systems

Semester: Spring / Fall

Year: 20

Section:

Batch:

Lab Instructor name:

Submission
deadline:

PBL or OEL Statement: To simulate and design hardware of a feedback control system
using Buck converter as plant.

Deliverables:
Write the report containing all calculations by hand and simulation on Matlab/Simulink. Include all
code and waveforms. Also submit hardware.

Methodology:

Task:

a) The mathematical model of Buck converter (Figure 1) in frequency domain is given by the
following transfer function:

T(s)=(V_O (s))/(d(s)) = V_s/(LCs*2+(L/R)s+1)

where;

Vo(s)= output voltage in s-domain

d(s)= duty cycle in s-domain

L= inductance

C= capacitance

R=load resistance

Simulate the converter in Simulink (using powergui library) with given circuit parameters to find out
the step response.

Figure 1: Buck Converter

R=1Q

L=0.5 mH

C=940 pF

d=0.5 to 0.8 (50% to 80%duty cycle), Switching frequency = 3.9 kHz
V_s=5V

b) Identify the transfer function, (V_0 (s))/(d(s)) experimentally by recording the step response of the
output voltage V_o of the following buck converter either by using controller (For, e.g. PLC, Arduino,
PIC etc.) with following system parameters.

R=1Q 10 Watt

L=0.5 mH

C=940 pF

d=0.5to 0.8 (50% to 80%duty cycle), Switching frequency = 3.9 kHz

V_s=5-12 V (battery or dc adaptor with 1A current capacity, use of mobile chargers is
discouraged)

N-channel MOSFET IRLZ44N (please note the L here as there are other versions of this
switch)

10kQ Resistors (0.25Watt) [2 Resistors]

5000 Resistor (0.25Watt) [1 Resistor]

Microcontroller (Arduino Uno/Nano, PIC, 8051 etc)

Potentiometer 100kQ

Vero-board

Guidelines: The report should be maximum 5 pages long which should include figures,
calculations, simulation results and waveforms Attach these two pages on top of the
report. Attach the screenshot of Simulink model along with the plot of Vo by giving
step PWM input of fixed duty cycle between 50% and 80%. Using the plot find { and
peak time and use these parameters to estimate transfer function. Attach the
screenshot of the plot of Vo. Using plot find C and peak time and use these parameters
to estimate transfer function. Also make a neat and labelled circuit diagram of your
setup with each detail.

c) Using potentiometer acquire voltage set value in the controller and then close the
control loop by automatically adjusting the PWM by sensing voltage output Vo and
comparing it with set value.

d) [Optional] Using PID control technique, adjust the PWM output by sensing Vo and
set value. You are allowed to use any open-source libraries for this task with proper
reference.

Rubrics: Standard software and hardware rubrics as defined for EE-374

Course Code: EE-359

Laboratory Session No.:

NED University of Engineering & Technology

Department of

Engineering

Course Title: Electrical Power Distribution and Utilization

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be Extent of Achievement
assessed 0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate Reasonable Demonstrates
Identification and | understand understanding | ability and | understanding of | command over
Usage: and use | of software | understanding software menu | software menu
Ability to initialise, | software menu of software | operation, makes | usage with
configure and | menu operation, menu no major mistakes | frequent use of
operate software makes many | operation, advance menu
environment under mistake makes lesser options
supervision, using mistakes
menus, shortcuts,
instructions etc.
Procedural Little to no | Slight ability to | Mostly correct | Correctly Correctly
Programming of | understanding | use procedural | recognition and | recognises and recognises and
given model: of procedural | programming application of | uses procedural uses procedural
Practice procedural | programming | techniques for | procedural programming programming
programming techniques coding given | programming techniques with techniques with
techniques, in order algorithm techniques but | no errors but no errors and runs
to code specific makes crucial | unable to run model successfully
model errors for the | model successfully
given model
Relating Theoretical | Completely Able to | Able to | Able to recognise | Able to recognise
Concepts, unable to | recognise some | recognise relation between | relation between
Equations and | relate relation relation model concepts | model concepts
Transforms to | between between model | between model | and written code, | and written code,
Code: model concepts and | concepts and | able to do some | able to completely
Recognise relation | concepts and | written code, | written code, | manipulations manipulate code
between model | written code, | unable to do | unable to do in line with
concepts and | unable to do | manipulations manipulations theoretical
written code and | manipulations concepts

manipulate the
code in accordance

of requirements

Detecting and
Removing Errors:
Detect
Errors/Exceptions

and in simulation
and manipulate

code to rectify the
simulation

Unable to
check and
detect error

messages and
indications in
software

Able to find
error messages
and indications
in software but
no
understanding
of detecting
those errors
and their types

Able to find
error messages
and indications
in software as
well as
understanding
of detecting
some of those
errors and their
types

Able to find error
messages in
software as well as
understanding of
detecting all of
those errors and
their types

Able to find error

messages in
software along
with the

understanding to
detect and rectify
them

Graphical
Visualisation and
Comparison of
model Parameters:

Manipulate given
simulation under
supervision, in order
to produce
graphs/plots for
measuring and
comparing model
parameters

Unable to
understand
and utilise
visualisation or
plotting
features

Ability to
understand and
utilise
visualisation
and plotting
features with
frequent errors

Ability to
understand and
utilise
visualisation
and plotting
features
successfully but
unable to
compare and

analyse them

Ability to
understand and
utilise

visualisation and

plotting features
successfully,
partially able to
compare and
analyse them

Ability to
understand and
utilise

visualisation and

plotting features
successfully, also
able to compare
and analyse them

Following step-by-

Inability to

Able to

Able to

Able to recognise

Able to recognise

step procedure to | recognise and | recognise given | recognise given | given lab | given lab
complete lab work: | perform given | lab procedures | lab procedures | procedures and | procedures and
Observe, imitate | lab procedures | and perform | and perform | perform them by | perform them by
and operate them but could | them by | following following
software to not follow the | following prescribed order | prescribed order
complete the prescribed prescribed of steps, with | of steps, with no
provided sequence order of steps order of steps, | occasional mistakes
of steps with frequent | mistakes
mistakes

Recording Inability to | Able to Able to recognise | Able to recognise
Simulation recognise recognise prescribed or | prescribed or
Observations: prescribed or | prescribed or required required
Observe and copy | required required simulation simulation
prescribed or | simulation simulation measurements measurements
required simulation | measurements | measurements _ but records them | and records them
results in but does not incompletely completely, in
accordance with lab record tabular form
manual instructions according to

given

instructions
Discussion and | Complete Slight ability to | Moderate Reasonable ability | Full ability to
Conclusion: inability to | discuss ability to discuss | to discuss | discuss recorded
Demonstrate discuss recorded recorded recorded observations and
discussion capacity | recorded observations observations observations and | draw conclusions
on the recorded | observations and draw | and draw | draw conclusions
observations and | and draw | conclusions conclusions
draw conclusions | conclusions
from it, relating

them to theoretical
principles/concepts

Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date

Course Code: EE-374
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Feedback Control Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to | Able to recognise | Able to | Able to
and Configuration: unable to | recognise initialisation but | recognise recognise
Set up and recognise | recognise initialisation but | configuration s | initialisation and | initialisation and
software initialisation | initialisation could not | erroneous configuration configuration
and configuration steps | and configure with minimal | with complete

configuration errors success
[10% o
Equipment Completely Ability to identify Ability to
Identification and | unable to equipment but identify
Handling: identify makes mistakes in equipment and
Sensory skill to identify | equipment recognising recognises all
equipment and its | and components, components,
components along with | components — demonstrates - practices careful
adherence to safe | and no regard decent and safe
handling to safe equipment handling
handling handling capacity

15% g
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to successfully
between computer and | connection _ establish _ establishes
hardware kit and | verification software software
establish connectivity connection connection
with software verification verification
[15% o
Following step-by-step | Inability to | Able to | Able to recognise | Able to | Able to

procedure to complete
lab work:

Observe, imitate and
operate hardware in

conjunction with
software to complete
the provided sequence
of steps

[15%4

recognise and
perform given
lab
procedures

recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

recognise given
lab procedures

and perform
them by
following
prescribed

order of steps,
with occasional
mistakes

recognise given
lab procedures

and perform
them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct Correct selection | Correct Correct
Controller for given | selection and | selection of | and use of | selection and | selection and
Control System | use of | programming programming use of | use of
Problem: programming | constructs and | constructs and | programming programming
Imitate and practice | constructs instructions but | instructions with | constructs and | constructs and
given Ladder | and their use is | many instructions instructions with
instructions for | instructions incorrect syntax/logical with little to no | no syntax/logical
implementing specific errors syntax/logical errors

control strategy and
store required variables
15%

o

errors

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and | understand understanding and understanding command over
Usage: and use | of software | understanding of | of software | software menu
Ability to operate | software menu software menu | menu usage with
software environment | menu operation, operation, makes | operation, occasional use
under supervision, makes many | lesser mistakes makes no major | of advance
using menus, shortcuts, mistake mistakes menu options
instructions etc.

10% o

Detecting and | Unable to | Able to find | Able to find error | Able to find | Able to find
Removing check and | error messages | messages in | error messages | error messages
Errors/Exceptions in | detect error | in software but | software and | in software and | in software and
Hardware and | messages in | no sense of | recognise them | recognise them | recognise them
Software: software and | hardware error | on hardware. Still | on hardware. | on hardware.
Detect hardware identification unable to | Moderately able | Reasonably able
Errors/Exceptions and understand the | in in

manipulate, under error type and | understanding understanding

supervision, to rectify
the Ladder program

[10%

o

possible causes

error type and
possible causes

error type and
possible causes

Visualisation,
Comparison
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

[10%

and

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

o

Ability to
understand and
utilise
visualisation

and plotting
instructions
with errors.
Unable to
compute

standard indices

Ability to
understand and
utilise
visualisation and
plotting

instructions with
occasional errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

Course Code: EE-359

Laboratory Session No.:

NED University of Engineering & Technology

Department of

Engineering

Course Title: Electrical Power Distribution and Utilization

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be Extent of Achievement
assessed 0 1 2 3 4
Software Menu | Unable to | Little ability and | Moderate Reasonable Demonstrates
Identification and | understand understanding | ability and | understanding of | command over
Usage: and use | of software | understanding software menu | software menu
Ability to initialise, | software menu of software | operation, makes | usage with
configure and | menu operation, menu no major mistakes | frequent use of
operate software makes many | operation, advance menu
environment under mistake makes lesser options
supervision, using mistakes
menus, shortcuts,
instructions etc.
Procedural Little to no | Slight ability to | Mostly correct | Correctly Correctly
Programming of | understanding | use procedural | recognition and | recognises and recognises and
given model: of procedural | programming application of | uses procedural uses procedural
Practice procedural | programming | techniques for | procedural programming programming
programming techniques coding given | programming techniques with techniques with
techniques, in order algorithm techniques but | no errors but no errors and runs
to code specific makes crucial | unable to run model successfully
model errors for the | model successfully
given model
Relating Theoretical | Completely Able to | Able to | Able to recognise | Able to recognise
Concepts, unable to | recognise some | recognise relation between | relation between
Equations and | relate relation relation model concepts | model concepts
Transforms to | between between model | between model | and written code, | and written code,
Code: model concepts and | concepts and | able to do some | able to completely
Recognise relation | concepts and | written code, | written code, | manipulations manipulate code
between model | written code, | unable to do | unable to do in line with
concepts and | unable to do | manipulations manipulations theoretical
written code and | manipulations concepts

manipulate the
code in accordance

of requirements

Detecting and
Removing Errors:
Detect
Errors/Exceptions

and in simulation
and manipulate

code to rectify the
simulation

Unable to
check and
detect error

messages and
indications in
software

Able to find
error messages
and indications
in software but
no
understanding
of detecting
those errors
and their types

Able to find
error messages
and indications
in software as
well as
understanding
of detecting
some of those
errors and their
types

Able to find error
messages in
software as well as
understanding of
detecting all of
those errors and
their types

Able to find error

messages in
software along
with the

understanding to
detect and rectify
them

Graphical
Visualisation and
Comparison of
model Parameters:

Manipulate given
simulation under
supervision, in order
to produce
graphs/plots for
measuring and
comparing model
parameters

Unable to
understand
and utilise
visualisation or
plotting
features

Ability to
understand and
utilise
visualisation
and plotting
features with
frequent errors

Ability to
understand and
utilise
visualisation
and plotting
features
successfully but
unable to
compare and

analyse them

Ability to
understand and
utilise

visualisation and

plotting features
successfully,
partially able to
compare and
analyse them

Ability to
understand and
utilise

visualisation and

plotting features
successfully, also
able to compare
and analyse them

Following step-by-

Inability to

Able to

Able to

Able to recognise

Able to recognise

step procedure to | recognise and | recognise given | recognise given | given lab | given lab
complete lab work: | perform given | lab procedures | lab procedures | procedures and | procedures and
Observe, imitate | lab procedures | and perform | and perform | perform them by | perform them by
and operate them but could | them by | following following
software to not follow the | following prescribed order | prescribed order
complete the prescribed prescribed of steps, with | of steps, with no
provided sequence order of steps order of steps, | occasional mistakes
of steps with frequent | mistakes
mistakes

Recording Inability to | Able to Able to recognise | Able to recognise
Simulation recognise recognise prescribed or | prescribed or
Observations: prescribed or | prescribed or required required
Observe and copy | required required simulation simulation
prescribed or | simulation simulation measurements measurements
required simulation | measurements | measurements _ but records them | and records them
results in but does not incompletely completely, in
accordance with lab record tabular form
manual instructions according to

given

instructions
Discussion and | Complete Slight ability to | Moderate Reasonable ability | Full ability to
Conclusion: inability to | discuss ability to discuss | to discuss | discuss recorded
Demonstrate discuss recorded recorded recorded observations and
discussion capacity | recorded observations observations observations and | draw conclusions
on the recorded | observations and draw | and draw | draw conclusions
observations and | and draw | conclusions conclusions
draw conclusions | conclusions
from it, relating

them to theoretical
principles/concepts

Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date

Course Code: EE-374
Laboratory Session No.:

NED University of Engineering & Technology

Department of Electrical Engineering

Course Title: Feedback Control Systems

Date:

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Software Initialisation | Completely Able to | Able to recognise | Able to | Able to
and Configuration: unable to | recognise initialisation but | recognise recognise
Set up and recognise | recognise initialisation but | configuration s | initialisation and | initialisation and
software initialisation | initialisation could not | erroneous configuration configuration
and configuration steps | and configure with minimal | with complete

configuration errors success
[10% o
Equipment Completely Ability to identify Ability to
Identification and | unable to equipment but identify
Handling: identify makes mistakes in equipment and
Sensory skill to identify | equipment recognising recognises all
equipment and its | and components, components,
components along with | components — demonstrates - practices careful
adherence to safe | and no regard decent and safe
handling to safe equipment handling
handling handling capacity

15% g
Establish and Verify | Unable to Able to verify Able to verify
Hardware-Software perform hardware hardware
Connection: hardware and connection but connection and
Recognise interface | software unable to successfully
between computer and | connection _ establish _ establishes
hardware kit and | verification software software
establish connectivity connection connection
with software verification verification
[15% o
Following step-by-step | Inability to | Able to | Able to recognise | Able to | Able to

procedure to complete
lab work:

Observe, imitate and
operate hardware in

conjunction with
software to complete
the provided sequence
of steps

[15%4

recognise and
perform given
lab
procedures

recognise given
lab procedures
and perform
them but could
not follow the
prescribed
order of steps

given lab
procedures and
perform them by
following
prescribed order
of steps, with
frequent
mistakes

recognise given
lab procedures

and perform
them by
following
prescribed

order of steps,
with occasional
mistakes

recognise given
lab procedures

and perform
them by
following

prescribed order
of steps, with no
mistakes

Page 1 of 2

Psychomotor Domain Assessment Rubric for Laboratory (Level P3)

Skill(s) to be assessed

Extent of Achievement

0 1 2 3 4
Programming the | Incorrect Correct Correct selection | Correct Correct
Controller for given | selection and | selection of | and use of | selection and | selection and
Control System | use of | programming programming use of | use of
Problem: programming | constructs and | constructs and | programming programming
Imitate and practice | constructs instructions but | instructions with | constructs and | constructs and
given Ladder | and their use is | many instructions instructions with
instructions for | instructions incorrect syntax/logical with little to no | no syntax/logical
implementing specific errors syntax/logical errors

control strategy and
store required variables
15%

o

errors

Software Menu | Unable to | Little ability and | Moderate ability | Reasonable Demonstrates
Identification and | understand understanding and understanding command over
Usage: and use | of software | understanding of | of software | software menu
Ability to operate | software menu software menu | menu usage with
software environment | menu operation, operation, makes | operation, occasional use
under supervision, makes many | lesser mistakes makes no major | of advance
using menus, shortcuts, mistake mistakes menu options
instructions etc.

10% o

Detecting and | Unable to | Able to find | Able to find error | Able to find | Able to find
Removing check and | error messages | messages in | error messages | error messages
Errors/Exceptions in | detect error | in software but | software and | in software and | in software and
Hardware and | messages in | no sense of | recognise them | recognise them | recognise them
Software: software and | hardware error | on hardware. Still | on hardware. | on hardware.
Detect hardware identification unable to | Moderately able | Reasonably able
Errors/Exceptions and understand the | in in

manipulate, under error type and | understanding understanding

supervision, to rectify
the Ladder program

[10%

o

possible causes

error type and
possible causes

error type and
possible causes

Visualisation,
Comparison
analysis of results:
Copy or enter results in
analysis software to
visualise and compare
them with inputs. Use
analysis tools to
compute standard
indices from result

[10%

and

Unable to
understand
and utilise
visualisation,
plotting and
analysis
software

o

Ability to
understand and
utilise
visualisation

and plotting
instructions
with errors.
Unable to
compute

standard indices

Ability to
understand and
utilise
visualisation and
plotting

instructions with
occasional errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
with no errors.
Able to partially
compute
standard indices

Ability to
understand and
utilise
visualisation and
plotting
instructions
without errors.
Able to compute
standard indices
completely

Total Points (out of 400)

Weighted CLO (Psychomotor Score)

(Points/4)

Remarks

Instructor’s Signature with Date

Page 2 of 2

